NATURAL DURABILITY, PRESERVATIVE TREATABILITY AND PROTECTION OF SEVERAL HARDWOODS OF SARAWAK

Ling Wang Choon

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Resource Science and Technology
Univeristy of Malaysia Sarawak

2013
ACKNOWLEDGEMENT

I wish to thank (i) the Government of Malaysia for the provision of manpower and research funds for conducting research on the preservation and durability of Sarawak timbers over the period 1976-2008, (ii) Mr. Joseph Yong, Datuk Leo Chai and Datu Cheong Ek Choon, Datu Haji Len Talif Salleh while serving as Directors of Forests Sarawak, for their continuing support in this long term research project, (iii) Datu Haji Ali Yusop, current Director of Forests for encouragement in the printing of the thesis, (iv) Mr. Lai Khim Kuet and Ernest Chai Oi Khun for keeping the test site secure when they were Forest Silviculturists, Sibu, (v) Senior Forest Botantist Dr. Paul Chai and Forest Botanist Abang Mohd. Moktar bin Abg. Pawozan and staff of Forest Botany section for tree identifications, (vi) staff of Wood Anatomy Section for tree collections, (vii) staff of Saw Doctoring section for assistance in processing of collected materials, (viii) staff of Seasoning Section for kiln drying of test boards, staff of Preservation Section for stake preparations and treatment, (ix) Mr. Wong Ting Chung, Forest Engineer, TRTTC and his staff for keeping all equipment in excellent working condition, (x) my supervisor Associate Professor Dr. Andrew Wong who persuaded and disciplined me into completing my PhD thesis, for his encouragement, patience, guidance and his very close supervision, critical comments and devoted editing process of this thesis and (xi) former head of TRTTC, Senior Assistant Directors of Forests, Mr. John Cheng Siang Kok for defending the project against critics of long term research project.

I wish to extend my thanks to scientists and friends at the former Division of Building Research, CSIRO, Melbourne who explained and showed me how field tests was done in 1978 in the states of Victoria, New South Wales and Queensland as well as laboratory studies
on fungi and termites. I had many useful discussions with Dr. John Thornton, Mr. John Barnacle, Mr. Jim Creffield, Mr. John Beesley and Mr. Jack Norton during my visits to Australia. I benefited from Dr. Koichi Yamamoto and Kentaro Suzuki who showed me various aspects of durability research in Japan while I was on a 3 month visit under JICA sponsorship. I also had the opportunity to discuss with Dr. Richard Murphy of Imperial College, University of London, Dr. Alan Petty of Aberdeen University and other researchers mainly international scientists from The International Research Group on Wood Protection (www.irgwp.org) on various aspects of wood durability and wood protection.

I wish also to thank staff of the Sarawak Forestry Corporation /former Forest Department staff for carrying out the field work, especially Mr. Lai Jiew Kok, Mr. John Sammy and Mr. Leong Fad Weng for conducting field assessments and Mr. Yang Min Chin for assistance in the formatting the final document; Madam Irene Bong of Forest Department for updating records of each stake after each assessment for the last 30 years.

Last but not least, I wish to thank my wife Hellen Munan, my three children Corina, Cecilia and Roger Ling for their moral support and encouragements during the many years I spent in this research, publishing and continued writing of this thesis to its final form.
ABSTRACT

Natural durability, preservative treatability and protection of several hardwoods of Sarawak

by

Ling Wang Choon

Before 1977, there were no studies on natural durability and treatability of Sarawak timbers. Most information on durability was anecdotal, the species then assumed to be very durable were Belian, Selangan batu, Penyau, Kapur, Resak and Bakau. Timber Research and Technical Training Centre therefore established a graveyard test site for such field studies so that useful data on utilization of Sarawak timbers could benefit the Sarawak forest products industry. The objectives of this thesis are to determine from 30 years of research on natural (in-ground) durability (of mainly the outer heartwood present in a majority of wood species studied) and preservative treatability the relative natural durability and degree of protection of some preservative treated Sarawak timbers. The durability of 26 refractory and 106 non-refractory timber species with and without preservative treatments was established by regular assessment of stakes in ground contact at the Sarawak Tree Improvement Centre located at Oya Road, Sibu, adopting the ASTM D1758 for assessing replicated stakes of the wood species [stake replication, 20; stake size: 19 x 19 x 457 (long.) mm]. To ensure uniform and good decay condition, plots were alternated between areas with original vegetation cover and a permanent vegetation belt was maintained around each row of stakes. Stake specimens planted over the years 1977-2000 were each visually rated at 6-month intervals for the first 10 years from installation and subsequently once a year until April 2008. The field results were analyzed using SPSS Windows Version 15.0. Comparative natural durability ratings between
the 133 wood species, matched against wood density groups, commercial timber groups (e.g. the keruings, mixed light hardwoods, the merantis, the kapurs) and refractory-versus-permeable groups, revealed statistically that the very durable species are *Eusideroxylon zwageri*, *Shorea pluricostata*, *Upuna borneensis* and *Gymnostoma nobile*. The 16 durable species included *Shorea exelliptica*, *Shorea flava*, *Shorea laevis*, *Pentace corneri*, *Shorea acuminatissima*, *Tectona grandis*, *Palaquium rivulare*, *Hopea latifolia*, *Hopea beccariana* and *Shorea uliginosa*. The 39 moderate durable species included *Tristania whiteana*, *Cantleya corniculata*, *Jackia ornata*, *Parashorea snythiesii*, *Dialium indum*, *Dacrydium elatum*, *Anisophyllea beccariana*, *Shorea carapae*, *Lithocarpus cantleyanus*, *Pometia pinnata* and *Anisoptera grossivenia*. The remaining 74 species, including potential plantation species such as *Acacia mangium*, *Neolamarckia cadamba*, *Shorea macrophylla*, *Dyera polyphylla* and *Octomeles sumatrana*, were found to be non-durable.

Statistically, it was shown that wood species with high Chromated Copper Arsenate (CCA) retentions with mean retention values <20 kg/m3 were in good condition after 20 years in ground contact while a majority of Chromated Copper Borate (CCB) treated timbers at a mean retention <24 kg/m3 lasted just 10 years. Creosote treated timbers (mean retention 108 kg/m3) failed by the 13th year while Fluor-Chrome-Arsenate-Phenol (FCAP, mean retention 21 kg/m3) failed by the 8th year. From statistical analysis of OHW, natural durability of 133 timber species as well as durability of 131 timbers treated with these wood preservatives was found to vary considerably. Overall, it was found that 26 species (19.5% of all species tested) were refractory treated using CCA full-cell treatment while 107 species (80.5%) were non-refractory. The 26 refractory species consisted of four very durable (3% of all species), seven durable (5.2%) and 15 moderately durable (11.3%) species. None of the refractory species
belonged to the non-durable group. The non-refractory group had 74 species (55.6% of all species) belonging to non-durable group, 24 species (18.1% of all species) belonging to moderately durable and nine species (6.8%) belonging to durable group. None of the non-refractory species belonged to the very durable grouping.

From these overall findings the timber utilization prospects and issues of untreated and treated Sarawak species are discussed in relation to matters such as: similar work around the world, test methodology issues, wood used in agriculture, construction and wood composites, their wood density classes, trends between botanical groups of species, future plantations, and future research needs beneficial to the Malaysian and Sarawak forest products industry are proposed.
ABSTRAK

Ketahanan semula jadi, kebolehrawatan pengawet dan Perlindungan Kayu-kayu keras dari Sarawak

Oleh

Ling Wang Choon

Analisis menunjukkan bahawa spesies kayu yang mengandungi Chromated Copper Arsenate (CCA) yang tinggi dengan nilai pengekalan min \(<20 \text{ kg/m}^3\) berada dalam keadaan yang baik walaupun lebih daripada 20 tahun di dalam tanah. Kebanyakan kayu yang dirawat dengan pengekalan min \(<24 \text{ kg/m}^3\) Chromated Copper Borate (CCB) pula tahan selama 10 tahun. Kayu-kayu yang dirawat dengan Creosote (pengekalan min 108 kg/m\(^3\)) gagal bertahan sehingga tahun yang ke-13 manakala kayu-kayu yang dirawat dengan Fluor-Chrome-Arsenate-Phenol (FCAP, pengekalan min 21 kg/m\(^3\)) tahan sehingga tahun ketujuh sahaja. Daripada analisis statistik OHW, ketahanan semula jadi 133 spesies kayu balak dan 131 kayu yang telah dirawat menunjukkan perbezaan yang amat ketara. Secara keseluruhannya,
didapati 26 spesies (19.5% dari jumlah spesies yang dikaji) ialah kayu refraktori yang tidak mudah dirawat dengan CCA sementara 107 spesies (80.5%) berjaya dirawat. 26 spesies refraktori termasuk empat spesies yang sangat tahan (3% dari jumlah spesies), tujuh yang tahan (5.2%) and 15 spesies yang sederhana tahan (11.3%). Semua spesies kayu refraktori tidak digolongkan dalam kumpulan kayu yang tidak tahan. Dalam kumpulan kayu bukan refraktori, 74 spesies (55.6% dari jumlah spesies) digolongkan dalam kumpulan tidak tahan, 24 spesies (18.1% dari jumlah spesies) digolongkan dalam kumpulan sederhana tahan dan 9 spesies (6.8%) digolongkan dalam kumpulan tahan. Tiada spesies dari kumpulan bukan refraktori dalam kumpulan kayu yang sangat tahan.

Dapatan daripada penyelidikan ini, prospek penggunaan kayu balak dan isu-isu kayu dari Sarawak yang dirawat dan tidak dirawat dibincangkanseperti hasil kajian dari Negara-negara lain, isu berkaitan dengan metodologi ujian, penggunaan kayu untuk pertanian, industri pembinaan, komposisi kayu, pengelasan ketumpatan, perbezaan botani antara spesies, perladangan dan keperluan penyelidikan pada masa hadapan yang memanfaatkan industri hasil hutan Sarawak dan Malaysia juga dicadangkan.
TABLE OF CONTENTS

Acknowledgement .. ii

Abstract— .. iv

Abstrak— ... vii

Table of Contents ... x

List of Tables .. xiv

List of Figures ... xvii

List of Abbreviations ... xviii

Chapter 1. Introduction ... 1
 1.1 Research problems and hypothesis .. 1
 1.2 Objective and scope of the research project ... 2
 1.3 Aims of thesis .. 3

Chapter 2. Literature Review ... 5
 2.1 Environment aspects affecting wood durability ... 5
 2.2 Treated wood durability .. 10
 2.3 Treatability of timber ... 12
 2.4 Type of preservatives and treatment processes ... 16
 2.5 Chemical and physical properties of wood influencing wood durability 18
 2.6 Wood attacking organisms affecting wood durability 20
 2.7 Performance of timbers and durability classification 23

Chapter 3. Materials and Methods ... 29
 3.1 Introduction ... 29
 3.2 Definition of terms used in this thesis ... 29
 3.2.1 Sapwood, outer heartwood and inner heartwood 29
 3.2.2 Light, medium and heavy hardwoods and density grouping of timbers 30
 3.2.3 Density classes .. 32
 3.2.4 Structural timber ... 32
 3.2.5 Refractory and permeable groups ... 32
 3.2.6 Treatability classes .. 33
 3.2.7 Derived timber categories ... 33
 3.2.8 Classifying natural durability of a timber species based on mean
 biodeterioration rating and service life of individual stakes 34
 3.2.9 Natural durability classification system .. 35
 3.2.10 Protection factor of wood preservatives (PF) ... 36
3.2.11 Over-treatment factor (OTF) ... 36
3.3 Graveyard test site ... 37
3.3.1 Test site/test plots /layout of test specimens 39
3.3.2 Sequential installment of stakes ... 43
3.4 Climatic condition of test site .. 44
3.5 Soil type at the test site .. 45
3.6 Test wood materials .. 46
3.6.1 Collection of wood samples for testing ... 46
3.6.2 Wood stake preparation ... 48
3.7 Composition and strength of preservatives 48
3.7.1 Water-borne preservatives .. 48
3.7.2 Oil-borne preservative ... 49
3.8 Treatment protocol of stake specimens ... 49
3.8.1 Conditioning of pre-treated wooden stakes 50
3.8.2 Pressure treatment (full cell process) ... 50
3.8.3 Treatment using oil borne preservative 52
3.8.4 Conditioning of post-treated stakes .. 53
3.9 In-ground field test .. 53
3.9.1 Biodeterioration ratings of stakes ... 54
3.10 Computations and statistical analysis .. 58
3.10.1 Statistical tool used in data analysis .. 58
3.10.2 Assumption made in statistical analysis 60
3.11 Financing of project ... 60
3.11.1 Cost of sample collection .. 61
3.11.2 Cost of field stake test assessment ... 61
3.11.3 Staff salary .. 62
3.11.4 Overall cost of project ... 62

Chapter 4. Results ... 63
4.1 Natural durability of Sarawak timbers from natural forests 63
4.1.1 Sibu test site wood biodeterioration pressures 64
4.1.2 Relation between cross-sectional areas and durability of outer heartwood 70
4.1.3 Variation of natural durability within a tree 73
4.1.4 Relationship between wood density and service life of outer heartwood (OHW) - 75
4.1.5 Summary of service life classification for Sarawak timber species by species permeability .. 77
4.1.6 Naturally durable timbers ... 78
4.1.7 Service life of MKK group .. 80
4.1.7.1 Service life of Kering ... 80
4.1.7.2 Service life of refractory versus permeable Keruing 83
4.1.7.3 Service life of the Meranti group
---85
4.1.7.4 Service life of Kapur group
---89
4.2 Service life of potential plantation species
---91
4.3 Service life of treated Sarawak timbers
---93
4.3.1 Service life of treated OHW of MLH
---95
4.3.2 Service life of treated OHW of MHW
---98
4.3.3 Service life of treated OHW of HHW
---100
4.3.4 Protection factor (PF) of preservatives
---103
4.3.5 Over-treatment factor (OTF)
---106

Chapter 5. Discussion
---111
5.1 Nature durability and utilization of timbers
---111
5.1.1 Use of timber in construction
---113
5.1.2 Durability of wood composite
---114
5.2 Methods to determine durability
---115
5.2.1 Comparing mean rating of a species at fixed time with mean service life of stakes
---116
5.2.2 Variation of natural durability within a tree
---117
5.2.3 Choice of failure points in visual stake rating
---118
5.3 Durability evaluation of Sarawak timbers
---119
5.3.1 Durability of Dipterocarps
---119
5.3.2 Durability of Selangan batu species
---120
5.3.3 Durability of Keruing group
---121
5.3.3.1 Pre-sorting of Keruing by density classes
---121
5.3.4 Durability of Kapur
---122
5.3.5 Durability of Meranti group
---122
5.4 Durability of potential plantation species
---123
5.5 Durability of treated Sarawak timbers
---123
5.5.1 Performance of CCA and Creosote preservatives
---124
5.5.2 Performance of CCB treated timber in the tropics
---125
5.5.3 Refractory timbers
---126
5.6 Issues in the Sibu graveyard test
---127
5.6.1 Frequency of inspection
---128
5.6.2 Amendment of ASTM D1753
---129
5.6.3 Relation between stake size and durability in tropical region
---130
5.6.4 Malaysian Grading Rules definition of density classes
---131
5.7 Problems with local technical specification on use of timber
---132
5.7.1 Abuse of the terms hardwoods and softwoods
---132
5.7.2 Use of Bakau as piling materials
---132
5.7.3 Distinction between durable and very durable timbers
---133
LIST OF TABLES

Table 1. Service Life of Malaysian Timbers (Mohd. Dahlan & Tam (1987)------------------------25
Table 2. Frequency distribution of stakes by treatment at year 25 ----------------------------------44
Table 3. Formulation of some wood preservatives used in field trial-------------------------------52
Table 4. Minimum retention for some preservatives for in-ground use -----------------------------53
Table 5. ASTM D1758 Visual durability rating of field test specimens ----------------------------54
Table 6. Durability rating of outer heartwood of Sarawak timbers from year 1 to year 25--65
Table 7. Frequency of occurrence of decay fungi and termites on a population of OHW (including undifferentiated heartwood and sapwood species) stakes of timber species assessed between 2 and 25 years exposure ---------------------------------------70
Table 8. ANOVA of cross-sectional variation against durability of untreated OHW of Keruing utap---72
Table 9. Durability of untreated OHW of Keruing utap stake by cross sections (P=0.07) --72
Table 10. ANOVA for durability rating for Keruing utap heartwood 6 months---------------------72
Table 11. DMRT for Mean rating of Keruing utap at 6 months by cross-section (P=0.05)----73
Table 12. DMRT for mean service life of sapwood and heartwood of 11 light permeable Dipterocarp species---74
Table 13. DMRT for mean service life of sapwood and heartwood of 15 light refractory Dipterocarp species---74
Table 14. DMRT for mean service life of sapwood and heartwood of 12 heavy permeable Dipterocarp species---74
Table 15. DMRT for mean service life of sapwood and heartwood of 17 heavy refractory Dipterocarp species---75
Table 16. ANOVA of service life in years for all OHW by density classes--------------------------75
Table 17. DMRT on mean service life versus density class of untreated OHW (P=0.05).---75
Table 18. Natural durability classification versus permeability of heartwood of 133 Sarawak timbers---77
Table 19. Mean durability rating of OHW of durable Sarawak timbers from year 1 to year 25 ---79
Table 20. Mean rating of Selangan Batu from year 2 to year 15-----------------------------------80
Table 21. DMRT on service life of OHW of Selangan batu species --------------------------------80
Table 22. Mean rating of Keruing OHW from year 2 to year 10 -----------------------------------81
Table 23. Service life of Keruing OHW from Sarawak ---82
Table 24. DMRT on service life of Keruing OHW by density groups --------------------------------82
Table 25. ANOVA on service life of Keruing OHW by density class -------------------------------82
Table 26. DMRT on mean service life of Keruing OHW by density class -----------------------------82
Table 27. DMRT on service life of Keruing OHW by refractory classes -----------------------------83
Table 28. Mean rating of Meranti OHW from year 2 to year 15-----------------------------------85
Table 29. DMRT on service life of Meranti OHW by density group -------------------------------86
Table 30. ANOVA of service life of Meranti OHW by density class -------------------------------86
Table 31. DMRT on mean service life of Meranti OHW by density class -----------------------------87
Table 32. DMRT on service life of Meranti OHW by treatability group -----------------------------88
Table 33. DMRT on service life of OHW between Meranti species -------------------------------89
Table 34. Mean rating of Kapur timber from year 2 to year 15 -----------------------------------90
Table 35. ANOVA on service life of Kapur by density groups ----------------------------------90
Table 36. DMRT on mean service life of Kapur OHW by density groups (P=0.342)---------------90
Table 37. Rating of plantation timber from year 2 to year 1091
Table 38. ANOVA on service life of potential plantation species in Sarawak.....................92
Table 39. DMRT on service life between plantation species from Sarawak92
Table 40. ANOVA density group by treatability class ..95
Table 41. DMRT on service life OHW of very permeable MLH preservatives and control--96
Table 42. DMRT on service life of OHW of permeable MLH between preservatives and control ..97
Table 43. DMRT on service life of OHWs of refractory MLH among preservatives and control ..97
Table 44. DMRT on service life of OHW of very refractory MLH among preservatives and control ..97
Table 45. DMRT on service life of very permeable OHW of MHW among preservatives and control ..98
Table 46. DMRT on service life of OHW of permeable MHW among preservatives and control ..99
Table 47. DMRT on service life of OHW of refractory MHW among preservatives and control ..99
Table 48. DMRT on service life of OHW of very refractory MHW among preservatives and control ...100
Table 49. DMRT on service life of OHW of very permeable HHW among preservative and control ..100
Table 50. DMRT on service life of OHW of permeable HHW among preservatives and control ..101
Table 51. DMRT on Service life of OHW of refractory HHW among preservative and control ..101
Table 52. DMRT on service life of OHW of very refractory HHW among preservatives and control ..102
Table 53. ANOVA on service life for structural hardwoods (wood density ≥600 kg/m³) among preservatives and control ...103
Table 54. DMRT on mean service life and for structural hardwoods (wood density ≥600 kg/m³) with treatability classes “refractory” to “permeable” among preservatives and control ..103
Table 55. ANOVA of Protection Factor for structural hardwood (wood density ≥600 kg/m³) with treatability classes refractory to permeable among preservatives105
Table 56. DMRT on Protection Factor among preservatives on structural timber (wood density ≥600 kg/m³) with treatability classes refractory to permeable105
Table 57. ANOVA on effect of OTF on treated service life for each preservative (pooling all species) ..106
Table 58. Effect of OTF on mean service life of Creosote treated structural timber (wood density ≥600 kg/m³ (pooling all species)) ...107
Table 59. Effect of OTF on mean service life of CCA-Celcure A(P) treated structural timbers (wood density ≥600 kg/m³ pooling all species) ...107
Table 60. Effect of OTF on mean service life of CCA-Tanalith C treated structural timbers (wood density ≥600 kg/m³ pooling all species) ...108
Table 61. Effect of OTF on mean service life of FCAP treated structural timbers (wood density ≥600 kg/m³ pooling all species) ..108
Table 62. Effect of OTF on mean service life of CCA-Copas LC treated structural timbers (density≥600 kg/m³ pooling all species) ..109
Table 63. Effect of OTF on mean service life of CCB treated structural timbers (wood density ≥600 kg/m³ pooling all species) --- 110
Table 64. Effect of OTF on mean service life of CCA-Boliden K33 treated structural timbers (wood density ≥600 kg/m³ pooling all species) --- 110
Table 65. ASTM D1753 (2000 edition) rating scale --- 130
Table 66. UK density and strength class classification of some well-known hardwoods --- 131
LIST OF FIGURES

Figure 1. Test stakes left with paper thin shell after eaten by termites at Sibu site -------- 22
Figure 2. Durability test stakes are kept humid and shaded by belt of vegetation--------- 40
Figure 3. Primary fire-break with inner half cleared and outer half to be cleared-------- 40
Figure 4. Drawing showing fire-break surrounding test plots---------------------------- 41
Figure 5. Modified bush-cutter and specially fabricated stake planting tools--------- 42
Figure 6. Original vegetation surrounding 4 sides of a plot within the Sibu test site------ 45
Figure 7. Rows of vegetation keeping test stakes humid------------------------------- 55
Figure 8. Crew leader assessing and recording a stake for degrade---------------------- 55
Figure 9. Counter checking of 1% of stakes performed to maintain standard of rating---- 56
Figure 10. Group photograph showing team members and tools-------------------------- 56
Figure 11. Keruing utap stakes of various cross-sections tested in Sibu---------------- 71
Figure 12. Scatterplot service life of OHW stakes of all species by density---------- 76
Figure 13. Scatterplot service life of OHW of Keruing stakes in year by density------- 84
Figure 14. Scatterplot service life of OHW of Meranti in years with density of stakes--- 87
Figure 15. Untreated Kapur heartwood sound after 5 years of exposure-------------- 90
Figure 16. Appearance of Teak heartwood after 5.5 years of exposure---------------- 93
Figure 17. Hand hewn Belian posts used as support for pepper vine in Sarawak------ 138
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American society for testing of materials standard</td>
</tr>
<tr>
<td>BFCA</td>
<td>Borate-Fluor-Chrome-Arsenate</td>
</tr>
<tr>
<td>CCA</td>
<td>Chromated Copper Arsenate</td>
</tr>
<tr>
<td>CCB</td>
<td>Chromated Copper Borate</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organization, Australia</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s multiple range test</td>
</tr>
<tr>
<td>FCAP</td>
<td>Fluor-Chrome-Arsenate-Phenol</td>
</tr>
<tr>
<td>FD</td>
<td>Forest Department, Sarawak</td>
</tr>
<tr>
<td>FRI/FRIM</td>
<td>Forest Research Institute Malaysia, Kepong</td>
</tr>
<tr>
<td>H1</td>
<td>Hazard class 1</td>
</tr>
<tr>
<td>H2</td>
<td>Hazard class 2</td>
</tr>
<tr>
<td>H3</td>
<td>Hazard class 3</td>
</tr>
<tr>
<td>H4</td>
<td>Hazard class 4</td>
</tr>
<tr>
<td>H5</td>
<td>Hazard class 5</td>
</tr>
<tr>
<td>HHW</td>
<td>Heavy hardwoods</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>kg/m3</td>
<td>kilogram per cubic meter</td>
</tr>
<tr>
<td>kPa</td>
<td>kilo Pascal</td>
</tr>
<tr>
<td>LOSP</td>
<td>light organic solvent preservative</td>
</tr>
<tr>
<td>LVL</td>
<td>laminated veneer lumber</td>
</tr>
<tr>
<td>MGR</td>
<td>Malaysian Grading Rules</td>
</tr>
<tr>
<td>MHW</td>
<td>medium hardwoods</td>
</tr>
<tr>
<td>MLH</td>
<td>mixed light hardwoods</td>
</tr>
<tr>
<td>MC</td>
<td>moisture content</td>
</tr>
<tr>
<td>MKK</td>
<td>Meranti, Kapur, Keruing</td>
</tr>
<tr>
<td>MTIB</td>
<td>Malaysian Timber Industry Board</td>
</tr>
<tr>
<td>MWPA</td>
<td>Malaysian Wood Preserver’s Association</td>
</tr>
<tr>
<td>M3</td>
<td>cubic meter</td>
</tr>
<tr>
<td>od</td>
<td>oven dry</td>
</tr>
<tr>
<td>OHW</td>
<td>outer heartwood</td>
</tr>
<tr>
<td>OTF</td>
<td>over treatment factor</td>
</tr>
<tr>
<td>PF</td>
<td>protection factor</td>
</tr>
<tr>
<td>SFC</td>
<td>Sarawak Forestry Corporation</td>
</tr>
<tr>
<td>SIRIM</td>
<td>Standards and Industrial Research Institute of Malaysia</td>
</tr>
<tr>
<td>Sp./spp.</td>
<td>Species/ multiple species</td>
</tr>
<tr>
<td>Species #</td>
<td>species number</td>
</tr>
<tr>
<td>STIDC</td>
<td>Sarawak Timber Industry Development Corporation</td>
</tr>
<tr>
<td>TAE</td>
<td>Total active element</td>
</tr>
<tr>
<td>TRTTC</td>
<td>Timber Research and Technical Training Centre</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Wt.</td>
<td>Weight</td>
</tr>
</tbody>
</table>

CHAPTER 1. INTRODUCTION

This thesis provided an extensive record of findings from a long term research project to establish the in-ground durability and that of preservative treated outer heartwood (OHW) of Sarawak timbers (unless a species is not known to form heartwood). It was a project that I have proposed and executed during my 33 years employment in the Sarawak Forest Department over the period 1975-2008 and have published records of parts of the project outcomes over the period 2005 to 2011. During the last 37 years, a lot of changes worldwide in the use of treated wood have occurred due to stricter environmental controls in wood protection; such as in the 1970’s, in the use of Sodium Pentachlorophenate to control sapstains as a standard industrial practice is now no longer environmentally acceptable. Nevertheless a few of the traditional wood preservatives that would be reported in this thesis were once acceptable for wood treatment when the in-ground durability research project was initiated in 1975 and evaluated over several years. Their reduced usage or non-usage nowadays worldwide, in favour of non-arsenicals or chromium-free biocides, was not initially anticipated when the project started. Nevertheless a majority of these traditional preservatives are still being used in Southeast Asia and South Africa at least, hence the thesis findings would still be somewhat useful to wood preservation in these regions. Also, the findings should give some guidelines on the relative order of failure for the timber species examined, irrespective of the preservative used.

1.1 Research problems and hypothesis

There is a large diversity of timber species in tropical countries such as Malaysia, with little recorded comparative information regarding their durability and preservative properties.
Some of the anecdotal information available is wrongly interpreted, as pointed out for Bakau in Section 5.7.2. This thesis has sought to compare a wide range of timber species from Sarawak under similar conditions at the one test site, and provides reliable comparative data on durability and treatability. It would be amongst the largest natural durability trials conducted around the world especially of tropical timbers exposed in tropical environment. The effort and attention to detail needed to assemble and verify the wood samples from three trees of each species cannot be underestimated. At the start of the project individual stake details were recorded so that the initial hypothesis could be tested regarding the importance of radial position in the tree (inner heartwood, outer heartwood (OHW), sapwood), density, treatability (permeable or refractory), and have proved to be crucial in understanding of the results. To confirm whether the hypothesis that the direct relationship exists between thicknesses of test stakes and durability of species is also true for tropical climate, a special study on effect of cross-sectional areas was carried out and reported in Section 4.1.2.

1.2 Objective and scope of the research project

The objective of the project was to provide the timber industry of Sarawak with a foundational document that would compare the natural durability, treatability and durability of the most common timber species growing in that State. The longevity of the durability exposures (20-30 years) ensures that full value has been obtained. This work will provide context for future durability projects in Malaysia, and guidance to the timber industry. The specific objectives are provided on Section 1.3 of the thesis.

The scope of the project was confined to testing the natural durability of close to 133 common species out of the over 2500 tree species found in Sarawak in the Sibu Oya Road test
site and to study the treatability of these species as well as monitoring the performance of these stakes after treatment using common wood preservatives like Celcure A (P), Tanalith C, Bolidken K33, FCAP, Copas LC, CCB and Creosote.

As initial statistical analysis using unsorted data failed to show any significant differences in results due to large variation within and between species, an attempt was made to segregate stakes by broad botanical groupings of Dipterocarp and non-Dipterocarp, 3 density groups of light, medium and heavy and treatability grouping of refractory and permeable. With these derived groupings statistical analysis on performance of stakes were carried out and found to be statistically significant.

As there is considerable interest in forest plantation species and the increasing importance of plantation resource in the timber industry, the durability of some potential plantation species were also studied and reported in this thesis.

1.3 Aims of thesis

Against the background of the Introduction and Literature reviewed in the next Chapter, the key objectives of the thesis are:

(i) Establishment of a comprehensive in-ground natural durability and treated durability stake test applicable to timber products (posts, poles, piles, other timber in contact with soil).

(ii) Determination by stake test of the long term service life of a wide representation of several wood species from natural forests of Sarawak (i.e. the natural durability) based on
the heartwood in many cases or else sapwood of those species that do not form heartwood.

(iii) Determination by stake test the long term service test of wood of these species treated with a selection of wood preservatives at high retentions when pressure impregnated to refusal with high preservative concentrations.

(iv) Classify wood durability according to different categories of wood species such as wood density groups, traded timber groups or botanical groups and preservative treatability groups.

(v) To link the natural durability findings with practical implications to the Sarawak Forest Products Industry and for those interested in further research on durability and preservation of Sarawak indigenous and plantation-grown timbers as well the other tropical timbers of the world.

(vi) To provide Forest Department, Sarawak with a record of research findings from the only long term research project on the durability of Sarawak timbers under tropical conditions and to provide baseline data for future research on timber durability in Sarawak.
CHAPTER 2. LITERATURE REVIEW

2.1 Environment aspects affecting wood durability

A hazard class selection guide is devised by the wood protection professionals to assist in the prescription of untreated and treated wood exposed to a range of temperate or tropical environments in the choice of wood species, wood preservatives, treatments methods, penetration and retention of wood preservatives. Morris (1994) proposed a unified set of hazard classes based on abiotic factors and added further features to account for climate, biodeterioration agents, natural durability and expected service life. The hazard classes he proposed were H_1: above ground protected from liquid water, H_2: above ground coated intermittent exposure to liquid water or uncoated constant exposure to high humidity, H_3: above ground intermittent exposure to water, uncoated, H_4: in contact with soil, constantly wet building material or fresh water, H_5: in contact with highly fertile organic soil, and H_6: in contact with estuarine or marine waters. He also proposed 5 climate zones as follows:

Zone 1: Sub-polar or arid, **Zone 2**: Temperate, **Zone 3**: Mediterranean, **Zone 4**: Subtropical, and **Zone 5**: Tropical. The biological areas he proposed in his hazard class guide were (i) beetles and fungi, (ii) beetles, fungi and subterranean termites (excluding *Coptotermes* spp.), (iii) beetle, fungi and *Coptotermes*, (iv) *Teredo, Bankia* and *Limoria* excluding *L. tripunctata*, (v) *Teredo, Bankia* and Pholads and (vi) *Sphaeroma terebrans*, *L. tripunctata*, *Teredo* or Pholads. Additionally in his guide, Morris proposed service life classification category with service life 1: 0-10 years, service life 2: 11-20 years, service life 3: 21-40 years, service life 4: 41-60 years and service life 5: more than 60 years. His proposal for classification of exposed heartwood preservative penetration were: P0: none, P1: with analysis zone 3 mm lateral sap: coated, P2: coated with analysis zone 5 mm lateral sap, P3: coated, analysis zone 12.5 mm
lateral sap, P4: 80% with 5 mm, analysis zone full penetration of sapwood or 5 mm lateral heartwood penetration, P5: 80%, 10 mm analysis zone full sapwood or 10 mm lateral heart, P6: 80% 12.5 mm, analysis zone full sapwood or 12.5 mm heartwood, P7: 80% complete, analysis zone full sapwood or full heartwood, and P8: complete, analysis zone full sapwood or full heartwood. Retention classes for Chromated Copper Arsenate (CCA) were grouped between 4 and 40 kg/m³. Such complexity in hazard class guide would deter its adoption by treated timber users, and it is a basis for evolution of a simplified user-friendly guide.

Later several modifications from Morris (1994) to the biological hazard class guide were made by various wood preservation organization/associations to fit the particular regions, and a Malaysian version, adapted from the Australian version was also designed (Wong 2004, Anon. 2000b). Recognizing the influence of climate and the environment on wood biodegradation among regions therefore, a hazard class selection guide is essential to the wood protection professionals to assist in the preservation of untreated and treated wood exposed to a range of environments, in the choice of wood species, wood preservatives, treatment methods and retention of wood preservatives.

Recently developed economic region grouping such as the European Union, North America, Japan, South Korea, Australasia, are requiring the use of environmentally acceptable wood preservatives as part of “green building” programmes where traditional preservatives such as CCA can only be confined to non-residential users. Hence for example, Greaves and Norton (1998) were involved in recommending the use of timber in the built environment of the year 2000 Sydney Olympic village together with the support of Greenpeace Australia. Timber was adopted as an environmentally acceptable building material as the energy required for wood