MOLECULAR GENETIC STUDY OF SELECTED RIBOSOMAL PROTEIN GENES IN NASOPHARYNGEAL CARCINOMA CASES

MA XIANG RU

A thesis submitted
in fulfillment of the requirements for the degree of
Ph.D (Molecular Biology)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2015
DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgement has been made in the text.

Name : MA XIANG RU
Date : 9th June 2015
DEDICATION

A dream that will need
All the love you can give,
Every day of your life,
For as long as you live.

Climb every mountain,
Ford every stream,
Follow every rainbow,
Till you find your dream.

~ Climb Every Mountain, from the movie ‘The Sound of Music’ ~

For grandpa, who wished to see me graduate but lost his life to cancer during the later stage of my thesis writing.
ACKNOWLEDGEMENTS

During the course of my PhD study, I’m indebted to many people. Now that I’ve finally made it, I would like to take this opportunity to express my sincerest gratitude to them. First of all I wish to thank my supervisor, Associate Professor Dr Edmund Sim for his superb supervision. I thank him for believing in me and offered me a chance to continue PhD under his guidance. The academic experience gained under his supervision is invaluable. I also thank him for his support and mentorship throughout the years, especially at times when I felt like “I’m stuck in the hole and I will never get out of it”. His insightful advice, be it for academic or for life, is very much appreciated.

Secondly, I would like to extend my gratitude to peers from our lab. Special thanks are due to Chia Sze Wooi, Grace Chua, Tiong Wen Ni and Nurdiana Anuar for assisting me with some of my experiments, as well as to Stella Chan for her help with the bioinformatics modeling. I also thank the lab assistants - Ms Limjatai Kadin Patrick, Mr Azis Ajim, members of the other labs and science officers of Department of Molecular Biology for their technical support. Together, they have created a warm and conducive environment for me to work in.

Dr. Alan Khoo from CRC, Sarawak General Hospital, Assoc. Prof. Dr. Samira Abdullah from Faculty of Health Science and Medicine, UNIMAS, Kak Irni Suhayu Sapian of Malaysian Genome Institute and Prof. George Tsao of the University of Hong Kong must be acknowledged for providing some of the research resources, without which my study would not have been possible. I thank Dr. Selva Kumar Subramaniam, Dr. Tiong Thung Sing, and the medical staffs of Ear Nose Throat Department of Sarawak General Hospital and Hospital Serian for their help in the collection of specimens. I also thank Assoc. Prof. Dr. Ling Teck Yee from Department of Chemistry, UNIMAS for her statistical expertise and
advice. My sincerest gratitude is extended to Malaysian Ministry of Health for funding my project (Project no: JPP-IMR 06-064), to Dr Alan Khoo and members of The Malaysian Nasopharyngeal Carcinoma Study Group for sharing of information, and also to the university for providing me scholarship to support my study.

Sincere thanks to my friends, Sze San Nah and Wong Yun Teng, for their constant encouragement (sometimes nagging) and moral support along the way, especially during the stage of thesis writing. They shared my joy and tears of the painstaking process.

Last but not least, I give thanks to my parents and sister, who have always believed in me, and to my beloved husband for his unfailing support and love throughout this journey.
Nasopharyngeal carcinoma (NPC) is a cancer of the head and neck that is highly associated with Epstein - Barr virus (EBV) infection and shows strong ethnic and geographical clustering. In Malaysia, NPC is the fourth most common cancer on overall and the third most common cancer among males. The disease is often diagnosed at relatively later stages due to the signs and symptoms that are not obvious and which could often be mistaken as common illness. It is thus important to identify the molecular pathway(s) and genes involved in NPC carcinogenesis in order to have better prognosis of the disease. Ribosomal protein (RP) genes have recently been implicated in many human disorders and diseases. Apart from their roles in the canonical protein biosynthesis pathway, studies have shown that RP genes could also have extra ribosomal functions. Herein, the potential involvements and role(s) of nine selected ribosomal protein (RP) genes were examined at transcript level in NPC-derived cell lines and paired biopsies using real-time PCR, microarray and DNA sequencing techniques. Western-blotting was performed on NPC-derived cell lines to study the expression of RPs at protein level. Student’s- t test, correlation test and multiple linear regression test were used to determine the statistical significance of result obtained. Both $RPS15$ and $L14$ were underexpressed at transcript level in cases of NPC whereas $RPS3$, $S7$, $S15$, $S26$, $S27$, $L32$ and $L34$ were not differentially expressed. Protein-protein dock models built via bioinformatics approach showed potential interactions between $RPS15$ with the Agenet-like motif 1 of FMRP. This motif is located in the NDF domain that has been reported to be involved in protein-RNA and protein-protein interactions. No nucleotide aberrancy was detected in the coding regions of all nine RPs examined. There was no association established between the expression of each RP with $p53$, as well as with NPC related clinicopathologic factors studied.
p53 which normally acts as the genome guardian of cells was also not differentially expressed at transcript and protein levels; and no mutation was detected in its entire coding region. Current findings suggested possible involvement of RPS15 and L14 in NPC pathogenesis. RPS15 protein could possibly regulate translation by interacting with FMRP – a predicted function that warrants further experimental investigation. Evidence showed that RPS3, S7, S15, S26, S27, L32 and L34 were unlikely to be directly involved in NPC pathogenesis. All these further strengthen the view that NPC is a unique and distinct type of head and neck cancers.
ABSTRAK

Kajian Molekul Genetik Ke Atas Gen-Gen Protein Ribosom Yang Terpilih Dalam Kes-Kes Karsinoma Nasofarinks

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTERS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER ONE</th>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER TWO</td>
<td>Literature Review</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.1 Nasopharyngeal Carcinoma</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.1.1 The Nasopharynx</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.1.1.1 The Anatomy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.1.1.2 Normal Histology</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Diagnosis of NPC</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1 Signs and Symptoms</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1.2.2 Examination of the Nasopharynx</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1.2.3 Histological Classification</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.1.2.4 Cancer Staging of NPC</td>
<td>9</td>
</tr>
</tbody>
</table>
2.1.3 Incidence of NPC 10
2.1.4 Etiological Factors 13
 2.1.4.1 Environmental Factors 13
 2.1.4.2 Genetic Susceptibility 13
 2.1.4.3 Epstein - Barr virus (EBV) 14
2.1.5 Treatment and Management 16

2.2 Molecular Pathogenesis of NPC 18
 2.2.1 NPC is a Multistep Carcinogenesis Disease 18
 2.2.2 Somatic Genetic and Epigenetic Alterations 20
 2.2.3 Other Candidate Oncogenes and Tumor Suppressor Genes 23

2.3 Ribosomal Protein (RP) Genes 24
 2.3.1 The Human Ribosomes 24
 2.3.2 Ribosome Biogenesis 25
 2.3.3 Extraribosomal Functions of RPs 28
 2.3.3.1 RPs Interacting with MDM2-p53 Pathway 31
 2.3.3.2 RPs in Development and Cancer 32
 2.4 Ribosomal Protein (RP) Genes of Interest 34
 2.4.1 RPS3 34
 2.4.2 RPS7 35
 2.4.3 RPS15 35
 2.4.4 RPS26 36
 2.4.5 RPS27 36
CHAPTER THREE Materials and Methods 40

3.1 Chemicals, Reagents and Oligonucleotides 40

3.2 Genetic Materials 40

3.2.1 Biopsy Specimens 40

3.2.2 Cell Lines 41

3.3 Preparation of RNA 43

3.3.1 Total RNA Extraction from Biopsy Tissues 43

3.3.2 Isolation of Total RNA from Cultured Cell Lines 44

3.3.3 DNase Treatment of Total RNA 44

3.4 Reverse Transcription Polymerase Chain Reaction (RT-PCR) 45

3.4.1 Reverse Transcription (RT) 45

3.4.2 Polymerase Chain Reaction (PCR) 45

3.5 Agarose Gel Electrophoresis (AGE) and Gel Documentation 47

3.5.1 AGE of RNA Samples 47

3.5.2 AGE of PCR Amplicons 47

3.6 Cloning 48

3.6.1 Purification of PCR Products 48

3.6.2 Ligation of pGEM-T Easy Vector 48
3.6.3 Transformation into JM109 *E.coli* Cells 49
3.6.4 Selection of Positive Recombinants 49

3.7 Sequence Analysis 50
3.8 Real-time Polymerase Chain Reaction (qPCR) 50
3.9 Microarray 53

3.10 General Mammalian Cell Culture Techniques 53
3.10.1 Culture Media Preparation 53
3.10.2 Thawing and Recovering NP and NPC Cell Lines 56
3.10.3 Trypsinizing and Subculturing Cells 56
3.10.4 Freezing Cells Grown in Monolayer Cultures 57

3.11 Protein Analysis 57
3.11.1 Protein Extraction and Quantification 57
3.11.2 SDS-PAGE and Western Blotting 60

3.12 Statistical Analyses 63
3.13 Bioinformatics Analyses 63

CHAPTER FOUR Expression Study of *RPS26* and *RPS27* Transcripts in Nasopharyngeal Carcinoma (NPC) Cases 65

4.1 Background 65
4.2 Methodology 66
4.3 Results 66
4.3.1 Expression of *RPS26* and *RPS27* in NPC Cases 66
4.3.2 Nucleotide Surveillance of Coding Regions of *RPS26* and *RPS27* 72
4.3.3 Association Study of RPS26 and RPS27 with NPC Clinicopathologic Factors

4.3.4 Correlation Study of RP Genes with p53 and Paxillin (PXN)

4.4 Discussion

CHAPTER FIVE In Vitro Expression Analysis of RPS27, p53, MDM2 and PXN in NP and NPC Derived Cell Lines

5.1 Background

5.2 Methodology

5.3 Results

5.3.1 Real-time Expression Analysis of RPS27, p53, MDM2 and PXN transcripts

5.3.2 Correlation Study of RPS27 with p53, MDM2 and PXN

5.3.3 Western Blot Analysis of RPS27, p53 and PXN

5.4 Discussion

CHAPTER SIX Identification of Differentially Expressed Ribosomal Protein Genes in Nasopharyngeal Carcinoma by Microarray and Real-time PCR

6.1 Background

6.2 Methodology

6.3 Results

6.3.1 Global Gene Expression Study of HS96N/T

6.3.2 qPCR Validation of RPS3, S7, S15, L14, L32 and
6.3.3 Nucleotide Analysis of the Isolated RP Genes

6.3.4 Association Study with Clinicopathologic Factors

6.3.5 Correlation Study with p53 and PXN

6.4 Discussion

CHAPTER SEVEN Structural Modeling and Protein-Protein Interaction

7.1 Background

7.2 Methodology

7.3 Results

7.3.1 Protein Modeling of RPS15

7.3.2 Structural Neighbours and Candidate Partners

7.3.3 RPS15-Candidate Partner Dock Model

7.4 Discussion

CHAPTER EIGHT GENERAL DISCUSSION

8.1 Implications of Findings

8.1.1 RPS15 and RPL14 are Underexpressed in NPC

8.1.2 RPS27 is an Unlikely Biomarker of NPC Tumorigenesis

8.1.3 RPS3, RPS7, RPS26, RPL32, RPL34 may Not Contribute Directly to NPC Progression

8.1.4 NPC is a Distinct Type of Head and Neck
Cancers

8.2 Limitations of the Study 134

8.3 Conclusion 135

8.4 Future Directions 136

BIBLIOGRAPHY 137

APPENDICES 149
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The AJCC staging of NPC</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Major genetic alterations in NPC cell lines and primary tumors</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Ribosomal proteins with extraribosomal functions</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Clinicopathologic details of NPC subjects in this study</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Primers used and their respective amplification parameters</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>qPCR primers used in real-time PCR expression study</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Cell culture media used in the study</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Preparation of diluted albumin (BSA) standards</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Antibodies used in Western Blot protein detection</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Real-time PCR transcript analysis of RPS26 and RPS27 in each NPC cases examined</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Overall expression analysis of RPS26 and RPS27 in NPC cases and their paired normal controls (n=11)</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Simple linear regression analysis on NPC associated clinicopathologic variables with RP gene expression</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Expression of genes of interest in NPC cases and their paired normal controls (n=11)</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>Expressions of RPS27, p53, PXN and MDM2 in NP69, HK1, HONE and SUNE cell lines via qPCR analysis</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Western analysis of RPS27, p53 and PXN in NP69, HK1, HONE and</td>
<td>86</td>
</tr>
</tbody>
</table>
SUNE

6.1 List of RP genes that were differentially expressed in HS96N/T pair 93
6.2 Overall expression analysis of the six RP genes isolated in NPC cases and their paired normal controls 96
6.3 Simple linear regression analyses on NPC associated clinicopathologic variables with RPS3, S7, S15, L14, L32 and L34 gene expression 104
6.4 Correlation Analysis of each RP genes with p53 and PXN 106
7.1 ClusPro scores of RPS15-candidate partner dock models 122
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The upper respiratory tract</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Lateral view of the nasal cavity</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Nasopharyngoscopic examination of a local NPC patient</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Endoscopic biopsy of a local patient</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>EBV and the development of NPC</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Possible model of nasopharyngeal carcinoma pathogenesis</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>The synthesis and regulatory steps in ribosome biogenesis</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Steps involved in the microarray analysis using Human Ref 8 Expression BeadChip.</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Expression level of (RPS26) in eleven paired NPC biopsies examined</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>Expression level of (RPS27) in eleven paired NPC biopsies examined</td>
<td>71</td>
</tr>
<tr>
<td>4.3</td>
<td>Correlation analysis of (p53) expression with each (a) (RPS26) and (b) (RPS27) expressions</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Correlation analysis of (PXN) expression with each (a) (RPS26) and (b) (RPS27) expressions</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>Western blotting of (RPS27), (p53) and (PXN) in NP69, HK1, HONE and SUNE cell lines</td>
<td>85</td>
</tr>
<tr>
<td>6.1</td>
<td>Volcano plot of genes expression in HS96T relative to HS96N</td>
<td>93</td>
</tr>
<tr>
<td>6.2</td>
<td>Validation of expression trend of (RPS3) in eleven paired NPC biopsies</td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>Validation of expression trend of (RPS7) in eleven paired NPC biopsies</td>
<td>98</td>
</tr>
</tbody>
</table>
6.4 Validation of expression trend of RPS15 in eleven paired NPC biopsies

6.5 Validation of expression trend of RPL14 in eleven paired NPC biopsies

6.6 Validation of expression trend of RPL32 in eleven paired NPC biopsies

6.7 Validation of expression trend of RPL34 in eleven paired NPC biopsies

7.1 Workflow of predicting RPS15 protein-protein interaction(s) and functions(s) via bioinformatics approach

7.2 Multiple sequence alignment of template sequences to RPS15 protein sequence

7.3 RPS15 model presented in ribbon

7.4 QMEAN6 scoring output

7.5 PROCHECK and Ramachandran plot analysis output

7.6 Protein-protein interaction models of RPS15

7.7 Protein interaction mode between ribosomal protein S19 signature of RPS15 (red) with Agenet like domain 1 of FMRP (green)

7.8 Protein interaction mode between RPS15 (pink) with Type 1 KH domain of FMRP (green on chain A and orange on chain B)
ABBREVIATIONS

NPC Nasopharyngeal carcinoma
EBV Epstein-Barr virus
RP Ribosomal protein
FOR Fossa of Rossmuller
ENT Ear, nose and throat
FNA Fine needle aspiration
WHO World health organization
AJCC American JointCommittee on Cancer
TNM Tumor, node, metastasis
HLA Human leukocyte antigen
CGH Comparative genomic hybridization
TSG Tumor suppressor gene
DBA Diamond Blackfan Anemia
SSH Suppression subtractive hybridization
MPS-1 Metallopanstimulin-1
PXN Paxillin
NP Nasopharyngeal
MMLV-RT Moloney Murine Leukemia Virus reverse transcriptase
PCR Polymerase chain reaction
AGE Agarose gel electrophoresis
LB Luria broth
DMSO Dimethyl sulfoxide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonyl fluoride</td>
</tr>
<tr>
<td>MLR</td>
<td>Multiple linear regression</td>
</tr>
<tr>
<td>SLR</td>
<td>Single linear regression</td>
</tr>
<tr>
<td>HNSCC</td>
<td>Head and neck squamous cell carcinoma</td>
</tr>
<tr>
<td>FMRP</td>
<td>Fragile X Mental Retardation Protein I</td>
</tr>
<tr>
<td>NDF</td>
<td>N-terminus domain of FMRP</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

Nasopharyngeal carcinoma (NPC) refers to cancer that arises from the nasopharynx tissue. According to the year 2007 report of the National Cancer Registry, NPC ranked fourth on overall and third for males of the ten leading cancers in Malaysia (Ariffin and Nor Saleha, 2011). Globally, the Cantonese-Chinese were reported to be genetically most susceptible to NPC whereas locally the native Bidayuh population had been reported as high risk group (Devi et al., 2004, Tao and Chan, 2007). Studies have identified environmental factors, genetic susceptibility and Epstein - Barr virus (EBV) infection as etiological factors of NPC (Lo et al., 2004b, Tao and Chan, 2007). However, NPC cases are often diagnosed at a relatively later stage due to the nature of the disease itself – the signs and symptoms of NPC are not obvious and are often mistaken as common illness. It is therefore crucial to identify and understand the driving signaling pathways of NPC tumorigenesis in order to better diagnose and control this disease.

Ribosomal protein (RP) genes encode proteins that form the integral part of ribosomes and traditionally these RPs are thought to be involved mainly in protein biosynthesis. Recent studies however revealed extra ribosomal roles of RP genes in cell cycle control and apoptosis, as well as in causing various human disorders and diseases (Kasai et al., 2003, Gazda et al., 2006, Warner and McIntosh, 2009). RP genes had also been reported to be possible cancer causing genes in several studies that employed zebrafish as model (Amsterdam et al., 2004, Uechi et al., 2006, Chakraborty et al., 2009). Interestingly, previous studies also showed underexpression of \textit{RPS26} and \textit{RPS27} in local NPC biopsies; as well as \textit{RPL27}, \textit{RPL37a} and \textit{RPL41} in NPC cell lines (Sim et al., 2008, Sim et al., 2009). To date, there are not many
reports on RP genes in NPC cancer model. Less is known about the extra ribosomal roles of RPs in NPC tumorigenesis (if any); and also the underlying mechanism(s) involving RPs that contributes to the progression of this cancer.

In this study, we aimed to address the aforementioned questions. We hypothesized that: (1) anomalies in the expression of RPs contribute to NPC tumorigenesis; and (2) the expression aberrancy is caused by variation/mutation(s) in the nucleotide sequence. The investigation was then carried out by focusing on these main objectives:

1. To identify and characterize nucleotide variation in RP genes previously proven to be associated with cases of NPC;
2. To isolate new RP and RP related genes that may influence tumorigenesis of NPC.
3. To evaluate expression patterns of RP and RP related genes associated with NPC tumorigenesis.
4. To delineate possible role(s) of RP genes in the pathogenesis pathway of NPC.