STUDY ON REPRODUCTION OF RAZOR CLAM, *Solen regularis* DUNKER, 1862 (BIVALVIA: SOLENIDAE) IN THE WESTERN PART OF SARAWAK, MALAYSIA

AILEEN MAY ANAK RIDIS RINYOD

A thesis submitted for the
Master of Science
(Marine Science)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2012
Declaration

I declare that, except as acknowledgement in the text, the work presented in the thesis is entirely my own work and has not been submitted, either in part or in whole for a degree at this or any other university.

Sincerely,

Aileen May anak Ridis Rinyod.
Dedicated to my dearest beloved parents and family members...
Acknowledgements

First and foremost, I am grateful and praise to the Almighty God for His wonderful blessings and grace throughout the years of my research until the completion of this thesis. I always believe that God is the one that constantly lead, guide and direct my path in my journey of life.

My heartfelt thanks to my dear advisor and supervisor Dr. Siti Akmar Khadijah Ab. Rahim for her dedication, guidance and constant support during the progression of this research and development of this thesis until completion. In the same spirit, I would like to thank to my referees Dr. Mhd. Ikhwanuddin and Associate Professor Dr. Lee Nyanti who read the thesis and provided their suggestions and helpful corrections.

I also want to acknowledge and show my appreciation in a very special way to the Centre for Graduate Studies, Universiti Malaysia Sarawak (UNIMAS) for providing me scholarship Zamalah UNIMAS during the years 2007 to 2009 and research grants from UNIMAS, (UNIMAS01(122)/511/2005(10) and UNIMAS01(K01)/541/2005(41).

My special thank is also to my dear laboratory mates Diomira George Gelian and Mohamad Hambali for helping me during sampling and laboratory works, Mohd Nasarudin, Ella, Florence, Nurliyana, Diana Rasani, Chen Cheng Ann, Mordi Bimol, Merlina Manggi and Shirley Chip for their help, support and friendship and also to my dearest beloved parents, Ridis Rinyod and Dohin and family members, Angelina Suzie, Charles Maclean, Ann-Marie, Allyson Rose, Bernadette Doris and Bernadine Dorin who always support, encourage and pray for me in all that I do.
I also want to express my gratitude and thanks to lecturers at the Department of Aquatic Science, Faculty of Resource Science and Technology, UNIMAS: Professor Dr. Shabdin, Dr. Samsur, A. P. Dr. Norhadi, Dr. Lim and Dr. Ruhana for their helpful advice and encouragement to me and to the department staffs: Zaidi, Richard, Nazri, Zulkifli and Harris for their support and commitment during fieldwork and my thank is also to the razor clam collectors Suhai, Sabariah and Jong.

I also wish to thank the staffs at Faculty of Health Science and Medicine UNIMAS (Dr. Mohammad Zulkarnaen, Minggat, Albert, Joseph, Herlina, Amy Lim, Poh Peng and Liwan) for assisting me to do some parts of my histological study at the laboratory. My appreciation is also to the staffs at Histopathology Laboratory of Sarawak General Hospital (Dr. Hj. Jamil Dolkadir, Dr. Jacqueline Wong, Chung Ee Wee, Dayang Jauyah, Lee Lee May, Oui Ling Ling, Sarinah, Jennie Lee Wee Mei and Marilyn) for their kind assistance while I was doing my laboratory works there.

Last but not least, I am so thankful to the Centre for Academic and Information System UNIMAS especially those working at the Inter-library loan unit. I wish all of you the best in your life.

With lots of thankfulness and love
Aileen May anak Ridis Rinyod
ABSTRACT

Razor clam or ‘ambal’ is a highly priced marine bivalve collected using traditional methods from several intertidal sandy beaches and mudflats by local people of Sarawak. ‘Ambal’ of Sarawak belongs to Family Solenidae with three different species namely i) Solen regularis Dunker, 1862, ii) S. lamarckii Chenu, 1843 and iii) S. sarawakensis von Cosel, 2002. In this study, the reproduction of S. regularis was monitored for a duration of two years (March 2007 until February 2009) at Asajaya Laut and Buntal, located in the western part of Sarawak. Samples were taken at a two-week interval or monthly with in-situ physico-chemical parameters of sea water (temperature, dissolved oxygen, pH and salinity) measurement and analysis of chlorophyll-a concentration in the water. This study has two main parts which were gonadal condition index (GCI) study and histological study on the gonad. The objectives of this study were to determine the reproductive cycle of S. regularis, to observe the possible effect of environmental factors on the clam’s reproduction and to elucidate the stages of gonadal development through drawing up a gametogenic scale using histological methods.

GCI study was monitored for 24 months (March 2007 to February 2009) as an initial approach to sexual development through monitoring the reproductive cycle of the razor clam and to observe the effect of environmental factors towards the cycle. A maximum of 30 specimens were dissected from each sampling for sex identification and GCI. The male gonad appeared beige in colour while female gonad is whitish. Throughout the study, the mean GCI ranged from 0.000 to 0.247 (± 0.077) at Asajaya Laut and 0.000 to 0.253 (± 0.079)
at Buntal. Based on the mean GCI pattern, the reproductive cycle for both study sites showed similar pattern with five stages as follows; i) gonadal development (during the increment of GCI value) ii) maturation (during the maxima GCI value), iii) spawning (indicated by the decreasing GCI value after the maxima), iv) spent (occurred after the last spawning which indicate the end of active phase of reproduction) and v) resting period (during the minima GCI value). Spawning period was observed from end of March-April to September and followed by a resting period from end of October to January in the following year. Throughout the study, there were slight differences in the timing of the reproductive cycle stages occurred at each site whereas only at Buntal that chlorophyll-a showed moderate correlation with the mean GCI ($r = 0.513, p = 0.001$).

The gametogenic cycle was determined using histological methods together with GCI data. In Asajaya Laut, study was carried out starting from February 2008 until February 2009 while the study in Buntal started one month later. Results showed that the histological structures of males and females S. regularis gametes can be characterized into seven gametogenic cycle stages as follows; i) sexual rest (Stage 0), ii) start of gametogenesis (Stage I), iii) advance gametogenesis (Stage II), iv) ripe (Stage IIIA), v) spawning (Stage IIIB), vi) restoration (Stage IIIC) and vii) spent (Stage IV). The result of histological study validates the GCI findings. It was noted that during the maxima GCI value, majority of the individuals were in Stage III while during the minima GCI value, they were in their sexual rest (Stage 0). At both locations, S. regularis populations were in their Stage 0 from November to December and gametogenesis (Stage I) began in January. S. regularis showed prolonged
spawning activity indicated by their active phase of reproduction (Stage IIIA, IIIB and IIIC) from February to September and January to October for Asajaya Laut and Buntal, respectively. High percentage of razor clam individuals entered their spent stage in October for both sites which complete the whole gametogenic cycle. However, towards the end of spawning period and early part of the gametogenesis, individuals collected within the same month did not show a uniform gametogenic cycle stage.

Infestation of endoparasites in the gonadal cavity was also observed in *S. regularis* involving two types of endoparasites (nematodes and trematode). However, detail investigation was not carried. Therefore, study on the infections of those endoparasites is crucial in order to investigate the effect of the endoparasites infection to the razor clam reproduction and food safety status for human consumption.

The outcomes of this study had provided valuable information on the reproduction of *S. regularis*. Findings from this can be used for the conservation purpose, establishment of sustainable razor clam fishery management and for future aquaculture in Sarawak.

Keywords: *Solen regularis*, Gonadal Condition Index (GCI), histological, reproductive and gametogenic cycle, Asajaya Laut, Buntal.
KAJIAN TENTANG PEMBIAKAN AMBAL *Solen regularis* DUNKER, 1862
(BIVALVIA: SOLENIDAE) DI BAHAGIAN BARAT SARAWAK, MALAYSIA

Di Sarawak, ambal adalah sejenis bivalvia marin yang mempunyai nilai
pasaran yang tinggi, dikutip secara kaedah tradisional oleh penduduk tempatan
di beberapa pesisir pantai berpasir dan berlumpur. Terdapat tiga spesies ambal
dari Famili Solenidae iaitu i) *Solen regularis* Dunker, 1862, ii) *S. lamarckii* Chenu, 1843 dan iii) *S. sarawakensis* von Cosel, 2002. Dalam kajian ini,
pembiakan *S. regularis* telah dipantau untuk tempoh dua tahun (Mac 2007
hingga Februari 2009) di Asajaya Laut dan Buntal yang terletak di bahagian
barat Sarawak. Sampel dikutip pada selang tempoh dua minggu atau sebulan
sekali dan bacaan parameter fiziko-kimia in-situ air laut (suhu, oksigen terlarut,
P&H dan kemasinan) dan analisis kepekatan klorofil-a untuk sampel air turut
direkodkan. Kajian ini mempunyai dua bahagian utama iaitu berdasarkan
Indek Kondisi Gonad (GCI) dan histologikal gonad. Objektif kajian ini adalah
untuk mengetahui kitar pembiakan *S. regularis*, mengkaji adakah faktor
persekitaran mempengaruhi pembiakannya dan memperincikan peringkat
perkembangan gonad secara skala gametogenik menggunakan kaedah
histologikal.

Kajian GCI telah dilakukan selama 24 bulan (Mac 2007 hingga Februari
2009) sebagai langkah permulaan untuk perkembangan pembiakan dengan
memantau kitar pembiakan ambal dan kesan persekitaran yang
mempengaruhinya. Sebanyak 30 spesimen telah dibedah pada setiap
pensampelan untuk identifikasi jantina dan GCI. Gonad jantan kelihatan
berwarna perang pasir manakala gonad betina pula keputihan. Sepanjang kajian dijalankan, nilai min GCI adalah dalam julat 0.000 hingga 0.247 (± 0.077) di Asajaya Laut dan dari 0.000 hingga 0.253 (± 0.079) di Buntal. Berdasarkan corak nilai min GCI, kitar pembiakan ambal di kedua-dua lokasi menunjukkan corak yang serupa dengan lima peringkat iaitu, i) pembentukan dan perkembangan gonad (semasa peningkatan nilai GCI), ii) kematangan gonad (semasa nilai GCI maksima), iii) pelepasan gamet dari gonad yang matang (semasa penurunan nilai GCI selepas maksima), iv) pelepasan sisa gamet dari gonad yang matang (semasa penurunan berterusan nilai GCI yang menunjukkan berakhirnya fasa aktif pembiakan), v) tempoh berehat (nilai GCI paling minima). Pelepasan gamet dari gonad yang matang dijangka bermula dari hujung Mac-April hingga September dan diikuti oleh tempoh berehat dari hujung Oktober hingga Januari pada tahun berikutnya. Sepanjang tempoh kajian, terdapat sedikit perbezaan dari segi tempoh berlakunya peringkat kitar pembiakan di setiap lokasi di mana hanya di Buntal kepekatan klorofil-a mempunyai korelasi sederhana terhadap nilai min GCI ($r = 0.513, p = 0.001$).

Kajian kitar gametogenik ditentukan secara kaedah histologikal bersama GCI. Di Asajaya Laut, kajian bermula dari Februari 2008 hingga Februari 2009 manakala kajian di Buntal bermula lewat sebulan. Keputusan menunjukkan bahawa struktur histologikal untuk gamet jantan dan betina $S. regularis$ boleh dicirikan kepada tujuh peringkat kitar gametogenik iaitu i) rehat seksual (Peringkat 0), ii) permulaan gametogenesis (Peringkat I), iii) gametogenesis lanjutan (Peringkat II), iv) kematangan (Peringkat IIIA), v) perlepasan gamet matang (Peringkat IIIB), vi) pemulihan (Peringkat IIIC) dan vii) kemerosotan (Peringkat IV). Hasil kajian histologikal telah mengesahkan hasil kajian GCI.
Didapati bahawa semasa nilai GCI maksima, kebanyakkan individu adalah dalam Peringkat III manakala ketika nilai GCI minima, majoriti berada dalam rehat seksual (Peringkat 0). Dari November hingga Disember, populasi *S. regularis* di kedua-dua lokasi berada dalam Peringkat 0 dan dari Januari, permulaan gametogenesis (Peringkat I) bermula. *S. regularis* mempunyai tempoh aktiviti perlepasan gamet yang panjang (Peringkat IIIA, IIIB dan IIIIC) iaitu dari Februari hingga September di Asajaya Laut manakala dari Januari hingga Oktober di Buntal. Pada Oktober, populasi di kedua-dua lokasi mula didapati berada di peringkat kemerosotan (Peringkat IV). Walau bagaimanapun, pada penghujung musim pembiakan dan peringkat awal gametogenesis berlaku, individu-individu yang dikutip dalam bulan yang sama tidak menunjukkan peringkat kitar gametogenesis yang seragam.

Penemuan tentang jangkitan dua jenis endoparasit (nematod dan trematod) pada kaviti gonad *S. regularis* turut diperhatikan. Walau bagaimanapun, kajian yang mendalam tidak dilakukan. Maka, kajian lanjut untuk menyiasat kesan jangkitan endoparasit ini kepada pembiakan ambal dan status keselamatannya bagi pemakanan manusia adalah amat perlu.

Hasil daripada keseluruhan kajian ini telah memberikan maklumat yang amat berguna tentang pembiakan *S. regularis*. Hasil kajian ini harus digunapakai untuk tujuan pemuliharaan ambal, pembentukan pengurusan perikanan ambal yang mampun dan bagi tujuan akuakultur di Sarawak pada masa hadapan.

Kata kunci: Solen regularis, Index Kondisi Gonad (GCI), histologikal, kitar pembiakan dan gametogenik, Asajaya Laut, Buntal
Table of Content

Title

Declaration ii

Dedication iii

Acknowledgements iv

Abstract vi

Malay Abstract ix

Table of Content xii

Publication / Conference Proceedings xv

List of Tables xvi

List of Figures xvii

List of Abbreviations xxi

Chapter 1 INTRODUCTION
1.1 Background research 1
1.2 Problem statement and hypothesis 4
1.3 Objectives 5
1.4 Contribution of the research 6
1.5 Limitation of research 6

Chapter 2 LITERATURE REVIEW
2.1 Systematic arrangement of the razor clam 7
2.2 Morphology and characteristic of razor clam 8
2.3 Habitat and distribution of razor clam 12
2.4 Reproductive system 15
2.5 Indices for gonadal development 19
2.6 Usage of histology techniques in reproductive study 21
2.7 Reproductive and gametogenic cycle 24
2.8 Life cycle and larval development of bivalves 28
2.9 Effect of environmental factors to the reproductive and gametogenic cycle
 2.9.1 Water temperature and geographical location 33
 2.9.2 Food availability 36
 2.9.3 Salinity 37
 2.9.4 Photoperiod 38
 2.9.5 pH and dissolved oxygen (DO) 39
2.10 Endoparasites in bivalves 39
Chapter 3 GENERAL METHODS

3.1 Field work for collection of samples 44
3.2 Laboratory work 48
 3.2.1 Selecting specimens and sex determination for GCI and histological study 48

Chapter 4 REPRODUCTIVE CYCLE OF THE RAZOR CLAM
Solen regularis DUNKER, 1862 AND ITS RELATION TO THE ENVIRONMENTAL CONDITIONS

4.1 Introduction 50
4.2 Materials and Methods 52
 4.2.1 Samples collection 53
 4.2.2 Physico-chemical parameters of the seawater 53
 4.2.3 Laboratory works 54
 4.2.3.1 Analysis of specimens 54
 4.2.3.2 Analysis of chlorophyll-a 54
 4.2.4 Presentation of data and statistical analysis 56
4.3 Results 56
 4.3.1 Total individuals dissected and sex determination 57
 4.3.2 Asajaya Laut 59
 4.3.2.1 General results 59
 4.3.2.2 Number of males and females 59
 4.3.2.3 Sex ratio of males to females 62
 4.3.2.4 Gonadal condition index (GCI) 64
 4.3.2.5 Relationship between GCI value and shell length 67
 4.3.2.6 Relationship between mean GCI and physico-chemical parameters of seawater and chlorophyll-a concentration 67
 4.3.3 Buntal 71
 4.3.3.1 General results 71
 4.3.3.2 Number of males and females 71
 4.3.3.3 Sex ratio of males to females 74
 4.3.3.4 Gonadal condition index (GCI) 76
 4.3.3.5 Relationship between GCI value and shell length 79
 4.3.3.6 Relationship between mean GCI and physico-chemical parameters of seawater and chlorophyll-a concentration 79
 4.3.4 Comparison on the two sampling sites 83
4.4 Discussion 85
4.5 Conclusion 95
Chapter 5
HISTOLOGICAL STUDY OF THE GAMETOGENIC CYCLE OF THE RAZOR CLAM \textit{Solen regularis} DUNKER, 1862

5.1 Introduction 96
5.2 Materials and Methods 97
 5.2.1 Sampling and selecting specimens 97
 5.2.2 Preparation of gonad tissues for histological study 98
 5.2.3 Preparation of reagents for tissue fixation, preservation, dehydration and staining 99
 5.2.4 Tissue fixation and preservation 100
 5.2.5 Tissue processing for tissue block 100
 5.2.5.1 Tissue embedding 101
 5.2.5.2 Tissue sectioning 102
 5.2.5.3 Tissue staining 103
 5.2.6 Examination of the histological sections 106
 5.2.7 Measurements of oocytes diameter 106
5.3 Results 107
 5.3.1 General results 107
 5.3.2 Gonad position and appearance 107
 5.3.3 Sex ratio 110
 5.3.4 Stages of the gametogenic cycle 111
 5.3.5 Macroscopic appearance of gonad 122
 5.3.6 Gametogenic cycle 122
 5.3.6.1 Asajaya Laut 123
 5.3.6.2 Buntal 123
 5.3.7 Oocytes measurements 126
 5.3.7.1 Asajaya Laut 126
 5.3.7.2 Buntal 129
5.4 Discussion 132
5.5 Conclusion 136

Chapter 6
PRESENCE OF ENDOPARASITES IN THE GONADAL CAVITY OF THE RAZOR CLAM \textit{Solen regularis} DUNKER, 1862

6.1 Introduction 137
6.2 Materials and Methods 139
 6.2.1 Identification of endoparasites 139
6.3 Results 140
 6.3.1 Nematode (\textit{Gnathostoma} sp.) 141
 6.3.2 Endoparasite (Trematodes) 144
6.4 Discussion 146
6.5 Conclusion 149

Chapter 7
OVERALL DISCUSSION AND CONCLUSION 151

References 156

List of Appendices 187
Publication / Conference Proceedings

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different larval stages in S. marginatus. Source from da Costa and Martínez-Patiño (2009).</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Times range in larval stages of E. directus. Source from Castello and Henley (1971).</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>Larvae development of Sin. constricta. Source from Ito et al. (2001).</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Sampling dates for Asajaya Laut.</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Sampling dates for Buntal.</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Sex ratio of male to female for Asajaya Laut.</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Spearman’s rank correlation analysis between GCI, temperature, pH, DO, salinity and chlorophyll-a at Asajaya Laut.</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Sex ratio of male to female for Buntal.</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Spearman’s rank correlation analysis between GCI, temperature, pH, DO, salinity and chlorophyll-a at Buntal.</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Paired sample t-test analysis (two-tailed, p < 0.05) or GCI between Asajaya Laut and Buntal over the study period. Note: * significant at p < 0.05.</td>
<td>84</td>
</tr>
<tr>
<td>4.6</td>
<td>Spawning event for different species of razor clams according to their geographical location.</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Profile of tissue embedding sequence.</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>Procedure for hematoxylin and eosin staining sections.</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Procedure for reverse hematoxylin and eosin staining sections.</td>
<td>104</td>
</tr>
<tr>
<td>5.4</td>
<td>Numbers and percentages of males, females and sexually undifferentiated razor clams from each study site.</td>
<td>110</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2.1 Three different species of Solenidae razor clams based on their shape of shell and foot colouration. 10

Figure 2.2 Inner shell characteristics of the three Solen spp. based on their distinctive arrangements of anterior and posterior adductor scars and pallial muscle scars. 11

Figure 2.3 Life cycle of razor clam, Sil. patula. (Adapted from Williams, 1989). 29

Figure 2.4 Larval development of S. marginatus: (A) fertilized egg; (B) 16-cell stage, showing chorionic envelope and lipid droplet (arrow); (C) D-shaped larvae. a, anus; e, esophagus; i, intestine; m, muscle; st, stomach; ve, vellum; arrow, post-anal tuft; (D) pediveliger. dg, digestive gland; f, foot; ve, vellum. Scale bar: 100 µm. Picture was taken from da Costa and Martínez-Patiño (2009). 30

Figure 3.1 Location of the study sites (highlighted in grey colour) Asayaja Laut (N 01° 30' E 110° 36') and Bantal (N 01° 42' E 110° 22'). (Adapted from MapSource Garmin). 45

Figure 4.1 Macroscopic observation of Solen regularis male and female gonad. (Adapted from Diomira, 2007). 58

Figure 4.2 Number of males (♂), females (♀) and sexually undifferentiated (♂) S. regularis from Asayaja Laut used in this study from March 2007 to February 2009. Notes: * indicate the presence of endoparasites in gonad of some individuals. 61

Figure 4.3 The mean of gonadal condition index (mean ± S.D) from March 2007 to February 2009 in males and females of S. regularis at Asayaja Laut with five stages of gonadal condition, (i) gonad development, (ii) maturation, (iii) spawning period, (iv) spent and (v) resting period. 66

Figure 4.4 The mean value of temperature with mean gonadal condition index of S. regularis at Asayaja Laut from March 2007 to February 2009. 68

Figure 4.5 The mean value of pH with mean gonadal condition index of S. regularis at Asayaja Laut from March 2007 to February 2009. 68
The mean value of salinity with mean gonadal condition index of *S. regularis* at Asajaya Laut from March 2007 to February 2009.

The mean value of chlorophyll-a with mean gonadal condition index of *S. regularis* at Asajaya Laut from March 2007 to February 2009.

Total number of females (♀), males (♂) and sexually undifferentiated (♀) *S. regularis* from Buntal used in this study from March 2007 to February 2009. Notes: * indicate the presence of endoparasites in gonad of some individuals; ● no sample.

The mean of gonadal condition index (mean ± S.D) from March 2007 to February 2009 in males and females of *S. regularis* at Buntal with five stages of gonadal condition, (i) gonad development, (ii) maturation, (iii) spawning period, (iv) spent and (v) resting period.

The mean value of temperature with mean gonadal condition index of *S. regularis* at Buntal from March 2007 to February 2009.

The mean value of pH with mean gonadal condition index of *S. regularis* at Asajaya Laut from March 2007 to February 2009.

The mean value of DO with mean gonadal condition index of *S. regularis* at Buntal from March 2007 to February 2009.

The mean value of salinity with mean gonadal condition index of *S. regularis* at Buntal from March 2007 to February 2009.

The mean value of chlorophyll-a with gonadal condition index of *S. regularis* at Buntal from March 2007 to February 2009.

Flow chart for the whole histology process.

Macroscopic observations of *S. regularis* internal part at the foot area containing healthy ripe male and female gonad. The clams were obtained from Buntal in June 2008.
Figure 5.3 Photomicrographs on the cross section of S. regularis gonad within the muscular foot in (a) male and (b) female individual obtained from Buntal in January 2009. Abbreviation: MT, muscular tissue. Scale bar = 100 µm. Magnification 200×.

Figure 5.4 Photomicrographs on the cross section of S. regularis showing Stage 0 (sexual rest) in gonad of (a) male and (b) female and (c) sexually undifferentiated individuals obtained from Asajaya Laut in November 2008. Abbreviation: Sg, spermatogonia; RG, residual gametes; Og, oogonia; CT, interfollicular connective tissues; GE, germinal epithelium; MT, muscular tissue. Scale bar = 100 µm.

Figure 5.5 Photomicrographs on the cross section of S. regularis showing Stage I (start of gametogenesis) in gonad of (a) male and (b) female individuals obtained from Asajaya Laut in January 2009. Abbreviation: Sg, spermatogonia; Sc, spermatocytes; St, spermatid; CT, interfollicular connective tissues; Fo, follicles; Og, oogonia; POc, primary oocytes; SOc, secondary oocytes; MOc, small mature oocytes; NC, nutritive cells. Scale bar = 50 µm.

Figure 5.6 Photomicrographs on the cross section of S. regularis showing Stage II (advance gametogenesis) in gonad of (a) male and (b) female individuals obtained from Asajaya Laut in (a) July 2008 and (b) February 2009. Abbreviation: Sg, spermatogonia; Sc, spermatocytes; St, spermatid; GSz, group of spermatozoa; Fo, follicles; Og, oogonia; POc, primary oocyte, SOc, secondary oocytes, IOc, immature oocytes; MOc, mature oocytes; CT, connective tissue; NC, nutritive cells. Scale bar on (a) = 50 µm and (b) = 100 µm.

Figure 5.7 Photomicrographs on the cross section of S. regularis showing Stage III (IIIA: ripe, IIIB: spawning, IIIC: restoration) in gonad of male (a1 and a2) and female (b1 and b2) individuals obtained from Asajaya Laut in July 2008 (a1), April 2008 (a2), February 2008 (b1 and b2). Abbreviation: Sc, spermatocytes; St, spermatid; GSz, group of spermatozoa; Fo, follicles; Og, oogonia; POc, primary oocyte, SOc, secondary oocytes; MOc, mature oocytes; NC, nutritive cells. Scale bar on (a) = 50 µm; scale bar on (b) = 100 µm.
Figure 5.8 Photomicrographs on the cross section of *S. regularis* showing Stage IV (spent) in gonad of (a) male and (b) female individuals obtained from Asajaya Laut in October 2008. Abbreviation: RSz, residual spermatozoa; ROC, residual oocytes; CT, connective tissue; Fo, follicles. Scale bar on (a) = 50 µm; scale bar on (b) = 100 µm.

Figure 5.9 The gametogenic cycle of *Solen regularis* at (a) Asajaya Laut (from February 2008 to February 2009) and (b) Buntal (from March 2008 to February 2009). (Stage 0: sexual rest, Stage I: start of gametogenesis, Stage II: advance gametogenesis, Stage IIIA: ripe, Stage IIIB: spawning, Stage IIIC: restoration, Stage IV: spent). *Note: ● no sample.

Figure 5.10 Monthly oocytes diameter (µm) (mean ± S.D) of *S. regularis* with gonadal condition index values for (a) both males and females and (b) females only obtained from Asajaya Laut. OD = mean oocytes diameter.

Figure 5.11 Monthly oocytes diameter (µm) (mean ± S.D) of *S. regularis* with gonadal condition index values for (a) both males and females and (b) females only obtained from Buntal. *Notes: ● = no sample; OD = mean oocytes diameter.

Figure 6.1 Photomicrographs of nematodes (*Gnathostoma* sp.) found in the gonadal cavity tissues of *S. regularis* taken from Asajaya Laut (a-d) and Buntal (e-h). Scale bar = 100 µm.

Figure 6.2 Photomicrograph of cross sections in healthy *S. regularis*, (a) male gonadal tissue taken from Asajaya Laut (February 2008) and (b) female gonadal tissue (April 2008); Replacement of almost all gonad content (oocytes (Oc) still can be observed) by the trematode sporocyst (S) taken from (c) Asajaya Laut (March 2008) and (d) Buntal (October 2008); Replacement of gonad content by the trematode sporocyst (S) taken from (e) Asajaya Laut (May 2008) and (f) Buntal (June 2008). Scale bar a, b, d, f = 50 µm; c, e = 100 µm.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>interfollicular connective tissues</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>Fo</td>
<td>follicles</td>
</tr>
<tr>
<td>GCI</td>
<td>gonadal condition index</td>
</tr>
<tr>
<td>GE</td>
<td>germinal epithelium</td>
</tr>
<tr>
<td>GSz</td>
<td>group of spermatozoa</td>
</tr>
<tr>
<td>IOc</td>
<td>immature oocytes</td>
</tr>
<tr>
<td>MOc</td>
<td>small mature oocytes</td>
</tr>
<tr>
<td>MT</td>
<td>muscular tissue</td>
</tr>
<tr>
<td>NC</td>
<td>nutritive cells</td>
</tr>
<tr>
<td>OD</td>
<td>oocytes diameter</td>
</tr>
<tr>
<td>Og</td>
<td>oogonia</td>
</tr>
<tr>
<td>POc</td>
<td>primary oocytes</td>
</tr>
<tr>
<td>ROc</td>
<td>residual oocytes</td>
</tr>
<tr>
<td>RG</td>
<td>residual gametes</td>
</tr>
<tr>
<td>RSz</td>
<td>residual spermatozoa</td>
</tr>
<tr>
<td>Sc</td>
<td>spermatocytes</td>
</tr>
<tr>
<td>Sg</td>
<td>spermatogonia</td>
</tr>
<tr>
<td>SOc</td>
<td>secondary oocytes</td>
</tr>
<tr>
<td>St</td>
<td>spermatid</td>
</tr>
<tr>
<td>TSL</td>
<td>total shell length</td>
</tr>
<tr>
<td>TWW</td>
<td>total wet weight</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background research

Phylum Mollusca is the second largest phylum in the animal kingdom (Hyman, 1967) which includes at least 50,000 species and as many as 120,000 living species (Pechenik, 2010). They are among the most abundant and observable groups of marine animals because they have adapted to all major marine habitats (Sumich and Morrissey, 2004). The phylum consists of seven classes which are Aplacophora, Polyplacophora, Monoplacophora, Gastropoda, Cephalopoda, Scaphopoda and Pelecypoda (Bivalvia or Lamellibranchia) (Adiyodi and Adiyodi, 1983; Pechenik, 2010). Among these classes, Bivalvia consists about 15,000 contemporary species which includes many species of clams, oysters, mussels and scallops (Pechenik, 2010). Most of the bivalves are marine with only 10 to 15 percent can be found in freshwater and no bivalves are terrestrial (Pechenik, 2000).

Razor clam or commonly known as ‘ambal’ by local people in Sarawak is one of the well known bivalve seafood especially in the western part of the state. There are three different species of razor clams that belong to Family Solenidae namely i) Solen regularis Dunker, 1862 (Ambal Biasa/ Ambal Kapur), ii) S. lamarckii Chenu, 1843 (Ambal Jernang/ Ambal Merah) and iii) S. sarawakensis von Cosel, 2002 (Ambal Riong/ Ambal Penguris). The third one is most probably a new endemic species in Borneo (Hung and Ruhana, 2007). They could be
distinguished vividly based on their distinctive arrangements of adductor muscle scars, pallial muscle scars, and foot colouration (Ruhana and Hung, 2006; Hung and Ruhana, 2007).

Razor clams (*Solen* spp.) are found abundantly in the intertidal mudflats and sandy beaches of Kuching and Samarahan Divisions (Pang, 1992) namely at Asajaya Laut, Buntal, Bako, Muara Tebas, Moyan Laut, Sambir, Sebandi and Serpan (Rahim and Tan, 2008). In addition, razor clams have a great commercial value in Sarawak local market with price ranging from RM12.00 to RM20.00 (USD3.79 to USD6.33 with exchange rate USD1.00 = RM3.16) per kg depending on the demand, species and seasons (Ruhana et al., 2007; Rinyod and Rahim, 2009). Compared to 15 years ago, the price was RM7.00 per kg (Pang, 1994) and now had increased by RM5.00 to RM13.00 per kg. As a delicacy at seafood restaurants, one kilogram of razor clams was sold for RM50.00 to RM60.00 per dish.

In Kuching major markets outlet, razor clam was first marketed in the early seventies and razor clam fishery in Sarawak recorded high annual landing about 80 to 100 metrics tonnes in 1991/1992 and 1992/1993 seasons, respectively (Pang, 1994). During the 1991 to 1992 production, the highest collection of razor clam was about 2.5 metric tonnes in November 1991 but the production decreased in the next months onwards due to substantial decline in total effort level which was due to rumours about the usage of pesticides for collecting razor clam (Pang, 1994). The current status of the market demand on razor clam is still high with increment in price.

Besides Sarawak, razor clams can also be found in numerous intertidal localities along the west coast of Peninsular Malaysia, Labuan Territory
Federation and sandy beaches of Teluk Mengakong, Pulau Banggi and Kudat, Sabah (Ridzwan, 1993). As reported in Sabah Fisheries Annual Report 1983, about 5.5 metrics tonnes of razor clams (Solen spp.) were landed in Sabah fisheries market (Ridzwan, 1993). In Peninsular Malaysia, razor clam can be found along the mudflats of Kuala Langat, Selangor and Tanjung Lumpur beach, Pahang (Rahim and Tan, 2008).

The harvesting season of razor clam in Sarawak is about eight months starting from end of August to early March in the following year which is related to the occurrence of lowest low tide of spring tides during the day time (Ruhana et al., 2007; Rahim and Tan, 2008). They were collected by the local people using traditional method where the surface of mudflat is tapped with a wooden stick which has one sharpened end ('penugal', about 1 m in length) in order to detect the razor clam burrow (Rahim and Tan, 2008). Once the burrow was detected, a slender, elongated stick ('lidi' about 15 cm in length) coated with a paste made of salt, ash and slaked lime will be inserted into the burrow. The paste that acts as an irritant to the razor clams will force them to come out from their burrows (Rinyod and Rahim, 2009).

Among the three species, S. regularis was chosen in this study because it is the most common species being collected from the intertidal sandy beaches and mudflat of Asajaya Laut and Buntal throughout the clamming season (Rahim and Tan, 2008). Besides, it has a wide distribution across the mudflat which is from middle tide area towards the low tide area where another two species inhabit (Rinyod and Rahim, 2009). Due to this reason, the species can be easily accessed and collected throughout the whole year.