IMMUNOPHENOTYPIC CHARACTERISATION AND EVALUATION OF MINIMAL RESIDUAL DISEASE (MRD) IN ACUTE LEUKAEMIA PATIENTS IN SARAWAK BY FLOW CYTOMETRY

Mohamad Razif Othman

Master of Science
(Pathology)
2013
ACKNOWLEDGEMENTS

Alhamdulillah, I am grateful to God for giving me good health and strength to finally complete this study. I am heartily thankful to my supervisors, Assoc. Prof. Dr. Lela Hj Su’ut and Madam Tay Siow Phing whose guidance, advice and support from the start to the level that enabled me to develop an understanding of the subject. I would also like to thank Dr. Lau Lee Gong, Dr. Chew Lee Ping, Dr. Ong Gek Bee and Prof. Dr. Henry Rantai Gudum for lending their expertise in the field of acute leukaemias.

Thank you also to UNIMAS for the financial support, UNIMAS Faculty of Medicine and Health Science and the medical laboratory technology staffs for their assistance with the laboratory work, without them, it would be impossible for me to perform the lab work smoothly.

I would like to thank the hospitals involved in this project, namely Sarawak General Hospital, Sibu Hospital, Miri Hospital, Normah Medical Specialist Centre and for allowing the bone marrow and peripheral blood samples from the leukaemia patients to be used with consent in this project.

Lastly, thanks to my family, friends and colleagues, for their blessings, support and patience in any respect for me to complete this project.
ABSTRACT

Leukaemia is a malignant disease of the bone marrow and blood which usually affect children and adults. Minimal residual disease (MRD) is the definition given to a small numbers of leukaemic cells that remain in the patient when the patient is in remission, and a known cause of relapse in cancer and leukaemia. Using immunophenotypic multiparametric flow cytometry, sequential studies (diagnosis and follow-up) of the characterisation of the leukaemic blast and the association between the clinical parameters of 147 acute myeloid leukaemia (AML) patients and 122 acute lymphoblastic leukaemia (ALL) were investigated. Patients diagnosed with acute leukaemia were recruited from hospitals all over Sarawak within the duration of 3 years, from 2007 until 2010. Patients were studied at diagnosis with a panel of monoclonal antibodies in 3- and 4-colour antibody combinations for detections of common, aberrant or uncommon phenotypic features. Using the patient’s immunophenotypic features during diagnosis, the identification of residual leukaemic cells were made possible after completion of induction chemotherapy and the frequency of antigen expression was determined for minimal residual detection. Other clinical data such as haemoglobin level, lymph node enlargement, liver, splenomegaly, platelet and white blood count were also analysed. The odds ratio between MRD and the relevant parameters involved was also calculated with statistical software. The data were analysed statistically and \(p \) value < 0.05 is considered as statistically significant. In the AML cases, female childhood patients were found to have higher total white count compared to males \((p =0.008) \). Immunophenotypic results also showed similar expressions between childhood and adult group with high expression of CD33, CD13 and aberrant marker such as CD19, and may be established as diagnosis standard markers. In the ALL cases, for the Malay/Melanau ethnic
group, more adult males were diagnosed with B-ALL compared to adult females ($p=0.043$). Antigen expressions for both childhood and adult groups were similar to previous studies, with CyCD79a, CD19, CD22 for B-ALL, while CD7 and CyCD3 for T-ALL, thus suggesting the antibody panels used may be established as diagnostic markers. For the MRD analysis, only 28 AML cases (19.0%) were analysed for MRD and no clinical and immunophenotypic parameter was significantly related with MRD outcome. Multiple logistic regression (MLR) analysis for AML was also not significant. As for ALL, 77 cases (64.2%) were studied for MRD. It was found that low haemoglobin level was significantly associated with positive MRD ($p<0.001^*$). In MLR analysis, haemoglobin level and splenomegaly were found to be significantly associated with MRD positivity, with odd risks of 1.68 and 37.98 respectively. Overall, from the study it can be concluded that clinical parameters and immunophenotypic expressions could be used as a predictive factors in MRD outcome. This study could be improved by a greater effort to coordinate leukaemia patients’ treatment and follow up in Sarawak. A more comprehensive study regarding MRD in acute leukaemia patients is therefore recommended in order to provide the health providers more concrete data about the prognostic/predictive factors that may influence the disease outcome, and eventually assist in the future treatment and management of acute leukaemia in Sarawak.
ABSTRAK

Leukemia adalah penyakit malignant bagi tulang sumsum dan darah yang selalunya melibatkan golongan kanak-kanak dan dewasa. Penyakit residu minimal (MRD) boleh diterangkan sebagai sebahagian kecil sel leukemia yang masih tertinggal di dalam pesakit semasa pesakit berada dalam keadaan remisi, dan dikenalpasti sebagai punca utama leukemia dan kanser berulang.

untuk kumpulan pesakit AML dewasa dan kanak-kanak, khasnya ekspresi yang tinggi bagi CD33, CD13 dan juga penanda aberrant seperti CD19, dan boleh digunakan sebagai penanda standard bagi kes diagnosis. Hasil kajian kes bagi diagnosis ALL pula mendapati bahawa dalam etnik Melayu/Melanau, lelaki dewasa lebih cenderung didiagnosis dengan sub-jenis ALL iaitu B-ALL berbanding wanita dewasa ($p = 0.043$). Ekspresi antigen untuk kedua kumpulan kanak-kanak dan dewasa juga menunjukkan persamaan ekspresi yang hampir sama, dengan ekspresi tinggi bagi CyCD79a, CD19, CD22 bagi B-ALL manakala CD7 dan CyCD3 untuk sub-jenis T-ALL. Bagi kajian MRD, hanya sebanyak 28 kes AML (19.0%) daripada kes-kes diagnosis telah dianalisis untuk MRD dan tiada parameter klinikal dan immunophenotypic yang dijumpai signifikan dengan hasil MRD. Analisis multiple logistic regression (MLR) bagi AML juga didapati tidak signifikan dengan MRD. Bagi ALL, sebanyak 77 kes (64.2%) daripada kes-kes diagnosis elah layak diteruskan untuk analisis MRD. Didapati bahawa tahap haemoglobin yang rendah bagi pesakit ALL adalah signifikan dengan MRD yang positif ($p<0.001$*). Bagi analisis MLR pula, tahap hemoglobin dan splenomegaly didapati mempunyai perkaitan yang signifikan dengan hasil MRD yang positif, dengan masing-masing mempunyai nisbah risiko sebanyak 1.68 dan 37.98. Keseluruhan daripada kajian ini dapat disimpulkan bahawa parameter-parameter klinikal dan ekspresi immunophenotypic boleh diambil kira sebagai faktor ramalan bagi hasil MRD. Kajian ini boleh ditambah baik dengan usaha yang lebih berkesan dan menyeluruh dalam mengkoordinasi rawatan pesakit leukemia serta rawatan susulan di Sarawak khasnya. Kajian yang lebih komprehensif berkenaan MRD di Malaysia pula adalah disyorkan untuk menyediakan data yang lebih konkrit berkenaan faktor prognostik/ramalan yang boleh mempengaruhi prognosis penyakit kepada penyedia penjagaan kesihatan, sekalgus membantu mereka dalam rawatan dan pengurusan pesakit yang lebih berkesan pada masa hadapan.
TABLE OF CONTENTS

LIST OF FIGURES... i

LIST OF TABLES.. vi

LIST OF ABBREVIATIONS... xi

CHAPTER 1: INTRODUCTION

1.1 Leukaemia.. 1
 1.1.1 Acute leukaemia... 1
 1.1.2 Acute leukaemia pathogenesis.. 2

1.2 Acute Myeloid Leukaemia (AML).. 7
 1.2.1 Signs and symptoms... 11
 1.2.2 Genetic abnormalities and immunophenotyping of AML................. 12

1.3 Acute Lymphoblastic Leukaemia (ALL)... 14
 1.3.1 Signs and symptoms.. 17
 1.3.2 Genetic abnormalities and immunophenotyping of ALL.................. 18

1.4 Acute leukaemia treatment... 21
 1.4.1 Minimal residual disease (MRD)... 22
 1.4.2 Incidence of MRD.. 22
 1.4.3 Techniques for measuring MRD in leukaemia.................................... 22
 1.4.3.1 Flow cytometry (FCM) immunophenotyping............................... 25
 1.4.3.2 PCR- based tests.. 27
 1.4.3.2.1 Chromosomal aberrations by RT-PCR analysis...................... 27
1.4.3.2 *Ig/TCR* gene quantification by RQ-PCR analysis... 28

1.4.3.3 Other techniques for MRD detection... 30

1.5 Leukaemia prevalence in Malaysia.. 33

1.5.1 Myeloid and Lymphatic leukaemia incidence in Malaysia................................. 35

1.5.1.1 Sex incidence in myeloid and lymphatic cases... 35

1.5.1.2 Age incidence in myeloid and lymphatic cases... 36

1.5.1.3 Ethnic incidence in myeloid and lymphatic cases... 36

1.5.2 Incidence of leukaemia in Sarawak... 37

1.6 MRD significance... 39

1.6.1 As a guide to prognosis or relapse risk... 39

1.6.2 Individualization of treatment... 40

1.6.3 Monitoring for early signs of recurring leukaemia... 41

1.7 MRD treatment.. 42

1.8 Objectives of study.. 43

CHAPTER 2: MATERIALS AND METHODS

2.1 Sample collection.. 45

2.2 Patient samples... 45

2.3 Patient’s clinical data.. 45

2.4 Sample preparation... 46

2.4.1 Sample washing... 46

2.4.2 Sample filtration.. 46

2.4.3 Full blood count (FBC)... 47
3.2 Acute Myeloid Leukaemia

3.2.1 Childhood/Adolescent Acute Myeloid Leukaemia

3.2.1.1 Age distribution

3.2.1.2 Gender distribution

3.2.1.3 Ethnic distribution

3.2.1.4 Clinical characteristics of childhood and adolescent AML

3.2.1.4(a) Association between full blood count (FBC) and gender in childhood AML

3.2.1.4(b) Association between age and gender in childhood AML

3.2.1.4(c) Association between ethnicity and gender in childhood AML

3.2.1.5 Immunophenotypes of childhood AML

3.2.2 Adult Acute Myeloid Leukaemia

3.2.2.1 Age distribution

3.2.2.2 Gender distribution

3.2.2.3 Ethnic distribution

3.2.2.4 Clinical characteristics of adult AML

3.2.2.4(a) Association between FBC and gender in adult AML

3.2.2.4(b) Association between age and gender in adult AML

3.2.2.4(c) Association between ethnicity and gender in adult AML
3.2.2.5 Immunophenotypes of adult AML 97

3.3 Acute Lymphoid Leukaemia .. 101

3.3.1 Childhood\Adolescent Acute Lymphoid Leukaemia 101

3.3.1.1 Age distribution ... 102

3.3.1.2 Gender distribution ... 103

3.3.1.3 Ethnic distribution .. 104

3.3.1.4 Clinical characteristics of childhood and adolescent ALL ... 105

3.3.1.4(a) Association between full blood count (FBC) and gender in childhood ALL 106

3.3.1.4(b) Association between age, ethnicity and gender in childhood ALL 107

3.3.1.4(c) Association between ethnicity and gender in childhood B-ALL and T-ALL 107

3.3.1.5 Immunophenotypes of childhood ALL 108

3.3.2 Adult Acute Lymphoid Leukaemia 117

3.3.2.1 Age distribution .. 117

3.3.2.2 Gender distribution ... 119

3.3.2.3 Ethnic distribution .. 119

3.3.2.4 Clinical characteristics of adult ALL distribution .. 120

3.3.2.4(a) Association between FBC and gender in adult ALL ... 121

3.3.2.4(b) Association between age and ethnicity with gender in adult ALL 122
3.3.2.4(c) Association between ethnicity and gender in adult B-ALL and T-ALL...................... 122
3.3.2.5 Immunophenotypes of adult ALL.............. 123

3.4 Minimal residual disease analysis... 131

3.4.1 Aims... 132
3.4.2 Minimal residual disease in Acute Myeloid Leukaemia......................... 132
 3.4.2.1 AML clinical presentation association with MRD......................... 133
 3.4.2.2 Immunophenotypic expression association with MRD............ 135
 3.4.2.3 Odds ratio of MRD AML... 139

3.4.3 Minimal residual disease in Acute Lymphoblastic Leukaemia............. 140
 3.4.3.1 ALL clinical presentation association with MRD..................... 140
 3.4.3.2 Immunophenotypic expression association with MRD.......... 143
 3.4.3.3 Odds ratio of MRD ALL... 147

CHAPTER 4: DISCUSSIONS

4.0 Characteristics of acute leukaemia patients in Sarawak......................... 149
4.1 Acute Myeloid Leukaemia (AML) .. 151
 4.1.1 Childhood Acute Myeloid Leukaemia (AML)................................. 151
 4.1.1.1 Clinical characteristics of childhood and adolescent AML.............. 153
 4.1.1.1(a) Association between full blood count (FBC) and gender in childhood AML....... 155
 4.1.1.1(b) Association between age and gender in childhood AML............... 155
4.1.1.1(c) Association between ethnicity and gender in childhood AML................................. 156
4.1.1.2 Immunophenotypes of childhood AML..... 156

4.1.2 Adult Acute Myeloid Leukaemia................................. 159
4.1.2.1 Clinical characteristics of adult and adolescent AML.. 160
4.1.2.1(a) Association between full blood count (FBC) and gender in adult AML..................... 161
4.1.2.1(b) Association between age and gender in adult AML... 162
4.1.2.1(c) Association between ethnicity and gender in adult AML..................................... 162
4.1.2.2 Immunophenotypes of adult AML............. 162

4.2 Acute Lymphoid Leukaemia (ALL)................................. 164
4.2.1 Childhood Acute Lymphoid Leukaemia...................... 165
4.2.1.1 Clinical characteristics of childhood and adolescent ALL... 166
4.2.1.1(a) Association between full blood count (FBC) and gender in childhood ALL............... 167
4.2.1.1(b) Association between age, ethnicity and gender in childhood ALL.......................... 168
4.2.1.1(c) Association between ethnicity and gender in childhood B-ALL and T-ALL............... 168
4.2.1.2 Immunophenotypes of childhood ALL....... 169
4.2.2 Adult Acute Lymphoid Leukaemia.............................. 171
4.2.2.1 Clinical characteristics of adult and elderly ALL... 172
4.2.2.1(a) Association between full blood count (FBC) and gender in adult ALL 174
4.2.2.1(b) Association between age, ethnicity and gender in adult ALL 175
4.2.2.1(c) Association between ethnicity and gender in adult B-ALL and T-ALL 175
4.2.2.2 Immunophenotypes of adult ALL 176

4.3 Minimal residual disease (MRD) .. 178
 4.3.1 Minimal residual disease in Acute Myeloid Leukaemia 178
 4.3.2 Minimal residual disease in Acute Lymphoblastic Leukaemia 181

CHAPTER 5: CONCLUSIONS AND SUMMARY

5.1 Limitations of study .. 187
5.2 Recommendations of study .. 187

REFERENCES 189
LIST OF TABLES

Table 1.1 FAB classification of AML... 8
Table 1.2 The new classification of AML by WHO................................. 10
Table 1.3 Panel of antibodies recommended by the European Group for the Immunological Characterization of Leukaemias (EGIL) for the diagnosis and classification of AML.. 14
Table 1.4 FAB classification of ALL.. 16
Table 1.5 The use of a TdT assay and a panel of monoclonal antibodies to T cell and B cell associated antigens will identify almost all cases of ALL... 17
Table 1.6 Panel of antibodies recommended by the European Group for the Immunological Characterization of Leukaemias (EGIL) for the diagnosis and classification of ALL.. 20
Table 1.7 Characteristics of flow cytometry and PCR techniques practiced for MRD... 29
Table 1.8 The most common cytogenetic abnormalities in ALL and AML...... 30
Table 1.9 Comparison of main techniques used for detecting MRD........ 32
Table 2.0 Leukaemia cancer incidence (CR) by sex, Peninsular Malaysia 2006.. 33
Table 2.1 Leukaemia Age specific Cancer Incidence per 100,000 population, by race and sex, Peninsular Malaysia 2006.............................. 34
Table 2.2 Myeloid Leukaemia Cancer Incidence per 100,000 population (CR) by sex, Peninsular Malaysia, 2003... 35
Table 2.3 Lymphocytic Leukaemia Cancer Incidence per 100,000 population (CR) by sex, Peninsular Malaysia, 2003................................. 35
Table 2.4 Myeloid Leukaemia Age specific Cancer Incidence per 100,000 population, by ethnicity and sex, Peninsular Malaysia 2003........... 36
Table 2.5 Lymphocytic Leukaemia Age specific Cancer Incidence per 100,000 population, by ethnicity and sex, Peninsular Malaysia 2003.. 37
Table 2.6 10 principal causes of deaths in Sarawak government hospitals, for the year 2008... 38
Table 2.7 Preparing tubes for calibration .. 52
Table 2.8 3-colour optimisation panel for surface and cytoplasmic staining.... 55
Table 2.9 4-colour optimisation panel for surface and cytoplasmic staining... 55
Table 3.0 Acute Leukaemia Screening Panel.. 66
Table 3.1 Acute Myeloid Leukaemia (AML) panel.................................... 66
Table 3.2 B-Acute Lymphoid Leukaemia (B-ALL) panel.............................. 67
Table 3.3 T-Acute Lymphoid Leukaemia (T-ALL) panel............................. 67
Table 3.4 Acute Leukaemia Screening Panel.. 68
Table 3.5 Acute Myeloid Leukaemia (AML) panel.................................... 69
Table 3.6 B-Acute Lymphoid Leukaemia (B-ALL) panel.............................. 69
Table 3.7 T-Acute Lymphoid Leukaemia (T-ALL) panel............................. 70
Table 3.8 Immunophenotypic Cell Markers in Acute Myeloid Leukaemia (AML)... 71
Table 3.9 Immunological Classification of Acute Lymphoblastic Leukaemia (ALL)... 72
Table 4.0 (a) Association between haemoglobin and platelet with gender in childhood AML... 85
Table 4.0 (b) Association between total white count and gender in childhood AML... 85
Table 4.1 Association between age and gender in childhood AML…………… 86
Table 4.2 Association between ethnicity and gender in childhood AML……………………………………………………………………. 86
Table 4.3 Expression of monoclonal antibody markers gated in childhood AML CD34/CD45 population……………………………………. 88
Table 4.4 Weak expressions of monoclonal antibody markers gated in childhood AML CD34/CD45 population……………………………. 89
Table 4.5 The age distribution of childhood and adult AML………………… 92
Table 4.6 (a) Association between TWC and platelet with gender in adult AML.. 95
Table 4.6 (b) Association between haemoglobin and gender in adult AML…… 95
Table 4.7 Association between age and gender in adult AML………………… 96
Table 4.8 Association between ethnicity and gender in adult AML……………. 96
Table 4.9 Expression of monoclonal antibody markers gated in adult AML CD34/CD45 population ………………………………………. 98
Table 5.0 Non expression of monoclonal antibody markers gated in adult AML CD34/CD45 population……………………………………. 99
Table 5.1 (a) Association between haemoglobin and gender in childhood ALL… 106
Table 5.1 (b) Association between total white count and gender in childhood ALL……………………………………………………………………. 106
Table 5.1 (c) Association between platelet and gender in childhood ALL……… 106
Table 5.2 Association between age and gender in childhood ALL……………… 107
Table 5.3 Association between ethnicity and gender in childhood ALL………. 107
Table 5.4 Association between ethnicity and gender in childhood B- ALL…………………………………………………………………………. 108
Table 5.5 Association between ethnicity and gender in childhood T- ALL………………………………………………………………………… 108
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>General expression of monoclonal antibody markers in childhood ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>5.7</td>
<td>Weak expression of monoclonal antibody markers in childhood ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>5.8</td>
<td>Expression of monoclonal antibody markers in childhood B-ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>5.9</td>
<td>Weak expression of monoclonal antibody markers in childhood B-ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>6.0</td>
<td>Expression of monoclonal antibody markers in childhood T-ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>6.1</td>
<td>Weak expression of monoclonal antibody markers in childhood T-ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>6.2</td>
<td>The age distribution of childhood and adult ALL</td>
</tr>
<tr>
<td>6.3 (a)</td>
<td>Association between haemoglobin and platelet with gender in adult ALL</td>
</tr>
<tr>
<td>6.3 (b)</td>
<td>Association between total white count relations and gender in adult ALL</td>
</tr>
<tr>
<td>6.4</td>
<td>Association between age and gender in adult ALL</td>
</tr>
<tr>
<td>6.5</td>
<td>Association between ethnicity and gender in adult ALL</td>
</tr>
<tr>
<td>6.6</td>
<td>Association between ethnicity and gender in adult B-ALL</td>
</tr>
<tr>
<td>6.7</td>
<td>Expression of monoclonal antibody markers in adult ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>6.8</td>
<td>Weak expression of monoclonal antibody markers in adult ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>6.9</td>
<td>Expression of monoclonal antibody markers in adult B-ALL gated in CD34/CD45 population</td>
</tr>
<tr>
<td>7.0</td>
<td>Weak expression of monoclonal antibody markers in adult B-ALL gated in CD34/CD45 population</td>
</tr>
</tbody>
</table>
Table 7.1 Expression of monoclonal antibody markers in adult T-ALL gated in CD34/CD45 population………………………………………………………… 128

Table 7.2 Weak expression of monoclonal antibody markers in adult T-ALL gated in CD34/CD45 population………………………………………………………… 129

Table 7.3 (a) Association between age and MRD cases………………………….. 133

Table 7.3 (b) Association between blast (flow) and MRD cases………………… 133

Table 7.3 (c) Association between blast (morphology) and MRD cases………… 133

Table 7.3 (d) Association between haemoglobin and MRD cases……………… 133

Table 7.3 (e) Association between total white count and MRD cases………….. 134

Table 7.3 (f) Association between platelet and MRD cases…………………….. 134

Table 7.4 Clinical factors at presentation associated with AML minimal residual disease……………………………………………………………………………….. 134-135

Table 7.5 Association of immunophenotypic expression with AML MRD….. 137-138

Table 7.6 Odds ratio values of AML variables associated with MRD AML……………………………………………………………………………………………… 139

Table 7.7 (a) Association between age and MRD cases…………………………….. 140

Table 7.7 (b) Association between blast (flow) and MRD cases…………………… 141

Table 7.7 (c) Association between haemoglobin and MRD cases……………….. 141

Table 7.7 (d) Association between total white count and MRD cases…………….. 141

Table 7.7 (e) Association between platelet count and MRD cases………………….. 141

Table 7.8 Association between ALL factors (categorical) with minimal residual disease…………………………………………………………………………………….. 142

Table 7.9 ALL Immunophenotypic association with minimal residual disease …………………………………………………………………………………………………. 145-147

Table 8.0 Odds ratio values of ALL variables associated with MRD ALL…………………………………………………………………………………………………… 147-148
LIST OF FIGURES

Figure 1.1.1 The formation of normal blood cells in bone marrow................. 2
Figure 1.1.2 Normal haematopoeisis... 4
Figure 1.1.3 Self renewal and differentiation of normal and leukaemic stem cells.. 6
Figure 1.1.4 Typical morphology of bone marrow aspirate in acute myeloid leukaemia showing myeloblasts.. 7
Figure 1.1.5 Another example of AML blasts morphology, as seen under a microscope... 8
Figure 1.1.6 Morphology of B-cell acute lymphoblastic leukaemia............... 15
Figure 1.1.7 Bone marrow aspirate from a child with T-cell acute lymphoblastic leukaemia... 15
Figure 1.1.8 Algorithm used for identifying leukemia-associated phenotype (LAP) in patients with acute myeloid leukemia (AML) and for detection of minimal residual disease (MRD). Once LAP is identified, it will serve to establish a phenotype to trace residual leukemia after a complete remission is recognized morphologically ... 23
Figure 1.1.9 Leukaemia age specific cancer incidence per 100,000 population by sex, Peninsular Malaysia 2006... 34
Figure 1.2.0 A typical look of a flow cytometry system.................................. 48
Figure 1.2.1 The fluidics system in flow cytometry................................. 49
Figure 1.2.2 Multistep process of flow cytometry data acquisition.......... 51
Figure 1.2.3 Emission spectra of different type of fluorochromes............... 54
Figure 1.2.4 Spill over into other detectors causes background error....... 54
Figure 1.2.5 FSC versus SSC plot for the adjustment of SSC using application software... 56
Figure 1.2.6 FCS versus SSC plot for the threshold adjustment of FSC using the application software... 57

Figure 1.2.7 Lymphocyte population drawn in the R1 gate for PMT optimization... 58

Figure 1.2.8 The negative population adjustment... 59

Figure 1.2.9 Compensation adjustment for FL2-FL1 plot from the software application... 60

Figure 1.3.0 Compensation adjustment for FL1-FL2 and FL3-FL2 plots from the software application... 60

Figure 1.3.1 Compensation adjustment for FL4-FL3 plot from the software application... 61

Figure 1.3.2 Compensation adjustment for FL3-FL4 plot from the software application... 61

Figure 1.3.3 Flow chart of surface antigen staining... 63

Figure 1.3.4 Flow chart shows the procedure of cytoplasmic antigens staining... 65

Figure 1.3.5 CD45 PerCP versus SSC plot was used as the main plot to gate the blast cells (R2) and to be used as reference for other plots with different CD... 75

Figure 1.3.6 From the gated blast cells in CD45 vs SSC plot (Figure 2.2.6), the blast cells (in pink) was located in other plots with different CD used to determine the population whether it was positive, negative or heterogeneous... 76

Figure 1.3.7 In this MRD sample, live gating was done for CD34 APC and only cells gated in R4 was collected when the 250 000 target cells were reached in acquisition... 77

Figure 1.3.8 The age distribution of childhood AML cases......................... 82

Figure 1.3.9 The sex distribution of childhood AML cases......................... 83

Figure 1.4.0 The distribution of ethnicity for childhood AML cases in Sarawak... 84
Figure 1.4.1 Plots (a) to (d) were taken from the acute leukaemia screening panel positive for childhood AML subtype M2. The blast cells population was marked with the colour pink. In this patient (b)–(d), the blast cell population was positive for the following antigens: CyMPO, CD34, CD79a and CD7................................. 89-90

Figure 1.4.2 The plots (e) to (l) were the dot plots of the same patient positive for childhood AML in the previous plots. These plots were taken from the AML immunophenotyping panel performed on the sample. The following blast populations (in pink) were positive for the following antigens: CD13, CD33, CD123, CD56, CD117 and HLA-DR... 90-91

Figure 1.4.3 The age distribution of adult AML cases................................. 92

Figure 1.4.4 The sex distribution of adult AML cases................................. 93

Figure 1.4.5 The distribution of ethnicity for adult AML cases in Sarawak... 94

Figure 1.4.6 Plots (a) to (d) were the one of the dot plots for the acute leukaemia screening panel positive for adult AML subtype M5. In (a), the blast cells population was marked with the colour pink. In (b) and (c) the blast cell population was also detected positive for CyMPO, CD34 and CD7 antibodies. In (d) the blast cell population were negative for both CD19 and CyCD79a... 99-100

Figure 1.4.7 The dot plots (e) to (l) were from the same patient positive for adult AML in the previous plots. These plots were taken from the AML immunophenotyping panel performed on the sample. The following blast populations (in pink) were positive for the following antigens: CD13, HLADR, CD117, CD33 and CD123... 100-101

Figure 1.4.8 The distribution of B-ALL, and T-ALL in childhood ALL.......... 102

Figure 1.4.9 The age distribution of childhood ALL cases......................... 103

Figure 1.5.0 The sex distribution of childhood ALL cases.......................... 104
Figure 1.5.1 Ethnicity distribution of childhood ALL cases in Sarawak

Figure 1.5.2 The dot plots (a)-(h) from a patient positive for childhood B-ALL. These plots were taken from the B-ALL immunophenotyping panel performed on the sample. The blast populations (in pink) were positive for the following antigens: CD19, CD10, CD22, CD38, CD34, CD13, and nTdT.

Figure 1.5.3 The dot plots (a)-(l) from a patient positive for childhood T-ALL. These plots were taken from the T-ALL immunophenotyping panel performed on the sample. The blast populations (in pink) were positive for the following antigens: CD34, CD45, CD56, CD10, CyCD79a, CD8, nTdT, CyCD3, CD3, CD7 and CD5.

Figure 1.5.4 The distribution of B-ALL, T-ALL in adult ALL

Figure 1.5.5 The age distribution of adult ALL cases

Figure 1.5.6 The sex distribution of adult ALL cases

Figure 1.5.7 Ethnicity distribution of adult ALL cases in Sarawak

Figure 1.5.8 These were the dot plots of the patient positive for adult B-ALL. These plots were taken from the acute leukaemia screening and B-ALL immunophenotyping panel performed on the sample. The blast populations (in pink) were positive for the following antigens: CD34.

Figure 1.5.9 The plots (a) to (h) were taken from a patient positive for adult T-ALL. The plots were taken from the acute leukaemia screening and T-ALL immunophenotyping panel performed on the sample. The blast populations (in pink) were positive for the following antigens: CD45, CD34, nTdT, CD5, CyCD3 and CD7.

Figure 1.6.0 Plots (a) to (c) were taken from the MRD-1 remission AML patient subtype M2. The blast cells population was marked with the colour pink. A total of 30 000 events were acquired from this sample.

Figure 1.6.1 Plots (e) was taken from the same MRD-1 remission AML patient. Live gating was performed on this sample. A total of 250 000 events were acquired from this sample.
Figure 1.6.2 Plots (a) to (c) were taken from the MRD-1 remission of B-ALL patient. The blast cells population was marked with the colour pink. A total of 30 000 events were acquired from this sample. In (d) live gating was performed acquiring 250 000 events from the sample... 143-144

Figure 1.6.3 Plots (a) to (f) were taken from the MRD-1 of T-ALL patient in remission. The blast cells population was marked with the colour pink. A total of 30 000 events were acquired from this MRD sample.. 144-145