POPULATION DENSITY, HUMAN-CROCODILE CONFLICT AND GENETIC VARIATION AMONG SALTWATER CROCODILE, CROCODYLUS POROSUS IN SARAWAK

Mohd. Izwan Zulaini Bin Abdul Gani

Master of Science (Aquatic Science)
2014
POPULATION DENSITY, HUMAN-CROCODILE CONFLICT AND GENETIC VARIATION AMONG SALTWATER CROCODILE, *CROCODYLUS POROSUS* IN SARAWAK

MOHD. IZWAN ZULAINI BIN ABDUL GANI

A thesis submitted

In fulfilment of the requirements for the degree of

Master of Science

Faculty of Resource Science and Technology

UNIVERSITI MALAYSIA SARAWAK

2014
ACKNOWLEDGEMENT

First of all, I would like to thank God for always giving me the strength and blessing during all these challenging times, as well as all my family members for giving me motivation and moral support to finish my research. I gratefully acknowledge my supervisor Dr. Ruhana Hassan for her continual encouragement, enthusiasm and support throughout my degree, and for providing constructive and insightful comments on all that I have written. I would like to express heartfelt thanks to my co-supervisor Dr. Ramlah Zainudin for her invaluable advices and whose comments that had greatly helped me to improve this thesis.

In addition, I also would like to convey my gratitude to Mr. Oswald Braken Tisen, Mr. Rambl Ahmad, Mr. Wan Mazlan, and other staffs of Sarawak Forestry Corporation Bhd. (SFC) for their advice, particularly on the locations of crocodile sampling sites and other technical aspects of the study. A special thank also to Mr. Besar Ketol and fellow colleagues in the Molecular Aquatic Laboratory Mohd. Khairulazman, Nurhartini, Farah Adibah and Norsyuhaida for accompanying and helping me in a few field surveys as well as to the lab assistants for helping to prepare the equipments before going to the field.

Finally, I would like to express my special gratitude to the Ministry of Higher Education for providing funds for this research through FRGS/06(17)/726/2010 (12) and also the Sarawak Forestry Department for granting permit NCCD.907.4.4(jld.VI)-176 and Park Permit No. 94/2011 to conduct research on the crocodiles in Sarawak. Last but not least, thanks to Universiti Malaysia Sarawak (UNIMAS) for providing transportation and research facilities throughout this study.
DECLARATION

The work presented in this thesis, to the best of my knowledge and belief, original and my own work, except as acknowledge in the text. I hereby declare that no portion of the work referred to this thesis has been submitted in support of an application for another degree or qualification to this or any other university or institution of higher learning.

(MOHD IZWAN ZULAINI BIN ABDUL GANI)

Date: 27 March 2014
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>I</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>II</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>III</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>VII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XI</td>
</tr>
<tr>
<td>PUBLICATIONS/CONFERENCES</td>
<td>XV</td>
</tr>
<tr>
<td>ABSTRACT / ABSTRAK</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER I : GENERAL INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>1.1 General Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Problem Statements</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Objectives</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER II : LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Taxonomy</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Morphology and behaviour</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Habitat and distributions</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Importance of Crocodile</td>
<td>16</td>
</tr>
<tr>
<td>2.5 Threats</td>
<td>19</td>
</tr>
</tbody>
</table>
CHAPTER III: SURVEY OF CROCODILES POPULATION IN SELECTED RIVERS OF WESTERN SARAWAK

3.1 Introduction
3.2 Methodology
 3.2.1 Study sites
 3.2.2 Night Spotting Technique
 3.2.3 Data Collections and Analyses
3.3 Results and Discussions
 3.3.1 Number of C. porosus spotted during the surveys
 3.3.2 Mean Relative Density of the C. porosus
 3.3.3 Distributions of C. porosus in Sibu Laut River and Bako River
3.4 Conclusions

CHAPTER IV: HUMAN-CROCODILE CONFLICT IN SARAWAK

4.1 Introduction
4.2 Methodology
 4.2.1 Survey description
 4.2.2 Study sites
 4.2.2.1 Tanjung Bundong Village
 4.2.2.2 Telaga Air Village
 4.2.2.3 Bako Village
4.3 Results and Discussions
 4.3.1 Personal Details
 4.3.2 Dependence on water body
4.3.3 Crocodile awareness 70
4.3.4 Human-crocodile conflicts 74
4.4 Review on Human-Crocodiles conflicts in Sarawak. 76
4.5 Conclusions 83

CHAPTER V : GENETIC RELATIONSHIP AMONG CROCODILES IN SARAWAK BASED ON MICROSATELLITE DATA 84
5.1 Introduction 84
5.2 Methodology 87
 5.2.1 Samples Collection 87
 5.2.2 Samples preservation 88
 5.2.3 Total genomic DNA extraction 90
 5.2.4 Optical Density (OD) reading 90
 5.2.5 Microsatellites (PCR-SSRs) Analyses 91
 5.2.6 Data Analyses. 92
5.3 Results and Discussions 94
 5.3.1 Total genomic DNA 94
 5.3.1.1 Agarose Gel Electrophoresis 94
 5.3.1.2 Optical Density (OD) reading 98
 5.3.2 Microsatellite (PCR-SSRs) Analyses 101
 5.3.2.1 Primer Cj127 101
 Polymerase Chain Reactions (PCR) 101
 Alleles Analysis 104
 5.3.2.2 Primer Cj16 106
Polymerase Chain Reactions (PCR) 106
Sequences analyses 108
Repeat Motif 115
Phylogenetic Analyses 117
Network Analysis 120
Population Genetic Analyses 123

5.4 Conclusions 130

CHAPTER VI: GENERAL DISCUSSION 131

CHAPTER VII : CONCLUSIONS AND RECOMMENDATIONS 137

REFERENCES 140

APPENDIX A 150
APPENDIX B1 152
APPENDIX B2 153
APPENDIX B3 154
APPENDIX C 155
APPENDIX D 156
LIST OF ABBREVIATIONS

° Degree
π Nucleotide diversity
µg Microgram
µL Microliter
µM Micromolar
AGE Agarose Gel Electrophoresis
AIC Aikake Informations Criterion
AMOVA analysis of Molecular Variance
AZA The American Association of Zoos and Aquariums
BI Bayesian Inference
BLAST Basic Local Alignment Search Tool
BPPs Bayesian posterior probabilities
bp Base pair
C Celsius
CIA Chloroform Isoamyl Alcohol
CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora
cm Centimeter
CTAB Cetyltrimethyl ammonium bromide
Da Nucleotide divergence
DNA Deoxyribonucleic Acid
dNTP Deoxyribonucleotide
EDTA Ethylenediaminetetraacetic acid
Fst Population Subdivision
GPS Global Positioning System
g Gram
IBD Isolation by distance
IUCN International Union for Conservation of Nature and Natural Resources
KCl Potassium Chloride
km Kilometer
kg Kilogram
MgCl₂ Magnesium Chloride
min Minute (time)
mm Millimeter
mM Milimolar
mL Mililiter
ML Maximum-Likelihood
MP Maximum-Parsimony
mtDNA Mitochondrial Deoxyribonucleic Acid
MWC Matang Wildlife Centre
Nm Gene Flow
Nst Nucleotide Subdivision
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NGO</td>
<td>non-governmental organization</td>
</tr>
<tr>
<td>NJ</td>
<td>Neighbour-Joining</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>rpm</td>
<td>Rounds per minute</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal Ribonucleic Acid</td>
</tr>
<tr>
<td>sec</td>
<td>Second (time)</td>
</tr>
<tr>
<td>SSRs</td>
<td>Short Sequence Repeats</td>
</tr>
<tr>
<td>SFC</td>
<td>Sarawak Forestry Corporation</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetate-ethylenediaminetetraacetic</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Unweighted Pair Group with Arithmetic Averages</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 3.1:</th>
<th>Sarawak’s river basins</th>
<th>PAGE 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.2:</td>
<td>Information about the surveys had been conducted</td>
<td>PAGE 26</td>
</tr>
<tr>
<td>Table 3.3:</td>
<td>Class of the crocodiles according to body size (Tisen and Ahmad, 2010)</td>
<td>PAGE 29</td>
</tr>
<tr>
<td>Table 3.4:</td>
<td>Number of crocodiles spotted during survey in Batang Samarahan, Sibu Laut River and Bako River</td>
<td>PAGE 34</td>
</tr>
<tr>
<td>Table 3.5:</td>
<td>The mean relative density of non-hatchling C. porosus for surveys conducted in Batang Samarahan, Sibu Laut River and Bako River</td>
<td>PAGE 41</td>
</tr>
<tr>
<td>Table 3.6:</td>
<td>Mean relative density of non-hatchling (non-hatchling/km) of C. porosus for Batang Samarahan, Sibu Laut River and Bako River in 1985, 2003, 2008 and 2011</td>
<td>PAGE 38</td>
</tr>
<tr>
<td>Table 4.1:</td>
<td>Villages surveyed and number of respondents interviewed</td>
<td>PAGE 59</td>
</tr>
<tr>
<td>Table 4.2:</td>
<td>Profiles of respondents</td>
<td>PAGE 66</td>
</tr>
<tr>
<td>Table 4.3:</td>
<td>Average number of crocodile attack per year (Landong and Zaini, 2010)</td>
<td>PAGE 78</td>
</tr>
<tr>
<td>Table 4.4:</td>
<td>Activities of people at the time of crocodile attacks from 2006-2009 (adapted from Landong and Zaini, 2010)</td>
<td>PAGE 82</td>
</tr>
<tr>
<td>Table 5.1:</td>
<td>Voucher codes for samples according to sampling area</td>
<td>PAGE 89</td>
</tr>
<tr>
<td>Table 5.2:</td>
<td>Microsatellite primers used in this study (Isberg et al., 2004)</td>
<td>PAGE 91</td>
</tr>
<tr>
<td>Table 5.3:</td>
<td>Optical Density (OD) readings for total genomic DNA extraction products</td>
<td>PAGE 98</td>
</tr>
<tr>
<td>Table 5.4:</td>
<td>BLAST result for microsatellite Cj16 sequences data</td>
<td>PAGE 108</td>
</tr>
<tr>
<td>Table 5.5:</td>
<td>Nucleotide Base compositions of all of samples in this study</td>
<td>PAGE 114</td>
</tr>
<tr>
<td>Table 5.6:</td>
<td>Summary of repeat motifs from microsatellite sequences using Cj16 primers</td>
<td>PAGE 115</td>
</tr>
<tr>
<td>Table 5.7:</td>
<td>Haplotype identity for all C. porosus samples use in this study</td>
<td>PAGE 121</td>
</tr>
</tbody>
</table>
Table 5.8: Measures of Geographical population differentiation in *C. porosus* based on an analysis of Molecular Variance approach with Microsatellite *Cj16* sequences data

Table 5.9: Genetic differentiation matrix of populations calculated by ϕ_{ST}. *p* values are shown in parenthesis (below the diagonal)

Table 5.10: Measures of Nucleotide Diversity (π) and Net Nucleotide Divergence (Da) among populations of *C. porosus* analyzed by locations

Table 5.11: Summary statistics of Microsatellite *Cj16* sequences variation in three populations of *C. porosus* in Sarawak

Table 5.12: Measures of Nucleotide Subdivision (N_a), Population Subdivision (F_a) and Gene Flow (Number of Migrants, N_m) among populations of *C. porosus* analysed by locations

Table C: Information of Crocodile samples used in this study
LIST OF FIGURES

Figure 2.1:	Taxonomic hierarchy of *Crocodylus porosus.*	8
Figure 2.2:	Head shape and dentition of Crocodylia. A, C and E, lateral views; B, D and F, Dorsal views; A and B, Alligatoridae; C and D, Crocodylidae; E and F, Gavialidae. (Adapted from Grigg and Gans, 1993)	11
Figure 2.3:	Distribution of *Crocodylus porosus* (adapted from Webb *et al.*, 2010)	15
Figure 3.1:	A map shows 22 major river basins in Sarawak (Map adapted from Department of Irrigation and Drainage, Sarawak)	22
Figure 3.2:	Maps of the rivers. (A) Sibu Laut River, (B) Bako River and (C) Batang Samarahan	27
Figure 3.2a:	Maps of Sibu Laut River	28
Figure 3.2b:	Maps of Bako River	29
Figure 3.2c:	Maps of Batang Samarahan	30
Figure 3.3:	The percentages of crocodiles according to size class in Batang Samarahan, Sibu Laut River and Bako River	35
Figure 3.4:	Locations of crocodiles according to size cohort spotted during survey in Sibu Laut River on 16th August 2011	48
Figure 3.5:	Locations of crocodiles according to size cohort spotted during survey in Bako River on 10th November 2011	49
Figure 3.6a:	Daily cumulative rainfall (mm) for seven days (including the days of the survey) before the survey in Sibu Laut River. The box indicates the date of the survey (Rainfall data adapted from Department of Irrigations and Drainage, Sarawak)	53
Figure 3.6b:	Daily Cumulative rainfall (mm) for seven days (including the days of the survey) before the survey in Bako River. The box indicates the date of the survey (Rainfall data adapted from Department of Irrigations and Drainage, Sarawak)	53
Figure 4.1a: Map shows location of Tanjung Bundong Village
Figure 4.1b: Map shows location of Telaga Air Village
Figure 4.1c: Map shows location of Bako Village
Figure 4.2: Usage of the rivers
Figure 4.3: Approximate largest crocodiles size ever sees by respondents in the river
Figure 4.4: Summary of respondent’s actions taken if they came across the crocodiles in the river
Figure 4.5: Sources of information where respondents knew about crocodiles as protected animals
Figure 4.6: Suggestions on the best way to handle crocodiles in the river
Figure 4.7: Number of crocodiles attack on human from 1980-2009 (adapted from Landong and Zaini, 2010)
Figure 4.8: Number of crocodiles attack on humans from 2000-2009 according to month (adapted from Landong and Zaini, 2010)
Figure 5.1: 1% Agarose gel picture shows total genomic DNA Extraction product from 27 samples of *C. porosus* using modified CTAB methods (Doyle & Doyle, 1987). Lane L= 1Kb DNA ladder (Promega™), Lane 1=MR001, Lane 2=MR002, Lane 3=MR003, Lane 4=MR004, Lane 5=MR005, Lane 6=MR006, Lane 7=MR007, Lane 8=MR008, Lane 9=MR009, Lane 10=MR010, Lane 11=MR011, Lane 12=BK001, Lane 13=BK002, Lane 14=BK003, Lane 15=BK004, Lane 16=BK005, Lane 17=BK006, Lane 18=BK007, Lane 19=BK008, Lane 20=BK009, Lane 21=KW001, Lane 22=SM001, Lane 23=BG001, Lane 24=BN001 , Lane 25=BN002 , Lane 26=SB001 , Lane 27=SB002
Figure 5.2a: Three photographs of 2% AGE and their respective illustrations showing microsatellites products for 23 samples of *C. porosus* as amplified using *Cj127* primer pairs
Figure 5.2b: Summary of microsatellites bands patterns among 23 samples of *C. porosus* as amplified using *Cj127* primer pairs. Lane L = GeneRuler™ 100bp Plus DNA ladder (Fermentas). Lane 1=KW001, Lane 2=SB001, Lane 3=BK002, Lane 4=BK003, Lane 5=BK004, Lane 6=BK005, Lane 7=MR001, Lane 8=SM001, Lane 9=SB002, Lane 10=BG001, Lane 11=BN001, Lane 12=MR002, Lane 13=MR003, Lane 14=MR006, Lane 15=BN002, Lane 16=MR004, Lane 17=MR005, Lane 18=MR007, Lane 19=MR008, Lane 20=BK006, Lane 21=BK007, Lane 22=BK008, Lane 23=BK009

Figure 5.3: Dendrogram derived from UPGMA cluster analysis for microsatellite generated by *Cj127* primer. Dissimilarity distance were calculated using method as suggested by Nei and Li (1979)

Figure 5.4: Agarose gel photographs showing microsatellites (PCR-SSR) products for 22 samples of *C. porosus* as amplified using *Cj16* primer pairs. Lane L = 100 bp DNA ladder (Promega™), Lane 1=MR001, Lane 2=MR002, Lane 3=MR003, Lane 4=MR004, Lane 5=MR005, Lane 6=MR006, Lane 7=MR007, Lane 8=MR008, Lane 9=MR009, Lane 10=MR010, Lane 11=MR011, Lane 12=BK001, Lane 13=BK002, Lane 14=BK003, Lane 15=BK004, Lane 16=BK005, Lane 17=BK006, Lane 18=BK007, Lane 19=BK008, Lane 20=BK009, Lane 21=SB001, Lane 22=SB002

Figure 5.5: Multiple alignment of 22 microsatellites *Cj16* sequence data of *C. porosus* (119 bp)

Figure 5.6: Phylogenetic tree shows relationship between samples of *C. porosus* from Miri, Sibu and Bako. Numbers next to the branches indicate bootstrap values for NJ (Neighbor-joining), MP (Maximum-parsimony) and ML (Maximum-likelihood) accordingly

Figure 5.7: Bayesian inference of the 50% majority rule tree of *Cj16* loci shows relationship between samples of *C. porosus* from Miri, Sibu and Bako. Number next to branches indicates Bayesian posterior probabilities (BPPs)
Figure 5.8: The median-joining (MJ) network generate by NETWORK 4.6.1.1 (Bandelt et al., 1999) for C. porosus based on microsatellite Cj16 sequences data. Each circle represents a haplotype, and the diameter is scaled to the haplotype frequency. Note that gray circles indicate Miri haplotypes, the white circles indicate Sibu haplotypes and black circles indicate haplotypes of Bako. Bold numbers next to the lines connecting haplotypes indicate number of mutational steps.

Figure 5.9a: Mismatch distribution of C. porosus at Miri. The dark line represents the observed and light lines represent the expected distribution for each model.

Figure 5.9b: Mismatch distribution of C. porosus at Bako. The dark line represents the observed and light lines represent the expected distribution for each model.

Figure B1.1: Ferry service in Batang Samarahan.

Figure B1.2: Stalls selling foods, beverages, fruits and fisheries product at Samarahan Ferry terminal.

Figure B2.1: New modern jetty in Telaga Air Village.

Figure B2.2: New water fronts in Telaga air village.

Figure B3.1: Local people’s houses built near the Bako River.

Figure B3.2: People use boat to cross over Bako River or to travel to other places.
PUBLICATIONS/CONFERENCES

Study of Population Density, Human-Crocodile Conflict and Genetic Variation among Saltwater Crocodile, *Crocodylus porosus* in Sarawak

Mohd Izwan Zulaini Bin Abdul Gani

ABSTRACT

The objective of this study aims to (i) determine the distribution and density of *Crocodylus porosus* in rivers of western Sarawak, (ii) assess socio-economic profile and matters related to human-crocodile conflicts within population of local peoples and (iii) analyze genetic variations of *C. porosus* in Sarawak based on microsatellite data. Surveys of *C. porosus* population had been carried out using night spotting techniques in Batang Samarahan, Sibu Laut River and Bako River. The highest mean relative density was recorded in Bako River (3.19±8.24 non-hatchling/km), followed by Sibu Laut River (0.77±0.51 non-hatchling/km) and Batang Samarahan (0.60±0.33 non-hatchling/km). Pilot study showed that dependency of local communities toward rivers and their awareness toward crocodile issues are relatively high. Based on microsatellite data using *Cj127* primer, result showed limited success on determining the relationship among *C. porosus* from different areas in Sarawak. However using *Cj16* primer, phylogenetic and network analysis showed distinct clades based on geographical areas. Population genetic analyses show gene flow occurs and high number of migrants per generations in population of *C. porosus* in Sarawak suggesting they are panmictic population.

Keywords: Crocodiles, *C. porosus*, density, Panmictic population, Microsatellite.
Kajian tentang Ketumpatan Populasi, Konflik Manusi-Buaya dan Variasi Genetik dikanalangan Populasi Buaya Air Masin *Crocodylus porosus* di Sarawak

Mohd Izwan Zulaini Bin Abdul Gani

ABSTRAK

Objektif kajian ini bermatlamat untuk (i) menentukan taburan dan kepadatan *Crocodylus porosus* di beberapa sungai di barat Sarawak, (ii) menilai profil sosio-ekonomi dan perkara-perkara yang berkaitan dengan konflik manusia-buaya di kalangan populasi penduduk tempatan dan (iii) menganalisis variasi genetik *C. porosus* di Sarawak berdasarkan data mikrosatelit. Tinjauan *C. porosus* telah dijalankan menggunakan teknik pengesanan malam di Batang Samarahan, Sungai Sibu Laut dan Sungai Bako. Min ketumpatan relatif tertinggi dicatatkan di Sungai Bako (3.19±8.24 non-hatchling/km) diikuti oleh Sungai Sibu Laut (0.77±0.51 non-hatchling/km) dan Batang Samarahan (0.60±0.33 non-hatchling/km). Kajian perintis menunjukkan kebergantungan yang penduduk tempatan kepada sungai dan juga kepekaan mereka terhadap isu-isu buaya yang agak tinggi. Berdasarkan data mikrosatelit menggunakan primer Cj127, keputusan analisis menunjukkan kejayaan yang terbatas dalam menentukan hubungan di kalangan *C. porosus* daripada kawasan-kawasan yang berbeza di Sarawak. Walaubagaimanapun, dengan menggunakan primer Cj16, keputusan dari analisis filogenetik dan Network menunjukkan klad tersendiri berdasarkan kawasan-kawasan geografi. Analisis populasi genetik menunjukkan berlakunya aliran gen dan jumlah migrasi per generasi yang tinggi dalam populasi *C. porosus* di Sarawak menunjukkan bahawa mereka adalah populasi yang panmictic.

CHAPTER I
GENERAL INTRODUCTION

1.1 General Introduction

Within Class Reptilia, Order Crocodilia can be divided into three extant families: (i) Alligatoridae which includes alligators and the caimans, (ii) Crocodylidae, which includes the true crocodiles and (iii) Gavialidae that most likely contains two gharial species (Rodriguez, 2007; de Silva, 2013). All crocodilians species share almost similar morphological, anatomical, and physiological features. They are nocturnal carnivorous opportunistic predators, whose diet depends on their developmental stage, species and potential prey diversity (Martin, 2008). All crocodilian species are also amphibious and may be considered as totally water dependent since they can only mate in water. They can live in various aquatic habitats such as forest streams, rivers, marshes, swamps, elbow lakes and each species usually can be found in a specific zoogeographical region.

There are two species of crocodiles can be found in Sarawak namely saltwater crocodiles (Crocodylus porosus) and Malayan gharials (Tomistoma schlegelli) (Cox and Gombek, 1985). Interestingly, Cox and Gombek (1985) also included third species of crocodile, the Siamese crocodiles (Crocodylus siamensis). However, there is no concrete evidence that can support the presence of this species in the state although this species is found in East Kalimantan, Borneo (Cox, 2004).

Among the local people in Sarawak, C. porosus usually refer as “buaya katak” while other species, T. schlegelli, locally known by the name “buaya jejulong” (Ritchie and Jong, 2002). Presently, C. porosus is more abundant compared to T. schlegelli. They can be found in almost all major river basins including large river system,
mangroves estuaries and inland freshwater swamps in the state (Tisen and Ahmad, 2010). In contrast, *T. schlegelli* are difficult to sight in the wild and reports have indicated that this species can be found in upper tributaries of Batang Sadong, Baram River, Kimena River and a few other peat swamp areas (Stuebing *et al.*, 2004).

Nearly extinct due to overhunting since 1950’s until late 1980’s, *C. porosus* was primarily hunt for its lucrative hides and meats. *Crocodylus porosus* always become the centre of attention in the state as this species had caused many fatalities towards local people. *C. porosus* has been terrorized people who live along the river in Sarawak and conflicts between human and crocodile always occur since Rajah Brooke era (Ritchie and Jong, 2002). However, the conflicts was at its peak when a large white-backed crocodiles known by the name “Bujang Senang” attacked a man in one of the Batang Lupar tributary in early 80’. Since then, the story about “Bujang Senang” had become household word among the local people in the state (Ritchie and Jong, 2002).

Crocodiles play important roles both for human and environment. For human, crocodile bring great fortune and increase economy as the high prize and demand for the crocodile leather. Lucrative crocodile based leather product such as cloths, handbags, shoes and others cause many people hunting this animals and even illegally poaching them. According to Martin (2008), crocodile population have been depleting until the mid 60’s because of uncontrolled hunting of these animals. As for environment, crocodiles plays important role in food web as they act as main predator which helps in keeping wetland ecosystem healthy. When a wetland habitat is healthy, the fishery is considered to be healthy too. They are also very important for freshwater ecosystems during the dry season as they maintain waterholes that are used as reservoir for many arthropods, crustacean, fishes and amphibians (Martin, 2008).
1.2 Problem statements

Crocodylus porosus has been listed in Appendix I in the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and categorized as Lower Risk / least concerned by the International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species 2012. In Malaysia, this species is listed as protected animal by the Wildlife Conservation Act 2010 and Sarawak Wild Life Protection Ordinance 1998. Appendix I CITES stated that killing and exporting of *C. porosus* either its eggs, meat, leather or by product is prohibited (Landong and Zaini, 2010). Since there are some reports saying that the population of *C. porosus* in Sarawak is overpopulated, there is an urgent need to carry out proper research to determine status of *C. porosus* population in Sarawak so that Sarawak could propose to down list *C. porosus* from Appendix I to Appendix II CITES.

Patchy information on crocodile’s population in Sarawak had caused difficulty in management of the human-crocodile conflicts as well as carrying out sustainable management of the resource (crocodiles and crocodile-based products). Data on density and distribution of crocodiles for many rivers in Sarawak are still inadequate to make any conclusion on crocodile population status in the state. Lately, many reports on crocodile attack in Sarawak had captured public attention. The incident had triggered fear among the local people in the state. The crocodile attacks in many rivers in Sarawak had provoked the villagers which led them to hold a grudge on crocodiles and sometimes foolishly taking matters into their own hands. Thus, a systematic management of crocodile-human conflicts is needed to ensure safety both humans and crocodiles. Studies about crocodile population alone are considered as too biocentric and the information will not be enough to solve human-crocodile conflicts in Sarawak. Information on local people socio-economic profile who live along the rivers and their dependency towards rivers are
essential to develop management plans to minimize crocodile attacks toward humans and livestock.

Chaeychomsri et al. (2008) had done study on C. siamensis population using microsatellite data and they had been successful in monitoring work of captive individual which has been released to the wild population. Genetic studies on C. porosus in Sarawak had been documented. For example, Abdullah et al. (2010) studied population structure of C. porosus in Sarawak using Cytochrome b and 12S rRNA. However, Abdullah et al. (2010) reported of unresolved molecular phylogenetic of C. porosus from Sarawak due to very slow evolution of both genes. Therefore, this study is designed to obtain microsatellite data in order to resolve population structure of C. porosus in Sarawak. Furthermore, genetic information data pertinent can be used for the development of management plan by identifying conservation units for many threatened and endangered species (Moritz, 1999).
1.3 Objectives

The objectives of this study are to:

1. determine the distribution and density of *C. porosus* in three selected rivers in western Sarawak.
2. analyse genetic variations and population structure of *C. porosus* in Sarawak based on microsatellite data.
3. assess socio-economic profile and matters related to human-crocodile conflicts within local people population along the three selected rivers.

Upon completion of this study, data obtained could help relevant agencies in Sarawak to further carried out sustainable management of *C. porosus*, besides helping in addressing the human-crocodile conflicts in Sarawak.