PHYTOCHEMICAL STUDIES AND BIOLOGICAL ACTIVITIES OF SELECTED *PIPER* SPECIES

Irna Syairina binti Sahari

Master of Science
(Phytochemistry)
2014
PHYTOCHEMICAL STUDIES AND BIOLOGICAL ACTIVITIES OF SELECTED PIPER SPECIES

Irna Syairina binti Sahari

This thesis submitted
In fulfilment of the requirements for the degree of
Master of Science (Phytochemistry)

Department of Chemistry
Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2014
DECLARATION

No portion of the work referred to this dissertation has been submitted in support of an application for another degree or qualification of this or any other university or institution of higher learning.

(IRNA SYAIRINA BINTI SAHARI)

Date:

Department of Chemistry
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful.

First and foremost, my deepest gratitude to Almighty Allah, with His grace and guidance, I was blessed with courage and strength to complete this work.

I wish to take this opportunity to express my gratitude and appreciation to my main supervisor, Prof. Dr. Zaini Assim. Without his constant support, deep interest and guidance, the completion of this thesis may not possible. I extend my sincere thanks to Prof. Dr. Fasihuddin Badruddin Ahmad for his cooperation, assistances and generous suggestions. I am also very grateful to Assoc. Prof Dr. Ismail Jusoh for his valuable suggestions and kind guidance during the accomplishment of my MSc.

I would like to thank the Malaysian Pepper Board, Department of Agriculture (Tarat) and Agricultural Research Centre (Semengok) for their guidance and research assistances in completing my research work. I am also very much grateful to Zamalah Postgraduate Scholarship (ZPU) and Mini Budget KPT (2009), which provide financial assistance for my research in UNIMAS.

My special thanks are also given to officers, as well as staffs of FRST and CGS for their on-going cooperation and valuable assistance. I am also highly indebted to my research colleagues for their continuous assistances during the whole study period. Lastly, I offer my heartiest gratitude to my family members and close friends for their moral supports, cooperation, encouragements, patience, tolerances and prayers for my success throughout the duration of my studies, which enabled me to achieve this excellent goal.
Phytochemical studies and biological activities of selected Piper species

Irna Syairina binti Sahari

ABSTRACT

The composition of essential oils from P. nigrum varieties (Kuching, Semongok Emas, Semongok Perak, Semongok Wan, Semongok Aman, 27283 and 841 varieties), P. aduncum, P. porphyrophyllum and one unknown Piper species (noted as Piper P13) found in Sarawak were studied. The essential oils were extracted by hydrodistillation and their chemical constituents were characterized by Gas Chromatography-Mass Spectrometer (GC-MS). β-Caryophyllene was identified in all essential oils and used as a chemical marker for Piper species. δ-Elemene, α-caryophyllene and δ-cadinene were commonly detected in all essential oils of P. nigrum varieties. Phenylpropanoids (apiol and dill apiole) occurred significantly in P. aduncum essential oil, whereas lactones (γ-palmitolactone and γ-stearolactone) were only identified in P. porphyrophyllum essential oil and β-farnesene was detected mainly in Piper P13 essential oil. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) on essential oils data of the studied Piper species showed strong relationships in term of chemical profiles of essential oil from P. nigrum varieties. Several chemical similarities of essential oil components were observed from different Piper species. The stems and roots of P. nigrum and P. aduncum were extracted sequentially using hexane, dichloromethane, ethyl acetate and methanol. 2,4-Di-tert-butylphenol, methyl hexadecanoate, 9-oxo-10,12-octadecadienoic acid, piperine, ethyl piperonylcyanoacetate, β-sitosterol and 3α,7β-dihydroxy-5β,6α-epoxycholestane were identified as the principal compounds in P. nigrum extract, while 1-nonadecanol, 1-tetracosanol, 2,4-di-tert-butylphenol and 1-docosanol were detected as the main compounds in P. aduncum extract. Biological activities studies against
termite (*Coptotermes* sp.) showed that the combined fractions from hexane and dichloromethane extracts from *P. nigrum*, as well as the methanol extract from *P. aduncum* root displayed significant anti-termite activities (*LC*$_{50}$ ranged <0.100 – 8.150%).

Antimicrobial tests on *P. nigrum* and *P. aduncum* extracts against bacteria (*S. aureus*, *S. typhi*, *E. aerogenes* and *B. cereus*), microfungi (*Aspergillus niger*, *A. flavus* and *Candida albicans*) and macrofungi (*Trichoderma* sp., *Botrytis* sp., *Fusarium* sp. and *Glomerella cingulata*) presented different degree of inhibition. Antibacterial activities shown by the hexane and dichloromethane fractions from *P. nigrum* and *P. aduncum* extracts were more effective. In contrast, most of the tested extracts were inactive against microfungi and macrofungi. Only *P. nigrum* extracts displayed bioactivities against *Trichoderma* sp.. Most of the extracts from *P. nigrum* and *P. aduncum* were proven toxic with *LC*$_{50}$ values ranged between 1.897 – 74.131 μg/mL in the toxicity assessment against *Artemia salina* larvae. GC-MS analysis presented amides, terpenoids and carboxylic acid as the main components in the bioactive combined fractions of *P. nigrum*, while phenolic compounds, sterols and alcohols were frequently identified in bioactive combined fractions of *P. aduncum*.

Keywords: *Piper*, essential oil, bioactivity, Gas Chromatography-Mass Spectrometer (GC-MS), bioassay
Kajian fitokimia dan aktiviti biologi spesies *Piper* terpilih

Irna Syairina binti Sahari

ABSTRAK

Komposisi minyak pati dari beberapa varieti *P. nigrum* (Kuching, Semongok Emas, Semongok Perak, Semongok Wan, Semongok Aman, 27283 dan 841), *P. aduncum*, *P. porphyrophyllum* dan satu spesies *Piper* yang belum dikenalpasti (dikenali sebagai *Piper P13*) dari Sarawak telah dikaji. Minyak pati diekstrak menggunakan kaedah penyulingan hidro dan komposisi kimianya dicirikan dengan Kromatografi Gas-Spektrometer Jisim (KG-SJ). β-Kariofilena telah dijumpai dalam semua minyak pati dan digunakan sebagai penanda kimia untuk *Piper*. δ-Elemena, α-kariofilena dan δ-kadinena telah varieti *P. nigrum*. Fenilpropanoid (apiol dan dill apiol) adalah signifikan dalam minyak pati *P. aduncum*, manakala lakton (γ-palmitolakton dan γ-stearolakton) hanya dikesan dalam minyak pati *P. porphyrophyllum* dan β-farnesena dikesan dalam minyak pati *Piper P13*. Analisis hierarki kelompok dan analisis komponen utama terhadap data dari minyak pati beberapa spesies *Piper* telah menunjukkan hubungan yang rapat dari segi profil kimia di antara minyak pati dari pelbagai varieti *P. nigrum*. Beberapa persamaan kandungan kimia bagi komponen minyak pati dari spesies *Piper* yang berlainan turut ditunjukkan. Batang dan akar dari *P. nigrum* dan *P. aduncum* telah diekstrak secara berurutan menggunakan heksana, diklorometana, etil asetat dan metanol. 2,4-Di-tet-butilfenol, metil heksadekanoat, asid 9-okso-10,12-oktadekadienoik, piperina, etil piperonilsianoasetat, β-sitosterol dan 3α,7β-dihidroksi-5β,6α-epoksikolestena telah dikenalpasti sebagai komponen utama dalam ekstrak *P. nigrum*, manakala 1-nonadekanol, 1-tetrakosanol, 2,4-di-tert-butilfenol dan 1-dokosanol dikesan sebagai komponen utama dalam ekstrak *P. aduncum*. Kajian aktiviti biologi terhadap anai-anai (*Coptotermes* sp.)
menunjukkan bahawa fraksi gabungan bagi ekstrak heksana dan diklorometana dari *P. nigrum*, serta ekstrak metanol dari akar *P. aduncum* telah menunjukkan aktiviti anti-anai-anai yang ketara (julat LC$_{50}$ <0.100-8.150%). Ujian antimikrobial terhadap ekstrak dari *P. nigrum* dan *P. aduncum* melawan bakteria (*S. aureus*, *S. typhi*, *E. aerogenes* dan *B. cereus*), kulat mikro (*Aspergillus niger*, *A. flavus* dan *Candida albicans*) dan kulat makro (*Trichoderma* sp., *Botrytis* sp., *Fusarium* sp. dan *Glomerella cingulata*) menunjukkan tahap perencatan yang berbeza. Aktiviti antibakteria yang berkesan telah ditunjukkan oleh fraksi heksana dan diklorometana dari ekstrak *P. nigrum* dan *P. aduncum*. Sebaliknya, ekstrak lain yang dikaji didapati tidak aktif terhadap kulat mikro dan kulat makro. Hanya ekstrak *P. nigrum* menunjukkan bioaktiviti terhadap *Trichoderma* sp.. Kebanyakan ekstrak dari *P. nigrum* dan *P. aduncum* adalah bersifat toksik terhadap larva *Artemia salina* dengan nilai LC$_{50}$ antara 1.897 – 74.131 μg/mL. Analisis KG-SJ menunjukkan amida, terpenoid dan asid karboksilik adalah komponen utama dalam fraksi gabungan bioaktif dari *P. nigrum*, manakala sebatian fenolik, sterol dan alkohol dikesan dalam fraksi gabungan yang bioaktif dari *P. aduncum*.

Kata kunci: *Piper*, minyak pati, aktiviti biologi, Kromatografi Gas-Spektrometer Jisim (KG-SJ), bioesei
TABLE OF CONTENTS

DECLARATION i
ACKNOWLEDGMENTS ii
ABSTRACT/ ABSTRAK iii
TABLE OF CONTENTS vii
LIST OF ABBREVIATIONS viii
LIST OF TABLES vii
LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION 1
1.1 Background 1
1.2 Statement of Problem 3
1.3 General Objectives of the Study 3
1.4 Scope of the Study 4

CHAPTER 2: LITERATURE REVIEWS 5
2.1 The Family Piperaceae 5
2.2 Plant Morphology of Piper species 5
2.3 Importance of Piper species 7
2.4 Constituents of Essential Oils from Piper 8
 2.4.1 Terpenes/terpenoids in Piper Oils 9
 2.4.2 Phenylpropanoids in Piper Oils 10
2.5 Chemometric Analysis

11

2.6 Chemical Constituents of Extracts from *Piper* Species

12

- 2.6.1 Terpenes/terpenoids
12

- 2.6.2 Amide Alkaloids
13

- 2.6.3 Phenolic Compounds
15

2.7 Biological Studies on Plant Extracts from *Piper* Species

18

- 2.7.1 Insecticidal Activities
18

- 2.7.2 Antibacterial Activities
19

- 2.7.3 Antifungal Activities
20

- 2.7.4 Other Biological Activities
21

CHAPTER 3: MATERIALS AND METHODS

22

3.1 Essential Oils from Selected *Piper* Species

22

- 3.1.1 Plant Materials and Sample Collections
22

- 3.1.2 Extraction of Essential Oils
22

- 3.1.3 Characterization of Essential Oils Using GC-MS
23

- 3.1.4 Qualitative and Semi-Quantitative Analysis
23

- 3.1.5 Statistical Analysis
24
3.2 Extracts from *Piper nigrum* and *P. aduncum* 24
3.2.1 Plant Materials and Sample Collections 24
3.2.2 Plant extraction 24
3.2.3 Silica Gel Column Chromatography Fractionation 25
3.2.4 Gas Chromatography-Mass Spectrometry (GC-MS) Analysis 26
3.2.5 Derivatization Procedures 26
3.3 Biological Activities of the Extracts 27
3.3.1 Anti-termite Test 27
3.3.2 Antifungal Tests 28
3.3.2.1 Microfungi 28
3.3.2.1 Macrofungi 29
3.3.3 Antibacterial Test 30
3.3.4 Brine Shrimp Larvae Toxicity Test 30

CHAPTER 4: ESSENTIAL OILS FROM SELECTED *Piper* SPECIES 31
4.1 Introduction 31
4.2 Results and Discussion 31
4.2.1 Essential Oils from *Piper nigrum* Varieties 31
4.2.1.1 Fruit Oils from *Piper nigrum* Varieties 33
4.2.1.2 Fruit Stalk Oils from *Piper nigrum* Varieties 38
4.2.1.3 Stem Oils from *Piper nigrum* Varieties 42
4.2.1.4 Leaf Oils from *Piper nigrum* Varieties 46
4.2.2 Essential Oils from Selected *Piper* Species 50
4.2.2.1 Fruit Oils from Selected *Piper* Species 51
4.2.2.2 Stem Oils from Selected *Piper* Species 56
4.2.2.3 Leaf Oils from Selected *Piper* Species.............................. 61
4.2.2.4 Root Oils from Selected *Piper* Species.............................. 66

4.2.3 Statistical Analysis .. 71
4.2.3.1 Hierarchical Cluster Analysis (HCA) 71
4.2.3.2 Principal Component Analysis (PCA) 74

4.3 Conclusion ... 77

CHAPTER 5: EXTRACTS FROM *Piper nigrum* AND *P. aduncum* 78

5.1 Introduction ... 78

5.2 Results and Discussion .. 79

5.2.1 *P. nigrum* Extracts ... 79

5.2.1.1 Extracts from *P. nigrum* Stem 79
5.2.1.1.1 Hexane extracts from *P. nigrum* stem 80
5.2.1.1.2 DCM extracts from *P. nigrum* stem 81
5.2.1.1.3 EtOAc extracts from *P. nigrum* stem 89
5.2.1.1.4 Methanol extracts from *P. nigrum* stem 94

5.2.1.2 Extracts from *P. nigrum* root 98
5.2.1.2.1 Hexane extracts of *P. nigrum* root 99
5.2.1.2.2 DCM extracts of *P. nigrum* root 104
5.2.1.2.3 EtOAc extracts of *P. nigrum* root 109
5.2.1.2.4 Methanol extracts of *P. nigrum* root 114
5.2.2 *P. aduncum* Extracts

5.2.2.1 Extracts from *P. aduncum* Stem

5.2.2.1.1 Hexane extracts of *P. aduncum* stem

5.2.2.1.2 DCM extracts of *P. aduncum* stem

5.2.2.1.3 EtOAc extracts of *P. aduncum* stem

5.2.2.1.4 Methanol extracts of *P. aduncum* stem

5.2.2.2 Extracts from *P. aduncum* Root

5.2.2.2.1 Hexane extracts of *P. aduncum* root

5.2.2.2.2 DCM extracts of *P. aduncum* root

5.2.2.2.3 EtOAc extracts of *P. aduncum* root

5.2.2.2.4 Methanol extracts of *P. aduncum* root

5.2.3 Derivatization of Combined Fractions

5.3 Conclusion

CHAPTER 6: BIOACTIVITIES OF *P. nigrum* AND *P. aduncum* EXTRACTS

6.1 Introduction

6.2 Results and Discussion

6.2.1 Anti-termite test

6.2.2 Antifungal test

6.2.2.1 Microfungi

6.2.2.2 Macrofungi

6.2.3 Antibacterial testing

6.2.4 Brine Shrimp Larvae Toxicity Test

6.3 Conclusion
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 182

7.1 Conclusions 182

7.2 Recommendations 184

REFERENCES 185

APPENDICES 227

LIST OF PUBLICATIONS 254

LIST OF PAPER PRESENTED AT COLLOQUIUM 254
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfu</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>R<sub>f</sub></td>
<td>Retention factor</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>ppm</td>
<td>Part per million</td>
</tr>
<tr>
<td>LC<sub>50</sub></td>
<td>Concentration killing fifty percent of test animal</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato/dextrose agar</td>
</tr>
<tr>
<td>PASW</td>
<td>Predictive analytics software</td>
</tr>
<tr>
<td>HCA</td>
<td>Hierarchical cluster analysis</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectroscopy</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>BSTFA</td>
<td>N,O-bis(trimethylsilyl)trifluoroacetamide</td>
</tr>
<tr>
<td>TMCS</td>
<td>Trimethylchlorosilane</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>CHCl<sub>3</sub></td>
<td>Chloroform</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulphoxide</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Chemical solvents mixtures for column chromatography</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Percentage yield and physicochemical properties of P. nigrum varieties oils</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>The chemical composition (%) for fruit oils of P. nigrum varieties</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>The chemical composition (%) for fruit stalk oils of P. nigrum varieties</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>The chemical composition (%) for stem oils of P. nigrum varieties</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>The chemical composition (%) for leaf oils of P. nigrum varieties</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>The chemical composition (%) for leaf oils of P. nigrum varieties</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Percentage yield and physicochemical properties of P. aduncum, P. porphyrophyllum, Piper P13 and P. nigrum (Kuching variety) oils</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>The chemical composition (%) of P. aduncum, Piper P13 and P. nigrum (Kuching variety) fruit oils</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>The chemical composition (%) of P. aduncum, Piper P13, P. nigrum (Kuching variety) and P. porphyrophyllum stem oils</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>The chemical composition (%) of P. aduncum, Piper P13, P. nigrum (Kuching variety) and P. porphyrophyllum leaf oils</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>The chemical composition (%) of P. aduncum, Piper P13 and P. porphyrophyllum root oils</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Percentage yield and physicochemical properties of crude extract from P. nigrum stem</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Percentage yield and physicochemical properties of combined fractions</td>
</tr>
</tbody>
</table>
obtained from hexane extract of *P. nigrum* stem

Table 5.3 The chemical composition (%) for combined fractions of hexane extract from *P. nigrum* stem

Table 5.4 Percentage yield and physicochemical properties of combined fractions obtained from DCM extract of *P. nigrum* stem

Table 5.5 The chemical composition (%) for combined fractions of DCM extract from *P. nigrum* stem

Table 5.6 Percentage yield and physicochemical properties of the combined fractions obtained from EtOAc extract of *P. nigrum* stem

Table 5.7 The chemical composition (%) for combined fractions of EtOAc extract from *P. nigrum* stem

Table 5.8 Percentage yield and physicochemical properties of combined fractions obtained from methanol extract of *P. nigrum* stem

Table 5.9 The chemical composition (%) for combined fractions of methanol extract from *P. nigrum* stem

Table 5.10 Percentage yield and physicochemical properties of crude extract from *P. nigrum* root

Table 5.11 Percentage yield and physicochemical properties of combined fractions obtained from hexane extract of *P. nigrum* root

Table 5.12 The chemical composition (%) for combined fractions of hexane extract from *P. nigrum* root

Table 5.13 Percentage yield and physicochemical properties of combined fractions obtained from DCM extract *P. nigrum* root

Table 5.14 The chemical composition (%) for combined fractions of DCM extract
from *P. nigrum* root

Table 5.15 Percentage yield and physicochemical properties of combined fractions obtained from EtOAc extract from *P. nigrum* root

Table 5.16 The chemical composition (%) for combined fractions of EtOAc extract from *P. nigrum* root

Table 5.17 Percentage yield and physicochemical properties of combined fractions obtained from methanol extract of *P. nigrum* root

Table 5.18 The chemical composition (%) for combined fractions of methanol extract from *P. nigrum* root

Table 5.19 Percentage yield and physicochemical properties of stem extract from *P. aduncum*

Table 5.20 Percentage yield and physicochemical properties of combined fractions obtained from hexane extract of *P. aduncum* stem

Table 5.21 The chemical composition (%) for combined fractions of hexane extract from *P. aduncum* stem

Table 5.22 Percentage yield and physicochemical properties of combined fractions obtained from DCM extract of *P. aduncum* stem

Table 5.23 The chemical composition (%) for combined fractions of DCM extract from *P. aduncum* stem

Table 5.24 Percentage yield and physicochemical properties of combined fractions obtained from ethyl acetate extract of *P. aduncum* stem

Table 5.25 The chemical composition (%) for combined fractions of EtOAc extract from *P. aduncum* stem

Table 5.26 Percentage yield and physicochemical properties of combined fractions
obtained from methanol extract of *P. aduncum* stem

Table 5.27 The chemical composition (%) for combined fractions of methanol extract from *P. aduncum* stem

Table 5.28 Percentage yield and physicochemical properties of root extract from *P. aduncum*

Table 5.29 Percentage yield and physicochemical properties of combined fractions obtained from hexane extract of *P. aduncum* root

Table 5.30 The chemical composition (%) for combined fractions of hexane extract from *P. aduncum* root

Table 5.31 Percentage yield and physicochemical properties of combined fractions obtained from *P. aduncum* root crude extracts

Table 5.32 The chemical composition (%) for combined fractions of DCM extract from *P. aduncum* root

Table 5.33 Percentage yield and physicochemical properties of combined fractions obtained from *P. aduncum* stem crude extracts

Table 5.34 The chemical composition (%) for combined fractions of EtOAc extract from *P. aduncum* root

Table 5.35 Percentage yield and physicochemical properties of combined fractions obtained from *P. aduncum* stem crude extracts

Table 5.36 The chemical composition (%) for combined fractions of methanol extract from *P. aduncum* root

Table 6.1 LC$_{50}$ (%) values of *P. nigrum* and *P. aduncum* extracts against *Coptotermes* sp.

Table 6.2 LC$_{50}$ (%) of bioactive combined fractions from *P. nigrum* and *P.
aduncum extracts against Coptotermes sp.

Table 6.3 Antifungal activity of bioactive extracts from *P. nigrum* and *P. aduncum* against *A. niger, A. flavus* and *C. albicans* 164

Table 6.4 Antifungal activity of combined fractions from root extract of *P. nigrum* against *C. albicans* and *A. niger* 166

Table 6.5 Antifungal activity of *P. nigrum* extracts against *Trichoderma sp.* 167

Table 6.6 Antibacterial activity of *P. nigrum* and *P. aduncum* extracts against *S. aureus, S. typhi, E. aerogenes* and *B. cereus* 169

Table 6.7 Antibacterial activity of combined fractions from *P. nigrum*’s stem and root extracts against *S. aureus, S. typhi, E. aerogenes* and *B. cereus* 172

Table 6.8 Antibacterial activity of combined fraction from *P. aduncum*’s stem and root extracts of against *S. aureus, S. typhi, E. aerogenes* and *B. cereus* 175

Table 6.9 LC$_{50}$ values of *P. nigrum* and *P. aduncum* stem and root extracts against brine shrimp, *A. salina* larvae 178

Table 6.10 LC$_{50}$ values of combined fractions from stem and root extracts of *P. nigrum* and *P. aduncum* against brine shrimp, *A. salina* larvae 179
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>P. chiangdaoense with six stamens (Suwanphakdee and Chantaranothai, 2011)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>P. nigrum with two stamens (Ravindran et al., 2003)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>P. arunuchalensis with A: male spike. B: Enlarged male spike. C: Stamens (Gajurel et al., 2001)</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>P. kelleyi with four stamens (Tepe et al., 2014)</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Arrangement for the anti-termite test</td>
<td>28</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Gas chromatogram for fruit oil from Semongok Emas variety of P. nigrum</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Gas chromatogram for fruit oil from 27283 variety of P. nigrum</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Gas chromatogram for the fruit stalk oil from Semongok Emas variety of P. nigrum</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Gas chromatogram for the fruit stalk oil from Semongok Wan variety of P. nigrum</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Gas chromatogram for the stem oil from Semongok Perak variety of P. nigrum</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Gas chromatogram for the stem oil from Semongok Aman variety of P. nigrum</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Gas chromatogram for the leaf oil from Kuching variety of P. nigrum</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Gas chromatogram for the leaf oil from 841 variety of P. nigrum</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Gas chromatogram of P. aduncum fruit oil</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Gas chromatogram of Piper P13 fruit oil</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Gas chromatogram of P. porphyrophyllum stem oil</td>
<td>56</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Gas chromatogram of Piper P13 stem oil</td>
<td>56</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Gas chromatogram of P. porphyrophyllum leaf oil</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Gas chromatogram of Piper P13 leaf oil</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Gas chromatogram of P. aduncum root oil</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>Gas chromatogram of P. porphyrophyllum root oil</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.17</td>
<td>Dendrogram represents the relationships between Piper species and plant parts based on the essential oil profile</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.18</td>
<td>Loading plot from the GC-MS analysis of Piper species studied according to oil profiles from various plant’ parts</td>
<td>75</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Gas chromatogram for the combined fraction 1 of hexane extract from P. nigrum stem (PNSHF1)</td>
<td>81</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Gas chromatogram for the combined fraction 3 of hexane extract from P. nigrum stem (PNSHF3)</td>
<td>81</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Gas chromatogram for the combined fraction 4 of hexane extract from P. nigrum stem (PNSHF4)</td>
<td>81</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Gas chromatogram for the combined fraction 4 of DCM extract from P. nigrum stem (PNSDF3)</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Gas chromatogram for the combined fraction 5 of DCM extract from P. nigrum stem (PNSDF4)</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Gas chromatogram for the combined fraction 6 of DCM extract from P. nigrum stem (PNSDF5)</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Gas chromatogram for the combined fraction 2 of EtOAc extract from</td>
<td>90</td>
</tr>
</tbody>
</table>
Figure 5.8 Gas chromatogram for the combined fraction 6 of EtOAc extract from *P. nigrum* stem (PNSEF6) 90

Figure 5.9 Gas chromatogram for the combined fraction 7 of EtOAc extract from *P. nigrum* stem (PNSEF7) 90

Figure 5.10 Gas chromatogram for the combined fraction 3 of methanol extract from *P. nigrum* stem (PNSMF3) 95

Figure 5.11 Gas chromatogram for the combined fraction 4 of methanol extract from *P. nigrum* stem (PNSMF4) 95

Figure 5.12 Gas chromatogram for the combined fraction 5 of methanol extract from *P. nigrum* stem (PNSMF5) 95

Figure 5.13 Gas chromatogram for the combined fraction 2 of hexane extract from *P. nigrum* root (PNRHF2) 100

Figure 5.14 Gas chromatogram for the combined fraction 3 of hexane extract from *P. nigrum* root (PNRHF3) 100

Figure 5.15 Gas chromatogram for the combined fraction 4 of hexane extract from *P. nigrum* root (PNRHF4) 100

Figure 5.16 Gas chromatogram for the combined fraction 1 of DCM extract from *P. nigrum* root (PNRDF1) 105

Figure 5.17 Gas chromatogram for the combined fraction 2 of DCM extract from *P. nigrum* root (PNRDF2) 105

Figure 5.18 Gas chromatogram for the combined fraction 3 of DCM extract from *P. nigrum* root (PNRDF3) 105

Figure 5.19 Gas chromatogram for the combined fraction 1 of EtOAc extract from *P. nigrum* root (PNRDF1) 110
Figure 5.20 Gas chromatogram for the combined fraction 2 of EtOAc extract from *P. nigrum* root (PNREF1)

 Figure 5.21 Gas chromatogram for the combined fraction 3 of EtOAc extract from *P. nigrum* root (PNREF2)

 Figure 5.22 Gas chromatogram for the combined fraction 1 of methanol extract from *P. nigrum* root (PNRMF1)

 Figure 5.23 Gas chromatogram for the combined fraction 2 of methanol extract from *P. nigrum* root (PNRMF2)

 Figure 5.24 Gas chromatogram for the combined fraction 4 of methanol extract from *P. nigrum* root (PNRMF4)

 Figure 5.25 Gas chromatogram for the combined fraction 1 of hexane extract from *P. aduncum* stem (PASHF1)

 Figure 5.26 Gas chromatogram for the combined fraction 2 of hexane extract from *P. aduncum* stem (PASHF2)

 Figure 5.27 Gas chromatogram for the combined fraction 5 of hexane extract from *P. aduncum* stem (PASHF5)

 Figure 5.28 Gas chromatogram for the combined fraction 1 of DCM extract from *P. aduncum* stem (PASDF1)

 Figure 5.29 Gas chromatogram for the combined fraction 3 of DCM extract from *P. aduncum* stem (PASDF3)

 Figure 5.30 Gas chromatogram for the combined fraction 4 of DCM extract from *P. aduncum* stem (PASDF4)

 Figure 5.31 Gas chromatogram for combined fraction 1 of EtOAc extract from *P. nigrum* root (PNREF3)