Faculty of Cognitive Sciences and Human Development

CAUSES OF MATHEMATICS ANXIETY AMONG SECONDARY SCHOOL STUDENTS

Siti Royhanah Binti Khalid

Bachelor of Education (Honours) Mathematics 2009
Statement of Originality

The work described in this Final Year Project, entitled “Causes of Mathematics Anxiety Among Secondary School Students” is to the best of the author’s knowledge that of the author except where due reference is made.

__________________ __________________
(Date submitted) Full Name: Siti Royhanah Binti Khalid
Matric number: 15297
ACKNOWLEDGEMENT

First and foremost, I would like to thank the almighty Allah for His blessings in assisting me to complete this project.

Special thanks to my supervisor, Associate Professor Dr. Hong Kian Sam, for his tireless guidance, advice and support throughout the duration of this project.

I would also like to extend my gratitude to my best friend, Nur A’ain Binti Sabri and my dear course mate, Chen Hui Ping, for their advice and help in carrying out this project.

Also, to all those who have helped and supported me in one way or another throughout the duration of this project like all the principals, students and teachers of the cooperating school for their participation in this study.

Last, but not least, to my beloved father and mother, Khalid bin Omar and Wan Zainun binti Mohd Noor, and my younger brothers, Muhammad Ridhwan, Muhammad Syafiq and Muhammad Firdaus, whose love, understanding, encouragement and support helped me through in some of the difficult moments in conducting the research.

May Allah bless you all.
CAUSES OF MATHEMATICS ANXIETY AMONG SECONDARY SCHOOL STUDENTS

Siti Royhanah Binti Khalid

This research investigated the causes of mathematics anxiety among secondary school students. It also determined the differences in student’s mathematics anxiety based on gender. One hundred and seventeen secondary school students from Form 2 and 4 students from four different schools around Kuching districts were the sample for this study. The questionnaire was used to investigate the causes of mathematics anxiety among students. Pearson-product moment correlations were used to measure the relationships between the student’s mathematics anxiety and the grade or subject level at which the anxiety started, student’s mathematics anxiety and student’s perceptions of the value that society places on mathematics and mathematics anxiety and the perceived usefulness of certain teaching method in the alleviation of or in the contribution to mathematics anxiety. While independent t-test was used to determine differences in student’s mathematics anxiety based on gender. The results showed the correlation between student’s mathematics anxiety and student’s perceptions of the value that society placed on mathematics. The results of this study had also indicated possible correlation between student’s mathematics anxiety and teaching method. Furthermore, it was found that there were no differences in student’s mathematics anxiety based on gender. This study also showed that a teacher had the greatest influence on student’s mathematics anxiety. Lastly, the results showed that there was a correlation between student’s perceived mathematics anxiety level and MARS mathematics anxiety rating scale. In relation to grade level at which mathematics anxiety started, student’s mathematics anxiety was found to be not correlated.
ABSTRAK

PUNCA KEBIMBANGAN TERHADAP MATEMATIK DIKALANGAN PELAJAR SEKOLAH MENENGAH

Siti Royhanah Binti Khalid

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT OF ORIGINALITY</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.0 Introduction 1
1.1 Background of the study 2
1.2 Problem statement 5
1.3 Research objectives 7
 1.3.1 General objectives 7
 1.3.2 Specific objectives 7
1.4 Research questions 8
CHAPTER 2: LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Definition of mathematics anxiety</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Characteristics of mathematics anxious students</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Sources of mathematics anxiety</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Relationship between peer influences towards adolescents interest in mathematics</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.4.1. Peer collaboration</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Peers influence in cooperative learning</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Relationship between mathematics anxiety and gender</td>
<td>21</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.6</td>
<td>Relationship between mathematics anxiety and parental influence</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Relationship between mathematics anxiety and teaching method</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Relationship between mathematics anxiety and grade level differences</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Relationship between mathematics anxiety and societal influence</td>
<td>30</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Mathematics myths</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Summary</td>
<td>32</td>
</tr>
</tbody>
</table>

CHAPTER 3: RESEARCH METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Research designs</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Research samples</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Research instruments</td>
<td>34</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Questionnaire</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Data collection procedures</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Data analyses procedures</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
<td>39</td>
</tr>
</tbody>
</table>
CHAPTER 4: RESEARCH FINDINGS

4.0 Introduction 40

4.1 Students’ demographics 41

4.2 Reliability of the research instruments 42

4.3 Findings

4.3.1 The levels of mathematics anxiety among students 43

4.3.2 Parents/ peer/ society/ teacher influence towards the development of mathematic anxiety among students 65

4.3.3 Correlation between student’s mathematic anxiety and grade level at which mathematics anxiety started among students 70

4.3.4 Correlation between student’s mathematic anxiety and societal values on mathematics. 73

4.3.5 Correlation between student’s mathematic anxiety and teaching strategies in contributing to the development of students’ mathematics anxiety 82

4.3.6 Correlation between student’s mathematic anxiety and teaching strategies in reducing students’ mathematics anxiety 97

4.3.7 Correlation between student’s perceived mathematics anxiety level and MARS (mathematics anxiety rating scale) 119
4.3.8 Differences in respondent’s mathematics anxiety based on gender

4.4 Summary

CHAPTER 5: DISCUSSIONS AND CONCLUSIONS

5.0 Introduction

5.1 Summary of the research

5.2 Summary of the research findings

5.3 Discussions of the findings

5.3.1 The levels of mathematics anxiety among students

5.3.2 Parents/ peer/ society/ teacher influence towards the development of mathematic anxiety among students

5.3.3 Correlation between the students’ mathematic anxiety and grade level at which mathematics anxiety started among students

5.3.4 Correlation between student’s mathematic anxiety and societal values on mathematics.
5.3.5 Correlation between student’s mathematic anxiety and teaching strategies in contributing to the development of students’ mathematics anxiety

5.3.6 Correlation between student’s mathematic anxiety and teaching strategies in reducing students’ mathematics anxiety

5.3.7 Correlation between student’s perceived mathematics anxiety level and MARS (mathematics anxiety rating scale)

5.3.8 Differences in student’s mathematics anxiety based on gender

5.4 Recommendation for future practice and future study

5.4.1 Recommendation for future practice

5.4.2 Recommendation for future study

5.6 Conclusions

REFERENCES

APPENDICES
LIST OF TABLES

Table 4.1

Students’ demographics 42

Table 4.2

Reliabilities of the research instruments 43

Table 4.3

Frequencies and percentages of mathematics anxiety levels 47 among Form 2 and Form 4 students

Table 4.4

Overall frequencies and percentages of mathematics anxiety levels among students 48

Table 4.5

Overall frequencies and percentages of MARS (Mathematics Anxiety Rating Scale) score among students 48
Table 4.6
Frequencies and percentages of MARS (Mathematics Anxiety Rating Scale) scores among Form two students

Table 4.7
Frequencies and percentages of MARS (Mathematics Anxiety Rating Scale) scores among Form four students

Table 4.8
Overall descriptive statistics of the activities that may cause fear or apprehension among students.

Table 4.9
Frequencies and percentages of the item that may cause fear or apprehension among students. for both Form two and Form four classes.

Table 4.10
Means and standard deviations of the item that may cause fear or apprehension among students.
Table 4.11
Frequencies and percentages of the influence of parents, peer, society and teacher on the students’ mathematics anxiety.

Table 4.12
Overall frequencies and percentages of the influence of parents, peer, society and teacher on students’ mathematics anxiety.

Table 4.13
Frequency and percentages’ of student’s responses regarding the things that teacher, parents or peer did that build an attitude of confidence in their mathematics ability.

Table 4.14
Frequency and percentages’ of student’s responses regarding the things that teacher, parents or peer did that destroy an attitude of confidence in their mathematics ability.
Table 4.15
Frequencies and percentages of grade level at which mathematics anxiety started among Form 2 and Form 4 class.

Table 4.16
Overall frequencies and percentages of grade level at which mathematics anxiety started among students

Table 4.17
Correlation between student’s mathematics anxiety and grade level at which mathematics anxiety started

Table 4.18
Frequency and percentages of Form 2 and Form 4 students’ perceptions towards the societal influence in the development of their mathematics anxiety.

Table 4.19
Means and standard deviations of Form 2 and Form 4 students’ perceptions towards the societal influence in the development of their mathematics anxiety.
Table 4.20
Overall descriptive statistics of student’s perceptions towards the societal influence in the development of their mathematics anxiety.

Table 4.21
Correlation between student’s mathematic anxiety and societal values on mathematics

Table 4.22
Frequencies and percentages of students’ perceptions towards the teaching strategies that contribute to the students’ mathematics anxiety for both Form 2 and Form 4 groups.

Table 4.23
Means and standard deviations of student’s perceptions towards the teaching strategies that contribute to the student’s mathematics anxiety for both Form 2 and Form 4 groups

Table 4.24
Overall descriptive statistics of students’ perceptions towards the teaching strategies that contribute to the student’s mathematics anxiety
Table 4.25
Correlation between student’s mathematic anxiety and teaching strategies that contribute to the student’s mathematics anxiety

Table 4.26
Frequencies and percentages of students’ perceptions towards the teaching strategies that reduce students’ mathematics anxiety for both Form 2 and Form 4 classes.

Table 4.27
Means and standard deviations of students’ perceptions towards the teaching strategies that reduce students’ mathematics anxiety.

Table 4.28
Overall descriptive statistics of students’ perceptions towards the teaching strategies that reduce students’ mathematics anxiety.

Table 4.29
Correlation between students’ mathematic anxiety and teaching strategies in reducing student’s mathematics anxiety.

Table 4.30
Correlation between secondary school student’s perceived mathematics anxiety level and MARS
Table 4.31
Descriptive statistics of the secondary school students’ mathematics anxiety based on gender

Table 4.32
Independent samples t-test of the secondary school students’ mathematics anxiety based on gender
LIST OF FIGURES

Figure 1.1
Correlational Research Framework
10
CAUSES OF MATHEMATICS ANXIETY AMONG SECONDARY SCHOOL STUDENTS

SITI ROYHANAH KHALID

This project is submitted in partial fulfilment of the requirements for the degree of Bachelor of Education (Mathematics) with Honours

Faculty of Cognitive Sciences and Human Development
This project entitled “Causes of mathematics anxiety among secondary school students” was prepared by Siti Royhanah Khalid and submitted to the Faculty of Cognitive Sciences and Human Development in partial fulfilment of the requirements for a Bachelor of Education (Mathematics) with Honours.
CHAPTER ONE
INTRODUCTION

1.0 Introduction

The main aim for this study was to find the causes that could trigger mathematics anxiety in students. This chapter discusses background of the study, statement of the problem, research objectives, research hypotheses and research framework of the study. The chapter also presents the significance of the study, limitation of the study and definition of important terms used in the study.
1.1 Background of the study

Mathematics is an important school subject because it is associated with future academic and/or career opportunities. Agwagah and Usman (2003) relates the importance of mathematics to the scientific, industrial, technology and social progress of a society. It is a science that studies numbers, shapes, objects and their properties which are needed as basic requirement for all sciences (Akinsola, Tella, & Tella, 2007).

However, many school students have trouble learning mathematics. Some are visual learners and find it difficult to grasp mathematics concepts when they are presented verbally or numerically. Others have limited proficiency in English and do not understand the new words and phrases that describe a mathematics idea (Piotrowski, Bagui & Hemasinha, 1998).

Despite its importance, in daily life and for career and academic choices, mathematics is often viewed as a difficult subject. Such perception is in part, due to the nature of mathematics. However, it also has to do with preconceived notions about mathematics and the anxiety individuals have for mathematics. A remarkable body of research has been accumulated on mathematics anxiety since the 1960s (Sahin, 2008).

The origins of negative beliefs and anxiety about mathematics can be classified into three categories which are environmental, intellectual, and personality factors (Trujillo & Hadfield, 1999). Environmental factors include negative experiences in the classroom, parental pressure, insensitive teachers, mathematics being taught in a traditional manner as rigid sets of rules and non-participatory classrooms (Trujillo & Hadfield, 1999). Intellectual factors include being taught with mismatched learning styles, student attitude and lack of persistence, self-doubt, lack
of confidence in mathematical ability and lack of perceived usefulness of mathematics (Trujillo & Hadfield, 1999). Personality factors include unwillingness to ask questions due to shyness, low self-esteem and for females viewing mathematics as a male domain (Trujillo & Hadfield, 1999; Levine, 1996).

From this it can then be seen that the origins of negative beliefs and anxiety about mathematics are as diverse as are the individuals experiencing mathematics anxiety. For some people mathematics anxiety is related to poor teaching, or humiliation and or belittlement whilst others may have learnt mathematics anxiety from the mathematics anxious teachers, parents, siblings or peers, or who may link their anxiety to numbers or only to some operations (Uusimaki & Nason, 2004). Research studies have found that mathematics anxiety surfaces most dramatically when the subject either is or is perceived to be under evaluation (Tooke & Lindstrom, 1998).

Cornell (1999) listed a number of pedagogical practices that contributed to this phenomenon. These included the assumption on the part of many mathematics teachers that mathematical processes and procedures were inherently simple and self-explanatory, the use of the unique vocabulary of mathematics without sufficient explanation of the meaning of the terminology being used, an overuse of ‘skill and drill’ exercises which contributed to frustration and anxiety, the sequential nature of mathematics instruction which made keeping pace with instruction difficult if a student did not immediately grasp the procedures or concepts being taught at a specific point in time, an overemphasis on rote memory and the fact that mathematics tended to be taught in isolation, with little connection to the ‘real world’ (Brady & Bowd, 2005).

Stevenson and Stigler (1992, cited in Morgan, 2003) contend that while teachers are not solely responsible for student’s self-perceptions, society tends to