GENE EXPRESSION IN DENGUE VIRUS INFECTION

WANG SEOK MUI

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

INSTITUTE OF HEALTH AND COMMUNITY MEDICINE
UNIVERSITI MALAYSIA SARAWAK
2008
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Prof Jane Cardosa, for your guidance, advice, and patience throughout these years. Thanks for the knowledge that you have imparted upon me. They’re invaluable. You will always be my inspiration of being a good scientist.

To Ms Tio Phaik Hooi, thank you for your support and assistance throughout my studies. I’ll always remember your generosity.

To all my lovely lab mates and friends, thank you for all your insightful discussion, encouragement, and friendship. You all have made my stay at UNIMAS an enjoyable one! I’ll always remember us as a team.

And, to my parents and siblings for always being there without fail.
Dengue virus infection is a major public health problem worldwide and is amongst the most important human disease caused by mosquito-borne viruses. Despite our growing understanding of the various facets of dengue infection, its pathogenesis still remains elusive. In the first part of this study, we described a real-time PCR method for the detection and quantitation of DENV in the antibody dependent enhancement (ADE) context. ADE has been hypothesized as one of the major known risk factors for the development of DHF. We have demonstrated 2 – 4 fold increase in DENV RNA copy number in antibody mediated enhanced infection in the presence of an enhancing antibody. In the second part of this study, the virus and host interactions at the transcriptional level were investigated. Replication of virus within an infected host cell alters normal cellular gene expression profiles, and triggers immune mediators which might play significant roles in the pathogenesis. Microarray system comprising 40K mouse oligonucleotide cDNA was utilized to study differentially expressed genes following DENV-2 infection of mouse macrophages P388D1 cells. Seven genes that exhibited at least 2 fold up-regulation in expression level were identified. These genes are involved in transcriptional regulation (Scotin, Bst2), dsRNA binding receptor (RIG-I), MHC molecule (B2M), interferon related regulation (IFIT1, Ly6e, Bst2), and growth arrest and apoptosis (Scotin, Mpeg1). Quantitative real-time PCR was then performed to validate the microarray findings and to determine the expression pattern of these gene of interests. Among these, IFIT1 (interferon-induced with tetratricopeptide repeats 1) was the highest up-regulated gene. The gene expression profile of IFIT1 was further analyzed in healthy donors and patients with suspected dengue infections. Our observation showed that IFIT1 is expressed at a basal level in healthy donors and up-regulated during viral infections. Patients with dengue virus infections induced a significant
higher level of IFIT1 than non-dengue patients (p<0.0001), and activation seems to be correlated
with the duration of illness, with expression level found to be higher in the early phase of
infection. This is the first instance where IFIT1 has been shown to be up-regulated in dengue
infection. This suggests that IFIT1 may be important in the pathogenesis of dengue infection.
ABSTRAK

Jangkitan virus denggi merupakan satu masalah kesihatan awam yang meleluasa di serata dunia dan merupakan antara penyakit yang paling penting disebabkan oleh virus yang merebak melalui nyamuk. Walaupun pemahaman tentang pelbagai aspek infeksi virus denggi semakin mendalam, masih terdapat banyak soalan yang tidak terjawab dari segi patogenesis infeksi virus ini. Dalam bahagian pertama kajian ini, kaedah real-time PCR atau reaksi jujukan herantai polymerase semasa telah digunakan untuk mengenalpasti dan mengkuantitasikan virus denggi (DENV) dalam konteks antibody dependent enhancement (ADE) atau penambahan kesan infeksi yang bergantung kepada antibodi. Terdapat satu hipotesis yang mencadangkan ADE sebagai salah satu faktor risiko dalam jangkitan virus denggi yang menjurus kepada demam denggi berdarah (DHF). Kajian ini telah menunjukkan peningkatan RNA DENV sebanyak 2 – 4 kali ganda dalam jangkitan yang pertingkatkan oleh kehadiran satu enhancing antibody atau antibodi penambah. Dalam bahagian kedua kajian ini, interaksi di antara virus denggi dan sel perumah dari segi transkripsi telah dikaji. Replikasi virus dalam sel perumah selepas infeksi virus boleh mengubah profil normal ekspresi gen sel perumah dan mencetuskan perantara-perantara sistem imun yang mungkin terlibat di dalam patogenesis. Sistem microarray yang mengandungi 40K oligonucleotide cDNA tikus telah digunakan untuk mengkaji gen yang diekspresikan berikutan infeksi DENV-2 ke atas sel macrophage tikus P388D1. Tujuh gen yang menunjukkan peningkatan 2 kali ganda dalam tahap ekspresi telah dikenalpasti. Gen-gen tersebut terlibat dalam proses-proses seperti regulasi transkripsi (Scotin, Bst2), reseptor pencantum untuk dsRNA (RIG-I), molekul MHC (B2M), regulasi yang berkaitan dengan interferon (IFIT1, Ly6e, Bst2), serta pembantutan pertumbuhan dan apoptosis (Scotin, Mpeg1). Jujukan berantai polymerase semasa atau real-time PCR yang kuantitatif telah dijalankan untuk
mengesahkan penemuan ujian microarray dan juga untuk menentukan corak ekspresi gen-gen yang mempunyai kepentingan dalam penemuan ini. Di kalangan gen-gen tersebut, IFIT1 (interferon-induced with tetratricopeptide repeats 1) merupakan gen yang mengalami ekspresi yang paling tinggi. Profail ekspresi gen IFIT1 telah dianalisa dengan lebih lanjut dan perbandingan dibuat di kalangan penderma darah yang sihat dengan pesakit yang disyaki dijangkiti denggi. Pemerhatian melalui kajian ini mendapati IFIT1 diekspresikan pada paras yang asas di kalangan penderma darah yang sihat manakala ekspresinya adalah tinggi semasa infeksi virus denggi. Perbezaan paras IFIT1 di kalangan pesakit yang mengalami infeksi virus denggi adalah sangat nyata berbanding dengan bukan pesakit denggi (p<0.0001), dan pengaktifan gen ini mempunyai kaitan dengan jangkamasa penyakit di mana tahap ekspresi gen ini didapati adalah lebih tinggi di peringkat awal infeksi. Penemuan ini merupakan penemuan yang pertama yang penunjukkan bahawa ekspresi IFIT1 meningkat dalam suatu infeksi denggi. Keputusan ini mencadangkan bahawa IFIT1 berkemungkinan mempunyai hubungkait dengan patogenesis infeksi denggi.
TABLE OF CONTENTS

AKNOWLEDGEMENTS i
ABSTRACT ii
ABSTRAK iv
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES xvii
ABBREVIATIONS xx

Chapter 1: Literature review 1
1.1 Background 1
1.2 Flavivirus 3
 1.2.1 Dengue virus 3
 1.2.2 Morphology and biophysical properties 4
 1.2.2.1 The capsid protein, C 4
 1.2.2.2 The membrane protein, M 6
 1.2.2.3 The envelop protein, E 7
 1.2.2.4 Non structural protein (NS) 11
 1.2.3 Antigenic properties 12
1.3 Clinical features of dengue infection 13
1.4 Laboratory diagnosis of dengue virus infection 17
 1.4.1 Virus isolation 17
 1.4.2 Serological detection 18
 1.4.2.1 Haemagglutination inhibition test (HI) 18
 1.4.2.2 Complement fixation test (CF) 18
 1.4.2.3 Neutralization test (NT) 19
Chapter 1: Molecular and Immunological Aspects of Dengue Fever

1.4.2.4 IgM capture enzyme linked immunosorbent assay (MAC ELISA) 19

1.4.3 Molecular diagnosis 20

1.5 Treatment and control 21

1.6 Animal models for dengue infection 22

1.7 Development of vaccine candidate 23

1.8 Cell surface receptor of dengue virus 25

1.9 Pathogenesis 27

1.9.1 Antibody-dependent enhancement 27

1.9.2 Virulence factors 31

1.9.3 T-cell activation 32

1.9.4 Cytokines and chemical mediators 33

1.9.5 A model hypothesis of immunopathogenesis of DHF 35

1.10 Objective of the study 39

1.10.1 Statement of the problem 39

1.10.2 Specific aims 42

Chapter 2: Quantitative PCR for the determination of antibody mediated enhancement in dengue virus infection 43

2.1 Introduction 43

2.2 Materials and methods 49

2.2.1 Viruses and culture 49

2.2.2 Isolation of viral RNA 49

2.2.3 Construction of the in vitro transcripts 52
2.2.3.1 Primers and reverse transcription polymerase chain reaction (RT-PCR) 52

2.2.3.2 Preparation of inserts (target gene) 53

2.2.3.3 Cloning of the target gene into pGEM®-4Z vector 56

2.2.3.4 Transformation 56

2.2.3.5 Screening for inserts using colony-PCR 57

2.2.3.6 Preparation of recombinant plasmid DNA 57

2.2.3.7 Sequencing PCR 58

2.2.3.8 Purification of extension product 59

2.2.3.9 DNA sequencing and nucleotide analysis 59

2.2.3.10 Preparation of DNA template for *in vitro* transcription 60

2.2.3.11 *In vitro* transcription 61

2.2.3.12 RNA quantitation 61

2.2.4 Real-time PCR 62

2.2.4.1 Primers and TaqMan probe 62

2.2.4.2 TaqMan real-time PCR for DENV 63

2.2.4.3 SYBR Green I real-time PCR for DENV 64

2.2.4.4 Standard curve for absolute quantitation of DENV 65

2.2.5 Antibody mediated enhanced infection 65

2.2.5.1 Cell culture 65

2.2.5.2 Viruses 66

2.2.5.3 Monoclonal antibodies and human sera 66

2.2.5.4 Infection of P388D1 cells 66

2.2.6 Quantitation of DENV output by plaque assay 67
2.2.7 Quantitation of viral RNA copy

2.3 Results

2.3.1 Construction of \textit{in vitro} transcribed RNA

\hspace{1cm} 2.3.1.1 Cloning of the target gene into pGEM-4Z vector and screening of positive recombinant clones

\hspace{1cm} 2.3.1.2 Verification of the \textit{in vitro} transcripts

2.3.2 Optimization and validation of TaqMan real-time PCR

\hspace{1cm} 2.3.2.1 DENV detection by TaqMan real-time PCR

\hspace{1cm} 2.3.2.2 Validation of an absolute quantitation standard curve for DENV-2

\hspace{1cm} 2.3.2.3 Reproducibility of the real-time PCR assay

\hspace{1cm} 2.3.2.4 Relationship between plaque assay and real-time PCR assay

\hspace{1cm} 2.3.2.5 Relationship between TaqMan real-time PCR and SYBR Green I real-time PCR for DENV

2.3.3 Antibody mediated enhanced infection

\hspace{1cm} 2.3.3.1 Neutralization test (PRNT\textsubscript{50})

\hspace{1cm} 2.3.3.2 Determination of ADE by immunofluorescence assay

\hspace{1cm} 2.3.3.3 Measurement of DENV-2 replication in P388D1 cells and C6/36 cells

\hspace{1cm} 2.3.3.4 Measurement of antibody mediated enhancement using TaqMan real-time PCR

\hspace{1cm} 2.3.3.5 Multiplicity of infection (MOI) of DENV on P388D1 infection

2.4 Discussion

\hspace{1cm} 2.4.1 Absolute quantitative real-time PCR for DENV-2
Chapter 3: Gene expression of mouse macrophage cells infected with DENV-2

3.1 Introduction

3.2 Materials and methods

3.2.1 Preparation of RNA for microarray experiment

3.2.1.1 Cell culture

3.2.1.2 Infection of mouse macrophage cells (P388D1)

3.2.1.3 Cellular RNA extraction

3.2.1.4 RNA quantitation

3.2.2 Microarray analysis of DENV infection of P388D1 cells

3.2.2.1 Microarray experiment

3.2.2.2 Microarray data analysis

3.2.3 Validation of microarray findings

3.2.3.1 Experiment design: Infection of P388D1 cells

3.2.3.2 Experiment 1: Effects of viable and heat-inactivated viruses

3.2.3.3 Experiment 2: Effects of viral dose response

3.2.3.4 Experiment 3: Time course study

3.2.4 Performing macrophage gene expression studies using relative quantitative real-time PCR (Applied Biosystems 7500 Real-time PCR System)

3.2.4.1 Cellular RNA isolation

3.2.4.2 Primers
3.2.4.3 SYBR Green I real-time PCR for target and house keeping genes 112

3.2.4.4 Relative real-time quantitation of gene expression studies using the comparative C_T method 113

3.2.4.5 Validation of target and house keeping genes amplification efficiency for the comparative C_T method 113

3.2.4.6 Gene expression studies using the comparative C_T method: Data analysis example 114

3.2.5 Measuring virus output 116

3.2.5.1 Performing absolute quantitation of DENV using the Applied Biosystems 7500 Real-time PCR System 116

3.2.5.2 Quantitation of virus output by plaque assay 119

3.2.5.3 Measuring antigen production by antigen capture assay 119

3.3 Results 121

3.3.1 Microarray data analyses 121

3.3.1.1 DENV-2 infection of P388D1 cells 121

3.3.1.2 Microarray analysis of dengue infection 121

3.3.1.3 Characteristics of differentially expressed candidate genes 123

3.3.2 Optimization of SYBR Green I real-time PCR method for gene expression study 130

3.3.2.1 Primers 130

3.3.2.2 Optimization of PCR buffer conditions 130

3.3.2.3 Optimization of primer concentration 131

3.3.2.4 Optimization of annealing temperature 131
3.3.2.5 Validation of PCR amplification efficiency for target and house keeping genes

3.3.3 Measuring virus output

3.3.3.1 Generating standard curve for quantitating DENV RNA copies

3.3.3.2 Optimization of antigen capture assay (E antigen of the DENV)

3.3.4 Real-time PCR analyses of a novel set of transcripts in DENV-infected P388D1 cells

3.3.4.1 DENV-2 NGC infection of P388D1 cells:

Comparison between heat-inactivated and viable virus

3.3.4.2 DENV-2 NGC infection of P388D1 cells:

Effects of virus dose response on infection of P388D1 cells

3.3.4.3 DENV-2 NGC infection of P388D1 cells:

Effects of time course on DENV infection of P388D1 cells

3.4 Discussion

3.4.1 DENV and P388D1 cells

3.4.2 Optimization of quantitative real-time PCR

3.4.3 Microarray analysis of DENV-2 infection on P388D1 cells

3.4.4 Real-time PCR analysis of DENV-2 infection on P388D1 cells

3.4.5 Characteristics of up-regulated genes identified using microarray and real-time PCR analyses

3.4.5.1 Bst2
3.4.5.2 Ly6e 162
3.4.5.3 Mpeg1 163
3.4.5.4 Scotin 163
3.4.5.5 B2M 164
3.4.5.6 RIG-I 165
3.4.5.7 IFIT1 166

3.4.6 Possible role of candidate genes in the innate immune defense response 167

Chapter 4: Gene expression of IFIT1 in patients with dengue infection 171

4.1 Introduction 171

4.2 Materials and methods 173

4.2.1 Developmental strategies 173

4.2.2 Patients and blood samples 173

4.2.3 Laboratory diagnosis of dengue infection 175

4.2.3.1 Virus isolation 175

4.2.3.2 IgM capture ELISA (MAC ELISA) 177

4.2.3.3 IgG capture ELISA (GAC ELISA) 178

4.2.3.4 Molecular detection of DENV 178

4.2.3.4.1 Viral nucleic acid extraction using High Pure Extraction kit 178

4.2.3.4.2 Conventional flavivirus RT-PCR 183

4.2.3.4.3 Agarose gel electrophoresis 184

4.2.3.4.4 Purification of DNA fragment from agarose gel 184
4.2.3.4.5 Sequencing PCR
4.2.3.4.6 Purification of extension product
4.2.3.4.7 DNA sequencing and nucleotide analysis

4.2.4 Gene expression of IFIT1
4.2.4.1 RNA extraction from human clotted blood
4.2.4.1.1 RNA extraction using Tri reagent® BD
4.2.4.1.2 RNA purification using RNeasy kit
4.2.4.2 House keeping (HK) and target genes
4.2.4.3 SYBR Green I Real-time PCR
4.2.4.4 Relative standard curve
4.2.4.5 Selection of HK genes
4.2.4.6 Normalization of IFIT1 gene expression
4.2.4.7 Data analysis

4.3 Results
4.3.1 Optimization for RNA extraction and real-time PCR
4.3.1.1 RNA extraction and cDNA analysis
4.3.1.2 Validation: RNA extraction from clotted blood
4.3.1.3 Optimization for primer and annealing temperature
4.3.2 Selection of HK genes
4.3.2.1 Expression profiling of the HK genes
4.3.2.2 Standard curve and real-time PCR
4.3.2.3 Selection of HK genes using the geNorm approach
4.3.2.4 Selection of HK genes using the ΔC_T approach 212

4.3.2.5 HK genes for gene expression study in clotted blood 212

4.3.3 Gene expression study of IFIT1 in patients with dengue infection 215

4.3.3.1 Normalization of IFIT1 215

4.3.3.2 Analysis of patient samples by laboratory tests 215

4.3.3.3 Expression of IFIT1 transcripts: Healthy donors versus suspected dengue patients 218

4.3.3.4 Expression of IFIT1 transcripts: Comparison between confirmed dengue, presumptive dengue positive, negative dengue and presumptive dengue negative 220

4.3.3.5 Expression of IFIT1 transcripts versus duration of fever 226

4.3.3.6 Comparison of IFIT1 transcripts level in patients with paired sera 227

4.3.3.7 Expression of IFIT1: primary dengue versus secondary dengue Infections 227

4.3.3.8 Summary of findings 231

5.4 Discussion 232

5.4.1 RNA extraction from human clotted blood 232

5.4.2 Selection of HK genes for human clotted blood 235

5.4.3 Expression of IFIT1 in patients with dengue infections 239

Chapter 5: Summary, conclusion, and future explorations 242

5.1 Summary 242

5.1.1 Importance of DENV infections 242
5.1.2 Determination of antibody mediated enhanced infections using quantitative real-time PCR 243

5.1.3 Gene expression profiling of P388D1 cells infected with DENV-2 246

5.1.4 Involvement of novel genes in the innate immune response 248

5.1.5 Selection of stably expressed HK genes 250

5.1.6 Gene expression of IFIT1 in human clotted blood 252

5.2 Conclusion 254

5.3 Future explorations 255

Bibliography 257

Appendix A: Media, reagents, and buffer 289

Appendix B: pGEM-4Z vector multiple cloning region and circle map 294

Appendix C: Raw data for microarray experiments 295

Appendix D: Raw data for gene expression study of IFIT1 296
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Distributions of dengue epidemic in the world in the year 2005</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Structure of intracellular and extracellular flavivirus virions</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Schematic diagram of the dengue virus RNA genome organization</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Schematic view of the structural organization and different conformations of the flavivirus envelope protein E</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Manifestations of the dengue syndrome</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Clinical features and diagnosis of dengue fever and dengue haemorrhagic fever</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Model for antibody-dependent enhancement of dengue virus replication</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Immunopathogenesis of DHF induced by cytokines and chemical mediators</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Fluorescent detection of amplification using TaqMan based fluorogenic probe</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Fluorescent detection of amplification using ds-DNA binding SYBR Green I Dye</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Flow chart of the developmental strategy in this study</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Flowchart of the processes involved in the construction of the in vitro transcribed RNA</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Cloning of target gene into pGEM®-4Z vector</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Nucleotide sequence of the target gene</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Assessment of DNA contamination in the in vitro RNA transcripts preparation</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Amplification plot for DENV-2 real-time PCR</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Relationship of known input RNA copies to the threshold cycle (C<sub>T</sub>) in the real-time PCR assay</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Relationship between the RNA copy number determined by the real-time PCR assay (copies/µl) and the virus titer (PFU/ml)</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Absolute quantitative standard curves for DENV generated by TaqMan and SYBR Green I real-time PCR</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Relationship between TaqMan and SYBR Green I real-time PCR</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Determination of ADE by immunofluorescence assay</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Time course study for DENV infected P388D1 and C6/36 cells</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Quantitative real-time PCR measurement of antibody mediated enhancement</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>Effects of Multiplicity of infection (MOI) of DENV-2 on P388D1 Infection: a time course study</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>Effects of enhancing monoclonal antibodies on antibody mediated infection</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Schematic outline of a microarray design and analysis experiment</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flow chart of the major components in the microarray experiment</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Flow chart showing the preparation of RNA for the microarray experiment</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Flow chart of the microarray analysis of P388D1 cells infected with DENV-2</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Validation of microarray findings</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Performing macrophages gene expression studies using relative quantitative real-time PCR</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Quantitation of virus output</td>
</tr>
</tbody>
</table>
Figure 3.8 Performing absolute quantitation of DENV using SYBR Green I real-time PCR
Figure 3.9 RNA extracted from mock infected and DENV-2 infected P388D1 cells at 6 hours and 48 hours post infection
Figure 3.10 Microarray analysis of dengue infection
Figure 3.11 A representative of scatter plot of differential expressed genes at 48 hours post dengue infection
Figure 3.12 Two-fold up-regulated genes in dengue infected P388D1 cells at 48 hours post infection
Figure 3.13 Optimization of primer concentration for SYBR Green I real-time PCR
Figure 3.14 Optimization of annealing temperature for SYBR Green I real-time PCR
Figure 3.15 Validation plot of Log input amount versus ΔC_T
Figure 3.16 Relationship of known input RNA copies to the threshold cycle (C_T) in the real-time PCR assay
Figure 3.17 Optimization of antigen concentration for antigen capture assays
Figure 3.18 Infection of P388D1 cells with DENV-2 NGC: comparison between heat-inactivated and viable virus
Figure 3.19 Infection of P388D1 cells with DENV-2 NGC at MOI 0.1, 0.5, 1 respectively
Figure 3.20 Infection of P388D1 cells with DENV-2 NGC at MOI 1 – a time course study
Figure 3.21 TLR and RIG-I – two antiviral innate immunity pathways
Figure 4.1 Flow chart of the developmental strategies in this study
Figure 4.2 Flow chart of the processes in the laboratory detection of dengue infection
Figure 4.3 IgM capture ELISA
Figure 4.4 Flow chart of the processes involved in molecular detection of DENV
Figure 4.5 Flow chart of the processes of extraction of viral nucleic acids using High Pure Extraction Kit
Figure 4.6 Flow chart of the processes involved in gene expression study of IFIT1 in suspected dengue patients and healthy donors
Figure 4.7 Flow chart showing the RNA isolation process from clotted human blood
Figure 4.8 Experimental flows for the determination of stably expressed HK genes
Figure 4.9 Agarose gel of total RNA isolated from human clotted blood
Figure 4.10 Assessment of DNA contamination in RNA preparations
Figure 4.11 Assessment of reproducibility in RNA preparation
Figure 4.12 Optimization of primer concentration for SYBR Green I real-time PCR
Figure 4.13 Optimization of annealing temperature for SYBR Green I real-time PCR
Figure 4.14 Real-time PCR cycle threshold values in clotted blood
Figure 4.15 Standard curves for HK genes and target gene
Figure 4.16 Gene expression stability of the six genes analyzed using the geNorm Program
Figure 4.17 Data distribution of normalized IFIT1 for suspected dengue cases
Figure 4.18A IFIT1 transcripts level for individual samples
Figure 4.18B Expression level of IFIT1 was compared among suspected dengue samples
Figure 4.19A IFIT1 transcripts level in individual samples
Figure 4.19B Expression level of IFIT1 was compared among suspected dengue samples
| Figure 4.20 | Expression of IFIT1 against duration of fever | 226 |
| Figure 4.21 | Expression level of IFIT1 in 7 paired serum samples | 229 |
| Figure 4.22 | Expression level of IFIT1 was compared among primary and secondary dengue cases | 230 |
LIST OF TABLES

Table 2.1 Oligonucleotide primers used for construction of in vitro transcripts 55
Table 2.2 Primers and probe for dengue real-time PCR 62
Table 2.3 Details of monoclonal antibodies and pooled convalescent dengue sera (PPCS)68
Table 2.4 C_T value of serially diluted transcripts 74
Table 2.5 Reproducibility of the real-time PCR assay 77
Table 2.6 Neutralization test for serum and monoclonal antibodies 80
Table 2.7 Fold increase of RNA copies in antibody mediated enhanced infection 86
Table 2.8 Fold increase of RNA copies in antibody mediated enhanced infection 89
Table 3.1 Calculation example: relative quantitative using the comparative C_T method 115
Table 3.2 Characteristic of differentially expressed mouse mRNAs in dengue infection identified by microarray analysis 128
Table 3.3 Classification of genes 129
Table 3.4 Polymerase chain reaction components for SYBR Green I real-time PCR 133
Table 3.5 Optimized primers set concentration and annealing temperature for real-time PCR 134
Table 3.6 Primer sequences used in relative quantitative real-time PCR 137
Table 3.7 Input RNA and ΔC_T of house keeping genes and target genes for validation experiment 140
Table 3.8 Validation experiment for GAPDH against all selected target genes 141
Table 3.9 Infection of P388D1 cells with DENV-2 NGC: comparison between heat-inactivated virus and viable virus 147
Table 3.10 Infection of P388D1 cells with DENV NGC: Effects of DENV dose response 150
Table 3.11 Infection of P388D1 cells with DENV-2 NGC at a MOI of 1 – a time course study 153
Table 4.1 Panel of 6 candidate house keeping genes evaluated in this study 195
Table 4.2 Primer sequence for house keeping genes 196
Table 4.3 Optimized primer sets concentration and annealing temperature for SYBR Green I real-time PCR 206
Table 4.4 Characteristic of clotted blood samples used for selection of HK genes 209
Table 4.5 Candidate HK genes comparison using the ΔC_T approach 213
Table 4.6 Ranking of the six HK genes in human clotted blood 214
Table 4.7 Laboratory diagnosis of dengue infections 217
Table 4.8 Laboratory testing of suspected dengue sera 217
Table 4.9 Expression level of IFIT1 in suspected dengue cases compared to healthy donors 219
Table 4.10 Pairwise comparison of IFIT1 expression data 222
Table 4.11 Pairwise comparison of IFIT1 expression data 225
Table 4.12 Summary of the 7 paired sera used in analysis of IFIT1 expression febrile illness 228
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE</td>
<td>antibody dependent enhancement</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>B2M</td>
<td>beta 2 microglobulin</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>Bst2</td>
<td>bone marrow stromal antigen 2</td>
</tr>
<tr>
<td>C</td>
<td>capsid</td>
</tr>
<tr>
<td>cDNA</td>
<td>complimentary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CF</td>
<td>complement fixation test</td>
</tr>
<tr>
<td>CPE</td>
<td>cytopathic effect</td>
</tr>
<tr>
<td>DENV</td>
<td>dengue virus</td>
</tr>
<tr>
<td>DENV-1</td>
<td>dengue virus serotype 1</td>
</tr>
<tr>
<td>DENV-2</td>
<td>dengue virus serotype 2</td>
</tr>
<tr>
<td>DENV-3</td>
<td>dengue virus serotype 3</td>
</tr>
<tr>
<td>DENV-4</td>
<td>dengue virus serotype 4</td>
</tr>
<tr>
<td>DF</td>
<td>dengue fever</td>
</tr>
<tr>
<td>DHF</td>
<td>dengue haemorrhagic fever</td>
</tr>
<tr>
<td>DSS</td>
<td>dengue shock syndrome</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>E</td>
<td>envelope</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>fCyR</td>
<td>Fc gamma receptor</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>GAC-ELISA</td>
<td>IgG-capture enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>HI</td>
<td>heat-inactivated</td>
</tr>
<tr>
<td>HK genes</td>
<td>housekeeping genes</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IFIT1</td>
<td>interferon induced protein with tetratricopeptide repeats 1</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin gamma</td>
</tr>
<tr>
<td>IgM</td>
<td>immunoglobulin mu</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>L-15</td>
<td>Leibovitz-15</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>Ly6e</td>
<td>Lymphocyte antigen Ly-6E precursor</td>
</tr>
<tr>
<td>M</td>
<td>membrane</td>
</tr>
<tr>
<td>Mab</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>MAC-ELISA</td>
<td>IgM-capture enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>MALDI-ToF</td>
<td>matrix-assisted laser desorption-ionization time-of-flight</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MMLV</td>
<td>Moloney murine leukaemia virus</td>
</tr>
<tr>
<td>MOI</td>
<td>multiplicity of infection</td>
</tr>
</tbody>
</table>
Chapter 1: Literature review

1.1 Background

The global prevalence of dengue has grown dramatically in recent decades. The disease is now endemic in more than 100 countries in Africa, the Americas, Eastern Mediterranean, Western Pacific and particularly in South East Asia. Distribution of dengue epidemics in the world in the year 2005 is illustrated in Figure 1.1. The World Health Organization (WHO) estimates that more than 2.5 billion people are at risk of dengue infections with 50 - 100 million cases occurring annually. Among these infections, approximately 500,000 cases are dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), with 24,000 deaths which mostly occurred in children (Rigau-Perez et al., 1998; WHO, 2000).

The incidence of dengue virus infections is much greater in Asian countries than in other regions. Outbreaks of dengue haemorrhagic fever have been reported in Indonesia (Sukri et al., 2003), Myanmar (Thu et al., 2004), Thailand (Kittigul et al., 2003; Tuntaprasart et al., 2003), Singapore (Goh et al., 1987), Vietnam, Cambodia, India and Sri Lanka (Pinheiro and Corber, 1997). Dengue fever has also been known to be endemic in Malaysia. Dengue fever (DF) was first reported in Malaysia in 1902 whereas DHF was first reported in 1962 (George, 1992). The first major outbreak occurred in 1973 (George, 1992). Since then, epidemics of dengue cases have been reported regularly. According to Malaysian Ministry of Health’s Disease Control Division, there was a total of 30,285 dengue cases and 65 deaths recorded in the first seven months in the year 2007, compared to 20,258 cases and 49 deaths reported for the same period in year 2006 (http://www.alertnet.org/thenews/newsdesk/K1R72025.htm, 27Sept2007). One of the most important reasons for the increase in cases is
most likely due to rapid development and urbanization, which provide breeding sites for *Aedes aegypti*, the principal mosquito vector responsible for transmission of dengue virus (DENV). Therefore, the emerging pattern and the increasing trend in the incidence of dengue infections is of great concern as there is no specific therapy and a licensed vaccine is not available yet.

Figure 1.1 Distributions of dengue epidemics in the world in the year 2005. Red: areas where dengue epidemics are reported. Orange: areas where presence of *Aedes aegypti* are confirmed. (Adapted from http://axisoflogic.com/artman/publish/article_25106.shtml, 15Feb2008)