DETERMINATION OF COMPOSITE FRICTION FACTOR AND MANNING ROUGHNESS COEFFICIENT FOR DISCHARGE ESTIMATION IN NATURAL COMPOUND CHANNELS

LAI SAI HIN

A dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Engineering
UNIVERSITI MALAYSIA SARAWAK
2005
ACKNOWLEDGEMENT
ACKNOWLEDGEMENT

With a deep sense of gratitude, the author would like to acknowledge his project supervisory Associate Professor Dr. Nabil Bassaih, for his invaluable guidance, constructive comments, assistance in reviewing the thesis, and suggestions for the right ways in carrying out this research.

The author wishes to thank Haji Affandi Haji Othman, Mohd Ruslan Noorjaya Chew and Mohd Hafiz Mafadi from the Civil Engineering Laboratory of UNIMAS for their technical assistance. Sincere thanks are extended to Dr. M.R.C. Myers from the School of Built Environment, University of Ulster for providing invaluable flow data and information for River Main.

Lastly, the author would like to express his sincere appreciation to his family and wife for their undying love, patience, encouragement and constant support during the course of study.
Abstract

Discharge estimation is one of the major aspects in river hydraulics. For inbank flow, it is sufficient in general to calculate the discharge through a channel using one of a range of uniform flow formulas, such as the Manning and Darcy-Weisbach Equations. However, when the flow is overbank, it will become more complex due to the interactions at the interface region of main channel and flood plain. These interactions can significantly reduce the discharge capacity of a river or channel, and as a result, there is as yet no commonly accepted method for discharge estimation under overbank flow conditions.

Due to this reason, a field study has been carried out at University Malaysia Sarawak (UNIMAS), aimed at a fuller understanding of the mechanics of flow and also at evolving more accurate methods for overbank flow discharge estimation. The study involved four frequently flooded rivers with extensive data collected. These data include the geometrical data (width, depth, cross sectional shape and slope of the rivers) using a total station, and the flow measurement data (depth and velocity of the flow) using an electromagnetic flow meter. From the measurements, some 20 discharges were calculated for each of the river, covering a wide range of inbank and overbank flows. Several equations and methods have also been derived and proposed for the quantification of the interaction effects, as well as for discharge estimation, including the apparent friction factor, f_a; additional friction factor, f'; and additional roughness coefficient, n'.
From the results obtained, it was found that majority of the flow during flood was carried by the main channel region, while the flood plain behaved as a storage reservoir in most cases, i.e. the mean velocity and the discharge remained near to zero (< 5%) even at very high of overbank flow, \((H-h)/H = 0.35\).

The resistance to flow in the river has been calculated in terms of Manning's coefficient, \(n\); Darcy-Weisbach friction factor, \(f\); and Colebrooke sand equivalent roughness, \(k_s\). In all cases, the results obtained show a sudden increase of resistance when the flow is just overbank due to the interaction of main channel and flood plain. Based on the methods proposed, it has been found that the interaction has resulted in a large apparent shear at the interface region of the main channel and flood plain, such apparent shear has been quantified in the forms of \(f_a\), \(f\) and \(n'\) as mentioned above. From the results obtained, it is found that the \(f_a\), which indicates the interaction activities is decrease with depth, whereas, the loss in conveyance characterized by \(f\) and \(n'\) is increased with depth. From dimensional analysis carried out, it was also found that the values of \(f_a\), \(f\) and \(n'\) are depended on the \(B/b\), \((H-h)/H\), \(M_s/M_m\), \(R_s/R_m\), \(f_{fm}\), and \(n_f/n_m\) ratios between the main channel and flood plain.

Due to the sudden increased of resistance to flow, the discharge estimated for overbank flow will be over-or-under estimated using the traditional methods. Therefore, an accurate boundary roughness needs to be estimated. It was found that the resistance for overbank flow of local natural compound channels can be estimated accurately using the equations sorted from the multiple non-linear regression analysis carried out, in terms of \(f_a\) or \(n'\).
Results obtained from discharge estimation have shown that a significant improvement has been achieved using the methods proposed (using fa or n') and equations sorted (Eqs. 9.1, 8.49, and 8.50) with a maximum error of < 12.55%, 16.64%, and 18.44%, respectively compared to those estimated using the traditional methods with maximum errors of up to 90.78%. Therefore, it has been concluded the methods proposed can be used for future discharge estimation in local natural compound channels.
Abstrak

Aliran Air Dalam Saluran Berkompaun

Anggaran Kadar aliran (discharge estimation) adalah salah satu aspek utama dalam hidraulik sungai. Bagi aliran di bawah paras tebing (inbank flow), secara amnya, ia adalah mencukupi untuk mengira aliran air melalui suatu saluran dengan menggunakan salah satu daripada formula-formula aliran uniform yang sedia ada, seperti persamaan Manning dan persamaan Darcy-Weisbach. Walau bagaimanapun, apabila aliran tersebut melepasi paras tebing (overbank flow), ia akan menjadi lebih kompleks disebabkan interaksi interaksi pada kawasan pertembungan di antara aliran pada saluran utama (main channel) dan dataran banjir. Interaksi-interaksi ini dapat mengurangkan dengan ketara keupayaan aliran bagi sesuatu sungai atau saluran, dan akibatnya, setakat ini, masih tidak ada cara yang diterima umum untuk menganggar kadar aliran pada keadaan aliran melepasi paras tebing.

Sehubungan ini, satu kajian tapak telah dijalankan di Universiti Malaysia Sarawak (UNIMAS), bertujuan untuk memahami secara medalam mengenai mekanik aliran tersebut, dan juga untuk mengembangkan kaedah-kaedah yang lebih tepat bagi anggaran kadar aliran melepasi paras tebing. Kajian ini merangkumi empat sungai yang kerap banjir, dengan data yang ekstensif telah dikumpulkan, data-data ini termasuk data geometri (lebar, dalam, bentuk keratan rentas, dan kecerunan bagi sungai-sungai tersebut) dengan menggunakan satu total station, dan data ukuran air (kedalaman dan kelajuan air) dengan menggunakan satu meter aliran electromagnet. Dari ukuran-ukuran tersebut, lebih kurang 20 kuantiti aliran melinkungi satu banjir aliran di bawah dan di atas paras tebing yang luas telah dikirakan bagi setiap sungai.
Beberapa persamaan dan kaedah juga telah dibentukkan dan dicadangkan untuk menkuantifikasikan kesan interaksi, dan juga untuk menganggar kadar aliran tersebut, ini termasuk factor geseran nyata (apparent friction factor), fa; factor geseran tambahan (additional friction factor), f; dan koefisien kekesatan tambahan (additional roughness coefficient), n'.

Dari keputusan yang diperolehi, didapati sebahagian besar aliran semasa banjir adalah dialurkan oleh kawasan saluran utama, manakala kawasan dataran banjir berfungsi sebagai satu takungan simpanan dalam kebanyakan kes, contohnya, kelajuan min dan kuantiti aliran kekal dekat kepada kosong walaupun pada paras aliran melepas tebing yang tinggi, \((H-h)/H = 0.35\).

Halangan kepada aliran air dalam sungai-sungai tersebut telah dikirakan dalam bentuk koefisien Manning, n; factor geseran Darcy-Weisbach, f; dan kekesatan setara pasir Nikuradse's, \(k_s\). Dalam semua kes, keputusan yang diperolehi menunjukkan satu kenaikan dalam halangan apabila aliran air melepas paras tebing, disebabkan interaksi di antara aliran dalam saluran utama dan dataran banjir. Berdasarkan kepada cara-cara yang dicadangkan, didapati bahawa interaksi tersebut telah menyebabkan satu ricihan nyata yang besar wujud pada kawasan pertembungan di antara saluran utama dan dataran banjir. Ricihan nyata sebegini telah dikuantitikan dalam bentuk \(fa, f,\) dan \(n'\) seperti yang disebut di atas. Daripada keputusan yang diperolehi, didapati bahawa nilai \(fa\) yang menunjukkan activiti-activiti interaksi adalah berkurangan dengan kedalaman air, manakala, kekurangan dalam penyaluran air yang dicirikan oleh \(f\) dan \(n'\) akan meningkat dengan kedalaman air. Dari analisis dimensi yang dijalankan, didapati nilai-nilai \(fa, f,\) dan \(n'\) adalah bergantung kepada nisbah-
nisbah B/b, $(H-h)/H$, M_f/M_m, R_f/R_m, f_i/f_m, dan n_f/n_m diantara saluran utama dan dataran banjir.

Disebabkan peningkatan dalam halangan yang tiba-tiba, bagi aliran melebihi paras tebing, kadar aliran air yang dianggar akan berlebihan atau berkurangan jika menggunakan cara-cara tradisi. Oleh itu, satu nilai kesesatan sempadan yang jitu perlu diramalkan. Untuk ini, didapati bahawa halangan bagi aliran melepasi paras tebing untuk saluran tempatan berkompaun yang semulajadi dapat diramalkan dengan tepat, dengan menggunakan persamaan-persamaan yang diselesaikan dari analisis regresi berbilang tak linear (multiple non-linear regression analysis) yang dijalankan, dalam unsur fa atau n'.

Keputusan diperolehi dari anggaran kadar aliran air telah menunjukkan satu kemajuan yang ketara telah dicapai dengan menggunakan cara-cara yang dicadangkan (menggunakan fa dan n') dan persamaan-persamaan yang diselesaikan (Persamaan 9.1, 8.49 dan 8.50) dengan kesilapan maksimum < 12.55%, 16.64%, dan 18.44% masing-masing, berbanding kepada anggaran yang menggunakan cara-cara tradisi dengan kesilapan maksimum mencapai 90.78%. Oleh demikian, ia boleh disimpulkan bahawa cara-cara yang dicadangkan boleh digunakan untuk anggaran kadar aliran bagi saluran-saluran tempatan berkompaun yang semulajadi pada masa akan datang.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxx</td>
</tr>
<tr>
<td>List of Abbreviations / Notations</td>
<td>xxxii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Compound Channel

1.2 Natural Compound Channels

1.3 Objectives of the Study

1.4 Significance of the Study

1.5 Layout of This Thesis

CHAPTER 2: LITERATURE REVIEW

2.1 Open Channel Flow

2.1.1 Properties of Open Channel Flow

2.1.2 Uniform Flow Equation

2.2 Overbank Flow

PAGE
CHAPTER 3: EVALUATION OF CONVENTIONAL EQUATIONS AND METHODS FOR DISCHARGE ESTIMATION IN COMPOUND CHANNELS

3.1 Data Collection
3.2 Evaluation Procedures
3.3 Discharge Estimation for Inbank Flow
3.4 Discharge Estimation for Smooth Compound Channels
3.5 Discharge Estimation for Roughened Compound Channels
3.6 Conclusions

CHAPTER 4: METHODOLOGY

4.1 Field Study
4.1.1 River Senggai
4.1.2 River Senggi (B)
4.1.3 River Batu
4.1.4 River Main
4.2 Experimental Arrangement and Data Collection

CHAPTER 5: DERIVATION OF FLOW EQUATIONS AND METHODS

5.1 Geometrical Relationship for Open Channel
5.2 Effect of Main channel and Flood Plain Interaction
5.2.1 Apparent friction factor, \(f_a \)
5.2.2 Additional friction factor, \(f' \)
5.2.3 Additional Roughness Coefficient, \(n' \)
5.3 Dimensional Analysis
5.4 Statistical Analysis – Multiple Non-Linear Regression Analysis

CHAPTER 6: GEOMETRICAL PROPERTIES OF COMPOUND NATURAL RIVERS

6.1 Geometrical Properties of River Senggai
6.2 Geometrical Properties of River Senggi (B)
6.3 Geometrical Properties of River Batu
6.4 Geometrical Properties of River Main
6.5 Comparison of Geometrical Properties for Compound Natural Rivers
6.6 Comparison of Geometrical Properties for Laboratory Compound Channel and Compound Natural Rivers

CHAPTER 7: HYDRAULIC CHARACTERISTICS OF FLOW IN COMPOUND NATURAL RIVERS

7.1 Flow Characteristics
7.2 Velocity Distribution
7.3 Stage-Discharge Relationship

CHAPTER 8: ROUGHNESS BEHAVIOURS FOR NATURAL COMPOUND CHANNELS

8.1 Roughness Behaviours For Main Channel Region of Natural Compound Channels
8.2 Estimation of Surface Roughness For Main Channel Region of Natural Compound Channels
8.2.1 Averaged Main channel Roughness
8.2.2 Roughness Extrapolation

8.3 Roughness Behaviours For Flood Plain Region of Compound Rivers
8.4 Relationships Between Hydraulic Depth, D and Hydraulic Radius, R
8.5 Surface Roughness Calculated Using the M value
8.6 Quantification of Interaction Effects
 8.6.1 Apparent Friction Factor, \(f_a \)
 8.6.2 Additional Friction Factor, \(f' \)

8.7 Multiple Non-Linear Regression Analysis
 8.7.1 Multiple Non-Linear Regression Analysis for \(f_a \)
 8.7.2 Multiple Non-Linear Regression Analysis for \(f' \)
 8.7.3 Multiple Non-Linear Regression Analysis for \(n' \)

CHAPTER 9: DISCHARGE ESTIMATION FOR NATURAL COMPOUND CHANNELS

9.1 Discharge Estimation Using Conventional Methods
 9.1.1 Estimation of Total Discharge for Compound Natural Rivers
 9.1.2 Estimation of Main Channel Discharge for Compound Natural Rivers

9.2 Discharge Estimation Using the Methods Proposed
 9.2.1 Discharge Estimation using Apparent Friction Factor, \(f_a \)
 9.2.2 Discharge Estimation using Additional Roughness Coefficient (\(n' \) and \(n_{bf} \))
 9.2.3 Discharge Estimation using Additional Roughness Coefficient (\(n' \) and \(n_{ext} \))
CHAPTER 10: CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

10.2 Recommendations

REFERENCES

APPENDIXES
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Typical curves of equal velocity in trapezoidal channel section. (Schwab et al., 1993)</td>
<td>10</td>
</tr>
<tr>
<td>2.2: Mechanisms of overbank flow in a straight compound channel (after Shiono and Knight, 1991).</td>
<td>15</td>
</tr>
<tr>
<td>2.3: Vortices form at the interface of main channel and flood plain</td>
<td>16</td>
</tr>
<tr>
<td>2.4: Stage discharge curve for various B/b values (Knight & Demetriou, 1983)</td>
<td>18</td>
</tr>
<tr>
<td>2.5: Exploded view of compound section showing forces acting on subdivisions (Wormleaton, Allen & Hadjipanos, 1982)</td>
<td>21</td>
</tr>
<tr>
<td>2.6: Variation of apparent friction factor with relative depth and width ratio. (Christodoulou & Myers, 1999)</td>
<td>32</td>
</tr>
<tr>
<td>2.7: Dependence of the apparent friction factor on the flood plain Reynolds number and the width ratio (Christodoulou & Myers, 1999)</td>
<td>33</td>
</tr>
<tr>
<td>2.8: Secondary current vector (Depicted from Tominaga, & Nezu, 1991)</td>
<td>38</td>
</tr>
<tr>
<td>2.9: Secondary flow streamlines for square duct and open channel (numbers attached to streamlines are $\psi / H\bar{W}$ (Depicted from Naot and Rodi, 1982) (a) closed square duct (b) open channel (B/H = 2)</td>
<td>41</td>
</tr>
<tr>
<td>2.10: Observed and calculated discharge ratio DISADF versus relative flow depth (H-h)/H; also channel coherence to same scale (Ackers, 1993)</td>
<td>46</td>
</tr>
<tr>
<td>2.11: Divided Channel Method</td>
<td>53</td>
</tr>
<tr>
<td>2.12: Weighted divided channel method</td>
<td>55</td>
</tr>
</tbody>
</table>
2.13: Probable shapes of interfaces used in area method.

2.14: Q_o/Q_0 versus depth ratio for alternative discharge calculation methods

2.15: Apparent shear stress ratio, λ_d versus depth ratio for diagonal interfaces

2.16: Apparent shear stress ratio, λ_h versus depth ratio for horizontal interface

2.17: Variation of main channel mean velocity as predicted by various methods

(Lambert & Myers, 1998)

2.18: Variation of flood plain channel mean velocity with relative depth

(after Lambert & Myers, 1998)

2.19: The ratio of the observed discharge to the calculated discharge (assuming vertical divisions at the edge of the main channel) for the experimental results from the UK flood channel facility. (Lambert and Myers, 1998)

2.20: Comparison of observed and predicted main channel velocity

for roughened flood plains

2.21: Comparison of observed and predicted flood plain velocity

for roughened flood plains

2.22: Comparison of observed discharges with values predicted

by the WDCM for roughened flood plains

2.23: Discharge errors using the divided channel method

for smooth main channel data

2.24: Discharge errors using the divided channel method

for mobile main channel and river data

2.25: Discharge errors using the single channel method

for smooth main channel data

2.26: Discharge errors using the single channel method

for mobile main channel and river data
2.27: Comparison of measured and calculated lateral velocity distribution in station Zahorska Ves-Mannersdorf

2.28: Percentage of total flow in main channel, comparison of results of Knight-Demetriou formula and field data.

2.29: Variation of roughness coefficient with flow depth for various heights of vegetation (Wu & Shen, 1999)

2.30: Four subregions of n_b curve (Wu & Shen, 1999)

2.31: Variation with depth of Manning's roughness coefficient for simple channels.

2.32: Variation of Manning's roughness coefficient with relative depth for compound cross-section, all data apply to overbank flow conditions.

2.33: Variation of Manning's roughness coefficient with relative depth for main channel zones; all data apply to overbank flow conditions.

2.34: Variation of Manning's roughness coefficient with relative depth for flood plain zones; all data apply to overbank flow conditions.

3.1: Compound channel cross section: Geometry and terminology

3.2: Equations and methods used for evaluation of discharge estimation in compound channels

3.3: Stage-discharge relationship for inbank flow of the FCF, U.K.

3.4: Comparison of observed and estimated discharge using Manning equation and data obtained from FCF, UK (1990), P1S3 with $B/b=2.2$

3.5: Comparison of observed and estimated discharge using Manning equation and data obtained from FCF, UK (1990), P1S3 with $B/b=4.2$

3.6: Comparison of observed and estimated discharge using Manning equation and data obtained from FCF, UK (1990), P1S1 with $B/b=6.67$
3.7: Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from FCF, UK (1990), P1S3 with B/b=2.2

3.8: Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from FCF, UK (1990), P1S2 with B/b=4.2

3.9: Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from FCF, UK (1990), P1S1 with B/b=6.67

3.10: Comparison of observed and estimated discharge using Manning equation and data obtained from Lambert and Myers (1998), Geometry 3 with s=0.00178

3.11: Comparison of observed and estimated discharge using Manning equation and data obtained from Lambert and Myers (1998), Geometry 3 with s=0.00145

3.12: Comparison of observed and estimated discharge using Manning equation and data obtained from Lambert and Myers (1998), Geometry 3 with s=0.00105

3.13: Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from Lambert and Myers (1998), Geometry 3 with s=0.00178

3.14: Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from Lambert and Myers (1998), Geometry 3 with s=0.00145

3.15: Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from Lambert and Myers (1998), Geometry 3 with s=0.00105

3.16: Darcy-Weisbach friction factor, f estimated for the FCF

xviii
3.17: Darcy-Weisbach friction factor, f estimated for a small-scale compound channel (Lambert & Myers, 1998)

3.18: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from FCF, UK (1990), P1S3 with $B/b=2.2$

3.19: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from FCF, UK (1990), P1S2 with $B/b=4.2$

3.20: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from FCF, UK (1990), P1S1 with $B/b=6.67$

3.21: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from Lambert and Myers (1998), Geometry 3 with $s=0.00178$

3.22: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from Lambert and Myers (1998), Geometry 3 with $s=0.00145$

3.23: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from Lambert and Myers (1998), Geometry 3 with $s=0.00105$

3.24: Comparison of observed and estimated discharge using Manning equation and data obtained from Wormleaton (1982) with $B/b=4.17$ and flood plain roughness $n=0.011$
Comparison of observed and estimated discharge using Manning equation and data obtained from Wormleaton (1982) with $B/b=4.17$ and flood plain roughness $n=0.014$

Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from Wormleaton (1982) with $B/b=4.17$ and flood plain roughness $n=0.011$

Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from Wormleaton (1982) with $B/b=4.17$ and flood plain roughness $n=0.014$

Comparison of observed and estimated discharge using Darcy-Weisbach equation and data obtained from Wormleaton (1982) with $B/b=4.17$ and flood plain roughness $n=0.017$

Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from Wormleaton (1982) with $B/b=4.17$ and flood plain roughness $n=0.011$
3.33: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from Wormleaton (1982) with B/b=4.17 and flood plain roughness n=0.014

3.34: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from Wormleaton (1982) with B/b=4.17 and flood plain roughness n=0.017

3.35: Comparison of observed and estimated discharge using Darcy-Weisbach + Colebrooke equations and data obtained from Wormleaton (1982) with B/b=4.17 and flood plain roughness n=0.021

4.1: Morphological cross-section of River Senggai

4.2: Morphological cross-section of River Senggi (B)

4.3: Morphological cross-section of River Batu

4.4: River Main in County Antrim, Northern Ireland with cobbled side-banks

4.5: Construction of bridge at River Senggi (B)
 a. Left flood plain b. Right flood plain

4.6: Temporary adjustable wooden bridge for river measurement at River Senggi (B)

4.7: Preparation of distance label across the gauging station

4.8: Bridge labeled with distance indicator for river measurement.

4.9: River measurements carried out at River Senggi (B)
 a. Measurement of flow depth using a leveling staff
 b. Measurement of flow velocity using an electromagnetic current meter

4.10: Points of velocity measurement and it’s effective areas

5.1: Comparison of open channel flow with closed-conduit flow

5.2: Forces acting on flow
Momentum transfer characterized by series of vortices at the interface region of main channel and flood plain for River Batu

Stage and discharge relationship for River Senggai

Stage and discharge relationship for River Batu

Stage and discharge relationship for River Senggi (B)

Stage and discharge relationship for River Main

Stage and discharge relationship for main channel and flood plain of River Senggai

Stage and discharge relationship for main channel and flood plain of River Batu

Stage and discharge relationship for main channel and flood plain of River Senggi (B)

Stage and discharge relationship for main channel and flood plain of River Main

Average main channel and flood plain velocity for River Senggai

Average main channel and flood plain velocity for River Senggi (B)

Average main channel and flood plain velocity for River Batu

Variation of Manning coefficient, n for flow in river Senggai

Variation of Darcy-Weisbach friction factor, f for flow in river Senggai

Variation of Colebrooke sand equivalent roughness, k_s for flow in river Senggai

Variation of Manning coefficient, n for flow in river Batu

Variation of Darcy-Weisbach friction factor, f for flow in river Batu

Variation of Colebrooke sand equivalent roughness, k_s for flow in river Batu
8.7: Variation of Manning coefficient, n for flow in river Senggi (B)
8.8: Variation of Darcy-Weisbach friction factor, f for flow in river Senggi (B)
8.9: Variation of Colebrooke sand equivalent roughness, k_s for flow in river Senggi (B)
8.10: Variation of Manning coefficient, n for flow in river Main
8.11: Variation of Darcy-Weisbach friction factor, f for flow in river Main
8.12: Variation of Colebrooke sand equivalent roughness, k_s for flow in river Main
8.13: Observed and estimated Manning coefficient, n for River Senggai
8.14: Observed and estimated Darcy-Weisbach coefficient, f for River Senggai
8.15: Observed and estimated Colebrooke, k_s for River Senggai
8.16: Observed and estimated Manning coefficient, n for River Senggi (B)
8.17: Observed and estimated Darcy-Weisbach coefficient, f for River Senggi (B)
8.18: Observed and estimated Colebrooke, K_s for River Senggi (B)
8.19: Observed and estimated Manning coefficient, n for River Batu
8.20: Observed and estimated Darcy-Weisbach coefficient, f for River Batu
8.21: Observed and estimated Colebrooke, k_s for River Batu
8.22: Observed and estimated Manning coefficient, n for River Main
8.23: Observed and estimated Darcy-Weisbach coefficient, f for River Main
8.24: Observed and estimated Colebrooke, k_s for River Main
8.25: Value of $M/2$ for natural rivers
8.26: Variation of Darcy-Weisbach friction factor for flow in River Senggai calculated using the M values
8.27: Variation of Darcy-Weisbach friction factor for flow in River Batu calculated using the M values