STUDIES ON *Plasmodium knowlesi*
INFECTIONS IN MALAYSIAN BORNEO

LEE KIM SUNG

A thesis submitted
in fulfillment of the requirement for the degree of Doctor of Philosophy

Faculty Of Medicine And Health Sciences
UNIVERSITI MALAYSIA SARAWAK
2006
Dedicated to

my parents,
my family members; Lily, Anthony, Gerard, Nicholas
and my Aunt Helen

Thank you for your love, support and prayers
ACKNOWLEDGEMENTS

I am deeply indebted to my most respectful supervisors, Professor Dr Balbir Singh and Associate Professor Dr Janet Cox-Singh, for their constant guidance and support throughout the course of this study. Their patience in providing excellent training has moulded me into a new growing scientist and they will continuously become my source of inspiration.

To the following people, whom I owe special gratitude; Mr Asmad Matusop and Mr George Brooke of Sarawak State Department of Health for providing the epidemiological data and archival slides, Dr Alan W. Thomas of the Biomedical Primate Research Centre of Netherlands for providing DNA samples of monkey malarias, Dr David J. Conway of the London School of Tropical Medicine and Hygiene and Dr Ananias A. Escalante of Centre for Disease Control (CDC) for their valuable advice and training on phylogenetic analyses.

My deepest appreciation also goes to various people in the Kapit division who have played their role in making this happen. Dr Peter Lee and directors of Kapit hospital for their support and encouragement, Mr Tan Soo Huang and staff of the Kapit Vector Borne Diseases Control Department for their assistance during my fieldwork in the Kapit division and staff of the diagnostic laboratory and nursing staff at the Kapit hospital for their help in collection of blood samples and blood slides.

I would like to extend my appreciation to all my friends who have played their role directly or indirectly towards the completion of this study, and especially to my labmates; Irfan, Sunita, Amy, Paul, Sophia, Monica, Lau and Angela, for their support and encouragement.

I am most grateful to my parents and family members whose love, support and understanding have been essential all the way through.

This study was financially supported by The Wellcome Trust Collaborative Research Initiative Grant, The Malaysian Intensification of Research in Priority Areas (IRPA) Grant, UNIMAS Short Term Grant and Student Fellowship from the Malaysian Ministry of Science and Innovation. I wish to express my sincere thanks to Mr David Lai of Bumi Sains Sdn Bhd for his kindness and generosity.
Chapter One: General Introduction

1.1 Malaria 1
1.2 Lifecycle of malaria parasites 3
1.3 Pathogenesis of malaria 6
1.4 Morphology of malaria parasites 6
1.5 Diagnosis of malaria 7
 1.5.1 Microscopy 7
 1.5.2 Rapid diagnostic tests (RDTs) 9
 1.5.3 Molecular detection methods 11
 1.5.3.1 PCR assay 11
1.6 Indications for present research 14
 1.6.1 Epidemiology of malaria in the state of Sarawak 14
 1.6.2 Microscopy identified P. malariae in the Kapit division 18
 1.6.3 Preliminary study of “P. malariae” in the Kapit division 18
 1.6.4 Variant forms of P. malariae 19
 1.6.5 Partial sequencing of the small subunit ribosomal RNA gene of “P. malariae” from the Kapit division 19
1.7 Objectives of the present study 20

Chapter Two: Molecular Characterisation of “P. malariae” Infections in the Kapit Division

2.1 Introduction 22
2.2 Materials and Methods 22
 2.2.1 Whole blood samples 22
 2.2.2 DNA extraction from whole blood using Perfect gDNA Blood Mini kit 23
 2.2.3 PCR amplification of the SSU rRNA gene of Plasmodium spp. 24
 2.2.4 PCR amplification of the csp gene 25
 2.2.5 Cloning of PCR products 25
 2.2.6 Plasmid DNA extraction 27
 2.2.7 Sequencing of the SSU rRNA gene 27
 2.2.8 Sequencing of the csp gene 28
 2.2.9 DNA sequences 28
 2.2.9.1 Phylogenetic Analyses 29
 2.2.9.1.1 Neighbour-joining method 29
 2.2.9.1.2 Maximum parsimony method 32
 2.2.9.1.3 Maximum-likelihood method 32
2.3 Results 33
 2.3.1 The isoforms of the SSU rRNA genes of P. knowlesi 33
 2.3.2 Phylogenetic analysis of the SSU rRNA genes 39
Chapter Three: Development of *P. knowlesi*-specific primers and characterisation of samples by nested PCR assay

3.1 Introduction

3.2 Materials and methods

3.2.1 Development of *P. knowlesi* specific primers

3.2.1.1 *Plasmodium* DNA samples

3.2.1.2 Primers

3.2.1.3 Testing of primers and optimisation

3.2.2 Characterisation of samples by nested PCR assay

3.2.2.1 Blood spots on filter paper

3.2.2.2 Extraction of DNA from blood spots on filter papers

3.2.2.3 Oligonucleotides for nested PCR assay

3.2.2.4 Nested PCR assay

3.3 Results

3.3.1 Development of *P. knowlesi* specific primers

3.3.2 Characterisation of samples from Kapit hospital by nested PCR assay

3.4 Discussion

Chapter Four: Morphological characterisation of *P. knowlesi* infections in the Kapit division

4.1 Introduction

4.2 Materials and methods

4.2.1 Thick and thin blood films

4.2.2 Staining

4.2.2.1 Staining of thick blood films

4.2.2.2 Staining of thin blood films

4.2.3 Determination of differential counts

4.3 Results

4.3.1 Morphological characteristic of *P. knowlesi* parasites in patients in the Kapit division

4.3.1.1 Early trophozoites

4.3.1.2 Growing and mature trophozoites
Chapter Seven: Examination of DNA from blood films

7.1 Introduction
7.2 Materials and methods
7.2.1 Preparation of positive control material
7.2.1.1 Parasite material
7.2.1.2 Five-fold serial dilution of parasite culture
7.2.1.3 Preparation of control thick blood films
7.2.1.4 Estimation of parasitaemia of control thick blood films
7.2.2 Extraction of DNA template from positive control thick blood films
7.2.2.1 InstaGene™ extraction method
7.2.2.2 QIAamp DNA Micro Kit
7.2.2.3 Phenol-chloroform based method
7.2.3 Optimisation of sensitivity of DNA extraction
7.2.3.1 Altering volume of Instagene matrix in DNA extraction
7.2.3.2 Altering volume of DNA elution buffer in DNA extraction using QIAamp DNA Micro kit
7.2.3.3 Altering volume of TE buffer for dissolving DNA pellet in DNA extraction using phenol-chloroform based method
7.2.4 Examination of DNA templates extracted from blood films by nested PCR assays
7.2.4.1 Collection of malaria blood films throughout Sarawak
7.2.4.2 DNA extraction and nested PCR examination
7.3 Results
7.3.1 Determination of sensitivity of DNA extraction methods
7.3.1.1 Altering volume of Instagen for DNA extraction
7.3.1.2 Altering volume of DNA elution buffer in DNA extraction using QIAamp DNA Micro kit
7.3.1.3 Altering volume for dissolving DNA extracted using the phenol-chloroform based method
7.3.1.4 Comparison of the 3 DNA extraction methods
7.3.2 Examination of DNA samples extracted from blood slides
7.4 Discussion

Chapter Eight: General Discussion and Indications for Future Research
REFERENCES

APPENDICES

A: Nested PCR results for samples from Kapit hospital
B: DNA sequences of the SSU rRNA and csp genes
C: Clinical data and treatment for patients with P. knowlesi infections
D: Hematological and biochemical data for patients with P. knowlesi infections
E: Nested PCR results for monkey blood samples
F: Nested PCR results for malaria blood films
G: First and second nest PCR amplification reaction setup
H: Alignment and percentage similarity between DNA sequences
I: Preparation of sequencing reaction
J: SPSS output for statistical analyses of haematological data
K: In vitro culture of P. falciparum K1 clone
L: Photograph of thin blood films prepared by nursing staff of Kapit Hospital
LIST OF FIGURES

Figure 1.1 Lifecycle of *Plasmodium* parasites. 4

Figure 1.2 Total annual malaria cases in the state of Sarawak from 1997 to 2003. 15

Figure 1.3 Annual malaria cases by species in the state of Sarawak from 1997 to 2003. 16

Figure 1.4 Map of Sarawak showing the administrative divisions (top) and number of malaria cases by division in the state of Sarawak in 1999 (below). 17

Figure 2.1 *EcoR1* digestion profile of plasmid DNA with cloned SSU rRNA genes of *Plasmodium* from isolate KH33. 34

Figure 2.2 Profile of undigested (u) and digested (d) PCR products of the SSU rRNA genes in all Kapit isolates amplified using *Plasmodium* genus-specific primers. 35

Figure 2.3 Undigested (top) and *EcoR1* digested (bottom) profile of colony-PCR products of the SSU rRNA gene in a Kapit isolate, KH33. 36

Figure 2.4 Neighbour-joining tree of the asexually transcribed and sexually transcribed forms of the SSU rRNA genes of *Plasmodium* species and isolates from Kapit (KH) (highlighted in bold). 38

Figure 2.5 Phylogenetic tree based on the asexually transcribed forms of the SSU rRNA genes of *Plasmodium* species produced by the neighbour-joining method. 41

Figure 2.6 Maximum parsimony trees based on the asexually transcribed forms of the SSU rRNA genes of *Plasmodium* species produced by branch and bound search method. 42

Figure 2.7 Phylogenetic tree based on the asexually transcribed forms of the SSU rRNA genes of *Plasmodium* species produced by maximum likelihood method. 44

Figure 2.8 Size variation in the *csp* gene of *P. knowlesi* isolates from Kapit (KH). Molecular size markers in base pairs (bp) are in lane M. 48

Figure 2.9 Phylogenetic tree based on the *csp* genes of *Plasmodium* species produced by the neighbour joining method. 50

Figure 2.10 Phylogenetic tree based on the *csp* genes of *Plasmodium* species produced by maximum parsimony method with branch and bound algorithm. 51

Figure 2.11 Phylogenetic tree based on the *csp* genes of *Plasmodium* species 52
produced by the maximum likelihood method.

Figure 3.1 Alignment of conserved and variable regions of aligned A-type SSU rRNA genes of four human *Plasmodium* species, *P. knowlesi*, *P. cynomolgi* and *P. knowlesi* isolate from Kapit (KH33).

Figure 3.2 Testing of newly designed *P. knowlesi*-specific primers on *Plasmodium* and *P. knowlesi* DNA in second nest PCR amplification.

Figure 3.3 Specificity of *P. knowlesi*-specific primer pair, Pmk 8 and Pmkr 9 in nested PCR assay using an initial annealing temperature of 55°C and 1.5 mM MgCl2.

Figure 3.4 Detection of isolates from Kapit (KH) and *P. knowlesi* DNA in nested PCR assay.

Figure 4.1 Morphology of *P. knowlesi* parasites in patients (KH177, KH364, KH369 and KH370) from Kapit hospital.

Figure 4.2 Morphology of the early trophozoites of *P. knowlesi* in human patients in the Kapit division in Giemsa stained thin blood film.

Figure 4.3 Morphology of the early trophozoites of *P. falciparum* in a patient admitted to the Sarawak General Hospital (a-d) and in patients from Kapit hospital (e-h).

Figure 4.4 Morphology of the growing and mature trophozoites of *P. knowlesi* in human patients in the Kapit division in Giemsa-stained thin blood films.

Figure 4.5 Morphology of the erythrocytic stages of *P. malariae* (thin blood film obtained from the London School of Hygiene and Tropical Medicine).

Figure 4.6 "Band forms" in one area of the Giemsa-stained thin blood film for patient KH224.

Figure 4.7 Morphology of schizonts of *P. knowlesi* in human patients in the Kapit division in Giemsa-stained thin blood films.

Figure 4.8 Morphology of *P. vivax* in patients from Kapit hospital.

Figure 4.9 Morphology of gametocytes of *P. knowlesi* in human patients in Kapit hospital.

Figure 4.10 Morphology of *P. knowlesi* parasites in thick blood film.

Figure 6.1 Phylogenetic tree based on the SSU rRNA genes of *Plasmodium* species produced by neighbour-joining method.
Figure 6.2 Phylogenetic tree based on the SSU rRNA genes of \textit{Plasmodium} species produced by maximum parsimony method.

Figure 6.3 Maximum-likelihood tree of the SSU rRNA genes of \textit{Plasmodium} species, human \textit{P. knowlesi} isolates (KH) and clones (LT) from monkey isolates from Kapit (highlighted in bold).

Figure 6.4 DNA fragments of the \textit{csp} gene of \textit{P. knowlesi} amplified by PCR from LT3 and LT4 isolates.

Figure 6.5 Size variation in the \textit{csp} gene of \textit{P. knowlesi} in different clones derived from LT3 and LT4 isolates.

Figure 6.6 Phylogenetic tree based on the \textit{csp} genes of \textit{Plasmodium} species produced by the neighbour joining method.

Figure 6.7 Phylogenetic tree based on the \textit{csp} genes of \textit{Plasmodium} species produced by maximum parsimony method.

Figure 6.8 Phylogenetic tree based on the \textit{csp} genes of \textit{Plasmodium} species produced by the maximum-likelihood method.

Figure 7.1 Sensitivity of second nest PCR amplification with \textit{Plasmodium} genus specific primers using DNA templates extracted with Instagene matrix at different volumes.

Figure 7.2 Sensitivity of second nest PCR amplification with \textit{Plasmodium} genus specific primers using DNA templates extracted with QIAMP DNA Micro kit dissolved with different elution volumes.

Figure 7.3 Sensitivity of second nest PCR amplification with \textit{Plasmodium} genus specific primers using DNA templates extracted with the phenol-chloroform based method.

Figure 7.4 Sensitivity of second nest PCR amplification with \textit{Plasmodium} genus specific primers using DNA templates extracted with Instagene matrix, phenol-chloroform based method and QIAGEN QIAMP DNA Micro kit using optimised parameter for each extraction method.

Figure 7.5 Distribution of \textit{P. knowlesi} infections in the state of Sarawak. \textit{Pk-P. knowlesi}, \textit{Pv-P. vivax} and \textit{Pm-P. malariae}.

Figure 7.6 Distribution of \textit{P. knowlesi} infections in the state of Sabah. \textit{Pk-P. knowlesi}, \textit{Pv-P. vivax}, and \textit{Pm-P. malariae}.
LIST OF TABLES

Table 1.1 Periodicity, natural hosts and geographic range of primate malaria parasites (summarized from Garnham, 1966).
Table 1.2 Morphological features of the four human Plasmodium species.
Table 2.1 DNA sequences of the SSU rRNA genes of Plasmodium species used in the phylogenetic analyses.
Table 2.2 Sequences of the csp gene of Plasmodium species used in the phylogenetic analyses.
Table 2.3 SSU rRNA genes of “P. malariae” isolates from Kapit and P. knowlesi strain Nuri.
Table 2.4 Sequence polymorphisms in the asexual transcribed forms of SSU rRNA genes of P. knowlesi and isolates from Kapit.
Table 2.5 Sequence polymorphisms in the putative sexually transcribed form of the SSU rRNA gene of P. knowlesi and isolates from Kapit.
Table 2.6 Sequence polymorphisms in the non-repetitive region of the csp gene of P. knowlesi and isolates from Kapit.
Table 2.7 Repeated amino acid sequences of the csp genes and number of tandem repeated unit and size of tandem repeat region for P. knowlesi strain H and Nuri, and isolates from Kapit (KH).
Table 3.1 Combinations of newly designed P. knowlesi-specific primers based on the SSU rRNA gene sequence.
Table 3.2 Range of annealing temperature used in optimisation of P. knowlesi-specific primers.
Table 3.3 Sensitivity and specificity of different primer pairs in detection of isolates from Kapit (KH33), P. knowlesi strain H and P. cynomolgi DNA in the presence of 1.5 mM and 2.0 mM MgCl2.
Table 3.4 Sensitivity and specificity of different primer pairs in detection of isolates from Kapit (KH33), P. knowlesi strain H and P. cynomolgi DNA with different annealing temperature (T_a).
Table 3.5 Detection of P. knowlesi and P. cynomolgi DNA using the Pmk 8 and Pmkr 9 primer pair with different annealing temperature in second nest amplification.
Table 3.6 Sensitivity of Pmk 8 and Pmkr 9 primer pair with different MgCl2 concentrations in second nest PCR amplification.
Table 3.7 Results of microscopy and nested PCR for detection of Plasmodium species in 403 samples from Kapit hospital.

Table 3.8 Percentage (%) similarity of the SSU rRNA genes of P. knowlesi and P. cynomolgi.

Table 4.1 Percentages of different stages of P. knowlesi parasites in 10 patients from the Kapit division based on examination of Giemsa-stained thin blood films.

Table 5.1 Demographic data for patients at Kapit hospital with single infections of P. knowlesi.

Table 5.2 Clinical history and presentation for patients at Kapit hospital with single infections of P. knowlesi.

Table 5.3 Distribution of gender, age and parasitaemia according to platelet counts in 167 patients with single infections of P. knowlesi.

Table 5.4 Distribution of gender, age and parasitaemia according to haemaglobin in 167 patients with single infections of P. knowlesi.

Table 5.5 Distribution of gender, age and parasitaemia according to WBC counts in 167 patients with single infections of P. knowlesi.

Table 5.6 Biochemical data for liver and renal functions for patients with single P. knowlesi infections at Kapit Hospital.

Table 5.7 Haematological profiles of patients at Kapit hospital with P. vivax and P. falciparum infections.

Table 5.8 Biochemical data for liver and renal functions for patients with single P. vivax infections at Kapit Hospital.

Table 5.9 Biochemical data for liver and renal functions for patients with single P. falciparum infections at Kapit Hospital.

Table 5.10 Levels of glucose and serum electrolytes in malaria patients at Kapit hospital.

Table 5.11 Course of antimalarial treatment for patients with single P. knowlesi infections at Kapit hospital.

Table 5.12 Treatment outcome of patients with single P. knowlesi infections.

Table 6.1 Samples collected from long-tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) monkeys in the Kapit division.

Table 6.2 Clones of the SSU rRNA genes of “P. knowlesi” in LT3 and LT4 isolates.
Table 6.3 Polymorphic sites in the asexual stage transcribed SSU rRNA gene of *P. knowlesi* (Pkn) strain W1 and strain Nuri, clones (LT) from LT3 and LT4 isolates and human *P. knowlesi* isolates from Kapit (KH).

Table 6.4 Repeated amino acid sequences of the *csp* genes and size of tandem region for *P. knowlesi* clones isolated from LT3 and LT4 monkeys.

Table 6.5 Sequence polymorphisms in the non-repetitive region of the *csp* gene of *P. knowlesi* and isolates from Kapit.

Table 7.1 Parasite count for each five-fold diluted sample.

Table 7.2 Results of nested PCR assay for detection of *Plasmodium* species in blood films collected in 1996 throughout the state of Sarawak.

Table 7.3 Results of nested PCR assay for detection of *Plasmodium* species in blood films from the state of Sabah.
ABBREVIATIONS

AST aspartate transaminase
ALT alanine transaminase
bp base pair
CPDA-1 citrate phosphate dextrose adenine
csp circumsporozoite protein
DNA deoxyribonucleic acid
dNTPS deoxynucleotide triphosphate
EDTA ethylenediaminetetraacetic acid
FBC full blood counts
ft feet
G6PDH glucose-6-phosphate dehydrogenase
MgCl$_2$ magnesium chloride
min minute
ml millilitre
PCR polymerase chain reaction
Pf *Plasmodium falciparum*
Pk *Plasmodium knowlesi*
Pm *Plasmodium malariae*
Po *Plasmodium ovale*
Pv *Plasmodium vivax*
RBC red blood cell
rpm revolutions per minute
sec second
SSU rRNA small subunit ribosomal ribonucleic acid
TBE Tris-borate EDTA
TE Tris-EDTA
WBC white blood cell
WHO World Health Organisation
Microscopy identified *Plasmodium malariae* infections have been routinely reported throughout the state of Sarawak and accounted for approximately one fifth of the annual malaria cases for the Kapit division in 1999. However, there were certain epidemiological and parasitological features of these infections in the Kapit division that were atypical for *P. malariae*. In addition, a nested polymerase chain reaction (PCR) malaria detection assay failed to identify *P. malariae* DNA during a preliminary examination of five isolates. This study aimed to identify and characterise the infections identified by microscopy as "*P. malariae*" in the Kapit division and to describe the morphology, clinical features and the epidemiology of the infections in Malaysian Borneo. In this study, eight randomly selected isolates, identified by microscopy as *P. malariae*, were characterised at the molecular level by cloning and sequencing of the small subunit ribosomal RNA (SSU rRNA) and the circumsporozoite protein (csp) genes. Phylogenetic analyses based on these sequences revealed that these isolates were actually *P. knowlesi*, a malaria parasite of long-tailed and pig-tailed macaque monkeys, and not *P. malariae* or a variant form of it. Examination of blood films showed that although early trophozoites of *P. knowlesi* were morphologically similar to those of *P. falciparum*, all other asexual blood stages resembled those of *P. malariae*, leading to misdiagnosis by microscopy. Based on the SSU rRNA gene, *P. knowlesi*-specific PCR primers were designed and tested against a number of *Plasmodium* species from humans and primates, and one pair was found to be specific for *P. knowlesi*. Nested PCR examination of 403 samples revealed that 198 (49.1%) cases of human malaria infections were due to single or mixed infections with *P. knowlesi*. Furthermore, the use of *P. knowlesi*-specific primers to examine DNA samples extracted from 86 archival blood films from Sabah and Sarawak in nested PCR assays revealed that human *P. knowlesi*
infections occurred in 1996 throughout the state of Sarawak and that the infections were widely distributed throughout Malaysian Borneo, including the state of Sabah. Data from Kapit hospital of patients with single *P. knowlesi* infections showed that these patients had non-specific clinical signs and symptoms associated with malaria such as fever, chills and rigor (100%), headache (45.7%), vomiting (19.8%), nausea (15.4%) and abdominal pain (8.6%). The clinical features ranged from moderate to severe, and 44.5% of these patients had parasitaemias greater than 5,000 parasites per µl blood. Preliminary laboratory findings indicated that thrombocytopenia was common (81.4%) in patients with *P. knowlesi* infections and in some cases, parameters with regard to renal and liver functions were altered. All patients with *P. knowlesi* infections were successfully treated with chloroquine and other conventional antimalarials, and no deaths were reported in this study. A preliminary study by using nested PCR to examine 17 blood samples of macaque monkeys from the Kapit division showed that 2 wild long-tailed macaque monkeys were positive for *P. knowlesi*. Characterisation of the SSU rRNA and *csp* genes of *P. knowlesi* in these infected monkeys and subsequent analyses indicated that none of the sequences were identical to any other, which further suggests that *P. knowlesi* infections in the Kapit division were unlikely to have resulted from a recent clonal outbreak. Further studies on human and monkey infections with *P. knowlesi* are necessary to determine whether the infections are acquired from macaque monkeys or whether transmission is human to human.
ABSTRAK

Simptom malaria yang tidak spesifik seperti demam, sejuk dan menggigil (100%), sakit kepala (45.7%), muntah (19.8%), rasa pening (15.4%) dan kesakitan abdominal (8.6%). Ciri-ciri klinikal di kalangan pesakit berbeza daripada sederhana hingga tenat, dan 44.5% pesakit menunjukkan parasitemia lebih daripada 5,000 parasit per μl darah. Penemuan awal makmal menunjukkan bahawa thrombocytopenia adalah lazim (81.4%) di kalangan pesakit dengan jangkitan P. knowlesi dan dalam sesetengah kes, parameter berkaitan dengan fungsi renal dan hati juga dipengaruhi. Semua pesakit dengan jangkitan P. knowlesi berjaya diubati dengan chloroquine serta lain-lain anti-malaria konvensional, dan tiada kematian dilaporkan dalam kajian ini. Satu kajian permulaan dengan menggunakan tindakbalas rantai polymerase tersarang untuk menguji 17 sampel darah monkey dari Bahagian Kapit menunjukkan bahawa dua monyet kera liar adalah positif untuk P. knowlesi. Pencirian gen SSU rRNA and csp P. knowlesi dalam monyet ini dan analisis seterusnya menunjukkan bahawa tiada jujukan DNA yang seiras, dan ini mencadangkan bahawa jangkitan P. knowlesi berkemungkinan besar bukan disebabkan oleh perebakan klonal baru-baru ini. Kajian lanjutan ke atas jangkitan P. knowlesi dalam manusia dan monyet adalah perlu untuk menentukan sama ada jangkitan ke atas manusia adalah berasal dari monyet atau transmisi adalah di antara hos manusia.
CHAPTER ONE
General Introduction

1.1 Malaria
Malaria has been a scourge of human populations for thousand of years and it remains one of the most important vector-borne diseases worldwide. The World Health Organisation (WHO) estimated that there are at least 300 million cases of acute malaria annually. Approximately 90% of the deaths due to malaria occur in African children and around 40% of the world population is at risk of malaria (WHO, 2001). Despite considerable efforts to combat malaria since the 1950s, including the global malaria eradication campaign which aimed to wipe out the disease at the global scale, malaria continues to pose a major threat to human health and leads to constraints on the economic development of many countries, particularly in Africa. Since global eradication is not feasible, efforts to control the disease continued to be initiated such as the introduction of Roll Back Malaria Partnership and Multilateral Initiatives for Malaria (Nabarro, 1998; WHO, 2001). Recently, the Roll Back Malaria Partnership Global Strategic Plan 2005 - 2015 has also been initiated with the aim to intensify and to scale up malaria control interventions (http://www.rollbackmalaria.org).

Malaria is an infection of the blood caused by protozoan parasites of the phylum Apicomplexa, genus *Plasmodium*. There are about 170 species of *Plasmodium* known to infect a wide range of hosts, including mammals, birds and reptiles (Levine, 1988; Garnham, 1966), of which some 25 species infect primates (Coatney et al., 1971; Garnham, 1966). The four species of *Plasmodium* that commonly infect humans (Sherman, 1998; Gilles and Warrell, 1993; Knell, 1991) are *Plasmodium falciparum*, *P.
Chapter One: General Introduction

about 24 Plasmodium species of human and non-human-primates have been described (Table 1.1) and the subject of the relationship between non-human primate and human malaria has been of considerable interest among biologists. The morphological characteristics of some of the malaria parasites of non-human primates are very similar to those of human malaria parasites and it is believed that some may have a close phylogenetic relationship or common ancestry (Vargas-Serrato et al., 2003; Escalante, 1988; McCutchan et al., 1996; Escalante et al., 1995; Waters et al., 1993, 1991). Experimentally, six species of Plasmodium of non-human primates have been shown to be capable of infecting the human host, and these include *P. knowlesi* (Knowles and Gupta, 1932), *P. cynomolgi* (Cheong and Coombs, 1970; Bennett and Warren, 1965; Coatney et al., 1961), *P. eylesi* (Coatney et al., 1971), *P. inui* (Coatney et al., 1966; Gupta, 1931.), *P. brasilianum* (Contacos et al., 1963; Clark and Dunn, 1931, 1931a) and *P. schwertzi* (Coatney et al., 1971; Rodhain and Dellaert, 1955, 1955a). In fact, a few species such as *P. knowlesi*, *P. cynomolgi*, *P. simium* and possibly *P. inui* have been found in natural or accidental human infections (Coatney et al., 1971; Deane et al., 1966; Chin et al., 1965; Eyles et al., 1960), though the occurrence of zoonosis is traditionally believed to be rare.

1.2 Lifecycle of malaria parasites

The malaria parasite in general has a complex life cycle that involves the vertebrate and invertebrate hosts (Figure 1.1). When a vertebrate host is bitten by an infected female Anopheline mosquito, the sporozoites are passed from the salivary gland into the bloodstream. Shortly after inoculation into the blood stream, the sporozoites travel to the liver and invade the hepatocytes (exoerythrocytic phase). In infected hepatocytes, the sporozoites develop into preerythrocytic schizonts over a period of up to 4 weeks.
Table 1.1 Periodicity, natural hosts and geographic range of primate malaria parasites (summarized from Garnham, 1966).

<table>
<thead>
<tr>
<th>Plasmodium species</th>
<th>Periodicity</th>
<th>Natural hosts</th>
<th>Geographic range</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. falciparum</td>
<td>Tertian</td>
<td>Humans</td>
<td>Tropics (worldwide)</td>
</tr>
<tr>
<td>P. vivax</td>
<td>Tertian</td>
<td>Humans</td>
<td>Tropics (worldwide)</td>
</tr>
<tr>
<td>P. malariae</td>
<td>Quartan</td>
<td>Humans</td>
<td>Tropics (worldwide)</td>
</tr>
<tr>
<td>P. ovale</td>
<td>Tertian</td>
<td>Humans</td>
<td>Africa and Asia</td>
</tr>
<tr>
<td>P. knowlesi</td>
<td>Quotidian</td>
<td>Old World monkeys</td>
<td>Malaysia</td>
</tr>
<tr>
<td>P. cynomolgi</td>
<td>Tertian</td>
<td>Old World monkeys</td>
<td>South East Asia</td>
</tr>
<tr>
<td>P. coatneyi</td>
<td>Tertian</td>
<td>Old World monkeys</td>
<td>Malaysia, Philippines</td>
</tr>
<tr>
<td>P. fieldi</td>
<td>Tertian</td>
<td>Old World monkeys</td>
<td>Malaysia</td>
</tr>
<tr>
<td>P. fragile</td>
<td>Tertian</td>
<td>Old World monkeys</td>
<td>Sri Lanka, India</td>
</tr>
<tr>
<td>P. inui</td>
<td>Quartan</td>
<td>Old World monkeys</td>
<td>India and South East Asia</td>
</tr>
<tr>
<td>P. gondi</td>
<td>Tertian</td>
<td>Old World monkeys</td>
<td>Central Africa</td>
</tr>
<tr>
<td>P. simiovale</td>
<td>Tertian</td>
<td>Old World monkeys</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>P. brasilianum</td>
<td>Quartan</td>
<td>New World monkeys</td>
<td>Central and South America</td>
</tr>
<tr>
<td>P. simium</td>
<td>Tertian</td>
<td>New World monkeys</td>
<td>Brazil</td>
</tr>
<tr>
<td>P. eylesi</td>
<td>Tertian</td>
<td>Gibbons</td>
<td>Malaysia</td>
</tr>
<tr>
<td>P. hylobati</td>
<td>Tertian</td>
<td>Gibbons</td>
<td>Malaysia</td>
</tr>
<tr>
<td>P. jefferi</td>
<td>Tertian</td>
<td>Gibbons</td>
<td>Malaysia</td>
</tr>
<tr>
<td>P. youngi</td>
<td>Tertian</td>
<td>Gibbons</td>
<td>Malaysia</td>
</tr>
<tr>
<td>P. schwetzi</td>
<td>Tertian</td>
<td>Gorillas and chimpanzees</td>
<td>Central Africa</td>
</tr>
<tr>
<td>P. reichenowi</td>
<td>Tertian</td>
<td>Chimpanzees</td>
<td>Central Africa</td>
</tr>
<tr>
<td>P. pithec</td>
<td>Tertian</td>
<td>Orang utans</td>
<td>Malaysia</td>
</tr>
<tr>
<td>P. silvaticum</td>
<td>Tertian</td>
<td>Orang utans</td>
<td>Malaysia</td>
</tr>
<tr>
<td>P. girardi</td>
<td>Quartan</td>
<td>Lemurs</td>
<td>Madagascar</td>
</tr>
<tr>
<td>P. lemurus</td>
<td>Uncertain</td>
<td>Lemurs</td>
<td>Madagascar</td>
</tr>
</tbody>
</table>
Figure 1.1 Lifecycle of Plasmodium parasites. (taken from Suh et al., 2004)
depending on the species of *Plasmodium*. In human malaria, only *P. vivax* and *P. ovale* may remain dormant as hypnozoites in the liver for weeks to many years, which result in clinical relapses. Once the preerythrocytic schizonts rupture, merozoites are released into the bloodstream and invade the erythrocytes (erythrocytic phase). Within the erythrocytes, merozoites develop through an asexual cycle, from early trophozoites (ring forms) to mature trophozoites and finally into the schizonts stage (erythrocytic schizogony). Erythrocytes containing the segmented schizonts eventually rupture and release the newly formed merozoites which invade new erythrocytes to start another asexual cycle of reproduction. Concomitantly, the newly invaded merozoites within the erythrocytes may also develop into sexual forms, which are macrogametocytes (female) and microgametocytes (male). During the next feeding of the Anopheline mosquito, these sexual forms are taken up into the midgut of the mosquito where sexual reproduction occurs. In the midgut of the mosquito, the macrogametocyte and microgametocyte develop into different forms before the actual fertilization takes place. The macrogametocyte escapes from the erythrocyte and develops into a macrogamete while microgametocyte exflagellate to form eight haploid motile microgametes. In these forms, the microgametes fertilize the macrogamete and form a non-motile zygote. The zygote then transforms into a motile ookinete which eventually traverse the midgut epithelium and settle in the extracellular space between the midgut epithelium and the basal lamina. The ookinete further develops into an oocyst which contains thousands of infective sporozoites. Once the oocyst ruptures, these infective sporozoites are released into the hemocoel and migrate to the salivary glands. Another life cycle of these parasites will be initiated again when this infected mosquito bites another susceptible vertebrate host (Sherman, 1998; Knell, 1991; Coatney *et al.*, 1971; Garnham, 1966).