DESIGN OF CONTROL SYSTEM FOR THE
TURN TABLE MODULE

LEONG WEI CHIAN

Universiti Malaysia Sarawak
2002
Approval Sheet

This project report attached hereto, entitle "Design Of Control System For The Turn Table Module" prepared and submitted by LEONG WEI CHIAN in partial fulfillment of the requirement for the degree of Bachelor of Engineering with Honours in Mechanical Engineering and Manufacturing System in hereby read and approved by:

Cik Rubiyah Bt Hj Baini
Project Supervisor

Encik Syed Tarmizi Syed Shazali
Project Supervisor
Faculty of Engineering
Universiti Malaysia Sarawak

Date: 21/10/2002

Date: 21 OCTOBER 2002
Design Of Control System For The Turn Table Module

LEONG WEI CHIAN

This report is submitted in partial fulfillment of the requirement for the Degree of Bachelor of Engineering (Hons.) Mechanical Engineering and Manufacturing System from the Faculty of Engineering Universiti Malaysia Sarawak 2002
Dedicated To My Beloved Family
ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude and appreciation to my project supervisors, Cik Rubiyah Hj. Baini and En. Syed Tarmizi Syed Shazali for their guidance and advice in completion of my final year project.

In addition, special thanks to my project partner, Mr. Tan Weng Joo, a hardworking and creative person, for giving useful and valuable helps, co-operation and information when difficulties encountered. Thanks to Kua Jeak Tong and Yap Tai Huat for advices and ideals in my project. Thanks also to the mechanical lab technicians En. Masri, Mr. Rhyier, En. Zaidi and staff that provided help and offer their views and criticisms to the project that have helped to improve the project. I would like to forward my thanks to all those friends for giving me support and contribute directly or indirectly to the project.

Finally, thanks to my father, mother, sister and brother for their moral support and encouragement in completing this thesis and project.
ABSTRACT

A programmable logic control system is an essentially device to control machinery and equipment without all the wiring, relays and timers that would normally be required. The Turn Table Module project was developed which included the processes such as manufacturing, designing, fabrication, analysis, PLC software control, wiring, electrical installation and selection. The project report presents the documentation of developing the control system that operates the Turn Table Module. A ladder diagram which drawn using MEDOC software to operate the machine prototype using Mitsubishi PLC control system has been developed. A flow chart of the process operation was drawn to implement the ladder diagram. The wiring diagrams for all electrical and electronic components also included. The troubleshooting, commissioning and debugging process of PLC and electrical components were done to ensure the safety and efficiency of the system.
ABSTRAK

Sistem kawalan pemrograman logic merupakan satu alat untuk mengawal mesin-mesin dan peralatan elektrik tanpa menggunakan pendawaian rumit, geganti dan pemasangan yang biasanya amat diperlukan dalam mesin. Projek “Turn Table Module” dibina merangkumi proses-proses seperti pembuatan, fabrikasi, mereka-bentuk, menganalisia, aturcara pengawalan PLC (Programmable Logic Controller), pendawaian, pemasangan dan pemilihan komponen elektrikal. Laporan projek ini memperihalkan dokumentasi dalam pembinaan sistem kawalan yang mengoperasikan Turn Table Module. Satu aturcara tangga (ladder diagram) yang dilukis dengan menggunakan perisian MEDOC untuk menjalankan prototaip mesin yang menggunakan sistem kawalan PLC jenis Mitsubishi telah dibina. Satu carta aliran dalam proses operasi dibuat untuk menjalankan aturcara tangga tersebut. Pendawaian untuk semua komponen elektrikal dan elektronik juga disertakan. Proses troubleshooting, commissioning dan debugging untuk PLC dan komponen-komponen elektrikal telah dijalankan untuk memastikan keselamatan dan kecekapan dalam system.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Content</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction To Control System

1.1.1 The PLC Control System

1.2 Turn Table Module in Chain Conveyor

1.3 Overview Of The Project

1.4 Objectives Of The Project

1.5 Rational Of The Project

CHAPTER 2 LITERATURE REVIEW

2.0 Introduction

2.1 Electrical Power Supply Distribution

 For Overcurrent Protection

 2.1.1 Circuit Breakers
2.1.2 Fuses
2.1.3 Grounding In Electrical Wiring
2.2 General Hardware Used
2.3 Basic Tools Used
2.4 Retro-reflective Sensor
2.5 Programmable Logic Controller
2.6 Single-Phase AC Induction Motor
 2.6.1 Characteristics of AC motor
2.7 Solid-State Relay
2.8 Research of Automation Control – Pallet Stacker Automation Using Basic Stamp by Jordan Automation Inc.
2.9 Comparison Of PLC And Relay Systems
2.10 The specification of Mitsubishi FX Series PLC MELSEC FX0

CHAPTER 3 METHODOLOGY

3.1 Data Collection From Research
3.2 Data Collection From Interview
3.3 Input And Output Wiring
3.4 PLC Ladder Programming
 3.4.1 Basic Program Instructions
 3.4.2 Outline of Basic Devices Used in Programming
 3.4.3 Inputs
 3.4.4 Outputs
CHAPTER 4 RESULTS

4.1 Data Collection 51

4.1.1 Sensor Wiring Diagram 52

vii
4.1.2 Push Button Wiring 53
4.1.3 Valve Wiring Diagram 53
4.1.4 Emergency Stop Wiring Diagram 54
4.1.5 Counter Wiring Diagram 54
4.1.6 Solid State Relay Wiring Diagram 55
4.1.7 Power supply 24 VDC Wiring Diagram 55
4.1.8 Single Phase Induction Motor Wiring Diagram 56
4.1.9 Tower Light Indicator Wiring Diagram 57

4.2 Input And Output Wiring for PLC 57
4.2.1 Input 57
4.2.2 Output 58

4.3 The Components Used 59
4.4 PLC Ladder Programming 60

4.5 Design 60
4.6 System Setup 62

CHAPTER 5 DISCUSSIONS

5.1 Control Process Sequences And Flows 63
5.2 Trouble Shooting Procedures 67
5.3 Commissioning Procedures 68
5.4 Testing Procedures 70
5.5 Safety 72
CHAPTER 6 CONCLUSION & RECOMMENDATIONS

6.1 Conclusion 73
6.2 Recommendations 75

REFERENCES 76

APPENDIX A 79
APPENDIX B 83
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>The PLC's operation</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Typical circuit breaker that suitable for commercial/industrial wiring system (Courtesy of Square D Company)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Basic wiring involved for grounding and grounded conductors at the service entrance (Courtesy of John D. Lenk, Simplified Electrical Wiring Design Handbook)</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>General electronic hardware (Courtesy of John D. Lenk, Simplified Electrical Wiring Design Handbook)</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Electrician's 6 in 1 tool hardware</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(Courtesy of John D. Lenk, Simplified Electrical Wiring Design Handbook)</td>
<td></td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Basic soldering (Courtesy of John D. Lenk, Simplified Electrical Wiring Design Handbook)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Retro-reflective Sensor (Courtesy of INOTEK)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Mitsubishi FX Series PLC, MELSEC FX0 (Courtesy of Electronic Products Group.)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>A programmable logic controller</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>The PLC system</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>A typical single phase induction motor (Courtesy of Panasonic Co.)</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>A typical solid-state relay (Courtesy of TELEDYNE RELAYS 2002)</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>A close-up of the basic stamp (Courtesy of Jordan Automation Inc.)</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>This chart shows how the I/O pins of the Basic Stamp were connected (Courtesy of Jordan Automation Inc.)</td>
<td>21</td>
</tr>
</tbody>
</table>
Figure 3.1 Typical Suppression Applications for dc relay
(Courtesy of Allen-Bradley.)

Figure 3.2 Sensor wiring diagram

Figure 3.3 Power Supplies and Input Circuits Receiving
Power through a Separate Transformer
(Courtesy of Allen-Bradley)

Figure 3.4 Grounded ac Power-Distribution System with
Master-Control Relay (Courtesy of Allen-Bradley)

Figure 3.5 Input and output wiring connections
(Courtesy of Allen-Bradley)

Figure 3.6 Basic symbols (Source: W. Bolton)

Figure 3.7 The instruction format

Figure 3.8 The ladder format

Figure 3.9 The input usage in ladder diagram

Figure 3.10 The output usage in ladder diagram

Figure 3.11 The auxiliary relay usage in ladder diagram

Figure 3.12 The timer usage in ladder diagram

Figure 3.13 The brief explanation of Load, Load Inverse

Figure 3.14 The Load, Load Inverse usage in ladder diagram

Figure 3.15 The brief explanation of Out function
Figure 3.16 The brief explanations of And, And Inverse
Figure 3.17 The usage of AND and ANI in ladder diagram
Figure 3.18 The brief explanations of Or, Or Inverse
Figure 3.19 The usage of Or, Or Inverse in ladder diagram
Figure 3.20 The brief explanation of ORBlock function
Figure 3.21 The usage of ORBlock function in ladder diagram
Figure 3.22 The brief explanations of SET and Reset function
Figure 3.23 The usage of SET and Reset function in ladder diagram
Figure 3.24 The shift register waveforms
Figure 3.25 The brief explanation of End function
Figure 3.26 The wiring diagram flow
Figure 3.27 The technique writing a PLC program
Figure 3.28 The flow chart for whole process
Figure 3.29 The flow chart for turn table module process
Figure 3.30 The flow chart of the end process
Figure 4.1 Sensor Wiring Diagram
Figure 4.2 Push Button Wiring
Figure 4.3 Valve Wiring Diagram
Figure 4.4 Emergency Stop Wiring Diagram 54
Figure 4.5 Counter Wiring Diagram 55
Figure 4.6 Solid State Relay Wiring Diagram 55
Figure 4.7 Power supply 24 VDC Wiring Diagram 56
Figure 4.8 Single Phase Induction Motor Wiring Diagram 56
Figure 4.9 Tower Light Indicator Wiring Diagram 57
Figure 4.10 The terminals of PLC used in the input wiring (Source: Mitsubishi PLC Programming Manual II, 2000) 58
Figure 4.11 The terminals of PLC used in the output wiring. (Source: Mitsubishi PLC Programming Manual II, 2000) 58
Figure 4.12 The counter, start, stop, and emergency stop push button layout 61
Figure 4.13 The layout for 24V DC power supply unit, start capacitor, solid state relay, solenoid valve unit with manifold, wire terminals and PLC (partly disappear) 61
Figure 4.14 A fully developed and proper layout comprising of the control – PLC unit, power supply unit and all electrical components. 62
Figure 5.1 The dimension checking zone in right condition 65
Figure 5.2 The dimension checking zone with incorrect condition 66
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>The comparison of PLC and relay systems</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Mitsubishi FX Series PLC, MELSEC FX0 specifications</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Some information and data collected from interview</td>
<td>25</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>The timers resolution</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>The basic parameters for timer and counter</td>
<td>36</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Some of the problems, cause and consequence with solution in the troubleshooting process.</td>
<td>68</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction To Control System

A control system consists of subsystems and processes assembled for the purpose of controlling the output of processes. Therefore, in its simplest way, a control system provides an output of response for a given input or stimulus and the output is controlled to be at some specific value or to change in some prescribed way as determined by the input of the system. There are two basic forms of control system, the open-loop and the closed-loop. In this project, the closed-loop control system is involved. The programmable logic controller is used to perform the control task. When the object is detected by the sensor, a feedback signal will be sent to the input PLC to perform the following task.

Control systems are an integral part of modern society. There are numerous applications around us like the space shuttle lifts off to the earth orbit, firing rockets, an automated guided vehicle used in the flexible manufacturing system, toilet auto flushing system and computer numerical controlled machines. We are not only creators of automatically controlled systems, in fact these systems exist naturally. For example our hands grasp the object and place it precisely at a predetermined location and our eyes follow a moving object to keep it in view.
In the modern automated industrial plant, the operator merely sets up the operation and initiates a start, and the operations of the machine are accomplished automatically. These automatic machines and processes were developed to mass-produce products, control very complex operations or to operate machines accurately for long periods of time. They replaced much human decision, intervention and observation.

Machines were originally mechanically controlled, then they were electromechanically controlled and today they are often controlled by purely electrical or electronic means through programmable logic controllers (PLCs), computers and computerized numerically controllers. The control of machines or processes can be divided into the following categories:

1) Electromechanical control.
2) Hardwired electronic control.
3) Programmable logic control (PLC).
4) Programmable hardwired electronic control.
5) Computer control.

1.1.1 The PLC Control System

The Turn Table Module In Chain Conveyor project will use the PLC in controlling all the sequences. The PLC control system can be easily found nowadays in the industrial manufacturing sector mostly in automation field. The process of the conveyor will be running automatically. Once the start push button is pressed, the process will begin.
Firstly, the PLC will run the conveyor motor. When one item is detected by a sensor reaching on the turn table, a stopper will stop the following items and the conveyor will idle immediately as well. Then the PLC will send a signal to the cylinder to push up the table and the another cylinder will rotate the turn table in order to obtain desirable orientation of the item before it being transferred properly on the conveyor. This can be shown in the Figure 1.1.

```
PLC
1. Running the conveyor
2. Detect item presents
3. Stop the conveyor
4. Stop the following item flows
5. Pop up turn table
6. Rotate the turn table
7. Pop down turn table
8. Running the conveyor
```

Figure 1.1 The PLC’s operation

In the conveyor, the PLC control system will perform all the sequences from the beginning until the end. It will also support all the sensing and actuating signals. Therefore no other types of associate control system required instead of using PLC.

In some manufacturing cells, programmable logic controllers are being used in controlling some machines in several workstations like automated assembly machines, pick and place machines and conveyors. Each machine uses only one PLC and there must be a main control system to control all the PLCs at the same time. Any changes or modification of process can be done in time by the related networks that linking to all
workstations. Sometimes PLCs are intimately associated with industrial robots as well. PLCs can control robots at one time or in-groups. They are ideal for controlling a manufacturing cell of which the robot is a part, assisting in coordinating the motions of the robot with the machines, which it works.

1.2 Turn Table Module in Chain Conveyor

The "Turn Table Module in Chain Conveyor" that uses the PLC control system is quite popular among the kind of control system found in automation industry in Malaysia and worldwide [Omron Inc, 1990]. We realize the importance of research of control system in manufacturing sector because all the manufacturing industry sectors need control systems in term of running the machines and controlling the manufacturing process. Therefore the PLC control system brings tremendous breakthrough in manufacturing development mostly for developing countries like Malaysia, as the Malaysian government is concerning the progress of manufacturing sector that seems to be vital to bring Malaysia towards Vision 2020.

This project will use a proper wiring technique to link all the electrical and electronic components. The components will be used in this project will be discussed later in the following chapters.

The turn table module in chain conveyor system can be applied in wrapping the product, product code scanning and changing the product orientation.
1.3 Overview Of The Project

Turn Table Module in Chain Conveyor is a new student final year project that will be developed in UNIMAS by two undergraduates student of the Mechanical Engineering and Manufacturing System Program, Mr. Leong Wei Chian, the author and Mr. Tan Weng Joo. Basically this project is divided into 2 parts:

(a) Mechanical design, analysis, fabrication and installation - handled by Tan Weng Joo

(b) Electrical wiring, circuit design and control system - handled by Leong Wei Chian that include the PLC programming, electrical circuit wiring, electrical parts and component installation, circuit design, control system design, troubleshooting, test run, control box mounting and installation.

1.4 Objectives Of The Project

The objectives of the project are listed below:

(a) To apply the following techniques into practice and application

 i) Mechanical design and fabrication.

 ii) Electrical wiring.

 iii) Electrical control system.

 iv) Industrial process controller, the Programmable Logic Controller.

 v) Process sensing.

(b) To improve problem solving skills by thinking analytically and practically.
(c) Simulating industrial practice on a realistic industrial system model. This can be seen by using a box as a product to be transferred on the chain conveyor system. The process will simulate the real industrial practice clearly.

(d) To develop a prototype based on the proposed design.

1.5 Rational Of The Project

In university, students are not fully exposing to real practice of control system instead of gaining knowledge from books in theory form. As a result it is important to learn the control system and apply it practically due to industrial process control systems are getting very important on par with computer and electronic technology. Almost all the control systems need computers hardware and software in processing, debugging, programming, process sensing, process monitoring, maintenance, real time control and faults finding. This project is likely can be related for student in learning the control system. As a result, undergraduates can appreciate the right value of control system to industry. Students exposed in the project will gain benefits and advantages in term of:

(a) To develop a fully automated control system for turn table module

(b) To develop a system which shows the importance of studying control system in manufacturing.

(c) This is to enhance the clarity of education in university in solution with industry.

(d) To learn the real practice of developing a project as the industrial sector expanding in Malaysia and this definitely demand a pool of expertise.
CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

The literature review will focus on the characteristics and functions of the electrical and electronic components that will be used in developing and designing the circuit wiring, PLC control system and power supply panel. The explanations are important for developing and installing a proper manner power supply unit in term of safety as well. Besides that, research of automation control of the Pallet Stacker Automation Using Basic Stamp Machine developed by Jordan Automation Inc. also being referred.

In order to design a proper control system and circuit, there are a few important components need to look through. Sometimes the advantages of components chosen will also referred in order to make a good design. However, in terms of cost and the parts availability in the market, some components will be chosen according to the minimum requirement for its function from the proposed design for educational purpose. The explanations of the components are listed in the following sub titles.