Creating an engaging and stimulating anatomy lecture environment using the Cognitive Load Theory-based Lecture Model: Students’ experiences

Siti N.H. Hadie, PhD a, Husnaida Abdul Manan @ Sulong, MSc b, Asma’ Hassan, PhD c, Zul I. Mohd Ismail, M.Phil a, Saiful Talip, MSc d and Ahmad F. Abdul Rahim, MHPE e

a Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Malaysia
b Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, Malaysia
c Faculty of Medicine, Medical Campus, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
d Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
e Department of Medical Education, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia

Objective: There is a need to create a standard interactive anatomy lecture that can engage students in their learning process. This study investigated the impact of a new lecturing guideline, the Cognitive Load Theory-based Lecture Model (CLT-bLM), on students’ cognitive engagement and motivation.

Methods: A randomised controlled trial involving 197 participants from three institutions was conducted. The control group attended a freestyle lecture on the gross anatomy of the heart, delivered by a qualified anatomist from each institution. The intervention group attended a CLT-bLM-based lecture on a similar topic, delivered by the same lecturer, three weeks thereafter. The lecturers had attended a CLT-bLM workshop that allowed them to prepare for the CLT-bLM-based lecture over the course of three weeks. The students’ ratings on their cognitive engagement and internal motivation were evaluated immediately after the lecture using a validated questionnaire.

Abstract

Objective: There is a need to create a standard interactive anatomy lecture that can engage students in their learning process. This study investigated the impact of a new lecturing guideline, the Cognitive Load Theory-based Lecture Model (CLT-bLM), on students’ cognitive engagement and motivation.

Methods: A randomised controlled trial involving 197 participants from three institutions was conducted. The control group attended a freestyle lecture on the gross anatomy of the heart, delivered by a qualified anatomist from each institution. The intervention group attended a CLT-bLM-based lecture on a similar topic, delivered by the same lecturer, three weeks thereafter. The lecturers had attended a CLT-bLM workshop that allowed them to prepare for the CLT-bLM-based lecture over the course of three weeks. The students’ ratings on their cognitive engagement and internal motivation were evaluated immediately after the lecture using a validated questionnaire.

* Corresponding address: Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
E-mail: snurma@usm.my (S.N.H. Hadie)

Peer review under responsibility of Taibah University.
Introduction

Anatomy is a medical subject that elaborates on the macroscopic and microscopic structures of a normal human body. It is regarded as the central pillar of medical knowledge; medical students are required to know the usual anatomical structures in detail prior to studying subjects related to clinical applied knowledge. Despite a continuous search for an effective teaching strategy in anatomy education, lecturing, which many educators have claimed is ineffective, has prevailed as a teaching method used to deliver anatomy information to medical students.2 In order to create such instruction, it is paramount to understand the cognitive processing of the learners when attending a lecture.3

As opposed to traditional anatomy lectures, modern anatomy lectures have been continuously improvised to suit the emerging changes of medical curriculum. The use of lectures is limited to delivering introductory concepts of an anatomy topic, and it is sometimes integrated with other medical subjects such as physiology, pathology, and radiology. Clinical applied anatomy is often introduced during pre-clinical anatomy classes in order to stimulate students’ interest and appreciation of value towards the subject. To assist in the visualisation of anatomical structures, especially in situations where there is significant decline in cognition,4 anatomy educators have begun to use technology-based teaching aids during anatomy lectures.5–7 However, the dynamic visualisation of anatomical structures using these teaching aids does not always benefit learning, especially when the learners are novices. Therefore, it is essential to find a way to create a stimulating and engaging learning environment that can promote the visuospatial ability of the students.

In the context of human cognition, visuospatial ability reflects the capacity of working memory to process visuospatial input.9 Prior to this cognitive process, the visual stimulus is first received by the sensory memory, which holds the information for less than one second.10 With the presence of learner’s ‘attention focus’, the visual information can be transferred from sensory to working memories. Within its limited capacity, the working memory – which contains both visual (visuospatial sketchpad) and auditory (phonological loop) centres – converts the information into cognitive schema, which is an organised form of information,11 and transfers the schema into the long-term memory for permanent storage. Once the schema is stored in long-term memory, actual learning is said to occur.12 Hence, to achieve the actual learning during a lecture, it is imperative to create a learning environment that can stimulate students’ attention focus and foster deliberate investment of the working memory resources for schema construction and storage. This can be done by applying the evidence-based lecturing strategies of the Cognitive Load Theory-based Lecture Model (CLT-ML), which was developed using the principles of the Cognitive Load Theory (CLT) and the Cognitive Theory of Multimedia Learning (CTML).

CLT and CTML are instructional design theories that aim to produce teaching instruction methods — including multimedia instruction — that are intelligible to learners.13 The central tenet of these theories is to align the design of these instructions with human cognitive architecture and function. In cognitive science, actual learning is said to occur when the learner’s working memory has successfully converted newly received information into cognitive schema, an organised form of information that can eventually be transferred and stored in the learner’s long-term memory. Unfortunately, the working memory has a very limited capacity, as it can only hold and process a limited amount of information at one time. If this amount is exceeded, the result is unsatisfactory schema construction. Hence, to ensure successful schema construction and storage, instruction should be designed and delivered in a manner that does not exceed the working memory capacity.

In order to create such instruction, it is paramount to ensure an appropriate selection of information that is to be incorporated into the instruction. In the CLT context, any input that is introduced during teaching and learning activities is known as the cognitive load. The traditional formulation of CLT described three types of loads: intrinsic, extraneous, and germane loads. The intrinsic load (IL) refers to input related to instructional content and therefore reflects the complexity of the instruction. In other words, a difficult subject imposes a higher IL to learners compared to a less difficult subject. In addition, IL also depends on the learner’s prior knowledge, as those who have prior knowledge on the subject matter experience lower IL than those without it. The extraneous load (EL) is imposed by...