Global patterns of interaction specialization in bird–flower networks


1Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba-PR, Brazil
2Laboratório de Ecologia Vegetal, Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
3Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
4Laboratório de Biodiversidade, Conservação e Ecologia de Animais Silvestres, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
5Marine Biology & Ecology Research Centre, University of Plymouth, Plymouth, UK
6Graduate Program in Ecosystem Ecology, Universidade Vila Velha, Vila Velha, Brazil
7Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
8Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
9Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt (Main), Germany
10Pacific Ecoinformatics and Computational Ecology Lab, Berkeley, CA, USA
11Programa de Pós-Graduação em Ecologia, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
12University of Illinois at Urbana-Champaign, Urbana, IL, USA
13Research Institute for Environment & Livelihoods, Charles Darwin University, Darwin, NT, Australia
14Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
15Institute of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
16Biology Program, California State University Channel Islands, Camarillo, CA, USA
17Laboratório de Ecologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
18Universidade Estadual do Rio Grande do Sul, São Francisco de Paula, Brazil
19Department of Biology, Rural Federal University of Pernambuco, Recife, Brazil
20DOI: 10.1111/jbi.13045
Abstract

Aim: Among the world’s three major nectar-feeding bird taxa, hummingbirds are the most phenotypically specialized for nectarivory, followed by sunbirds, while the honeyeaters are the least phenotypically specialized taxa. We tested whether this phenotypic specialization gradient is also found in the interaction patterns with their floral resources.

Location: Americas, Africa, Asia and Oceania/Australia.

Methods: We compiled interaction networks between birds and floral resources for 79 hummingbird, nine sunbird and 33 honeyeater communities. Interaction specialization was quantified through connectance (C), complementary specialization (H2), binary (Q0) and weighted modularity (Q), with both observed and null-model corrected values. We compared interaction specialization among the three types of bird–flower communities, both independently and while controlling for potential confounding variables, such as plant species richness, asymmetry, latitude, insularity, topography, sampling methods and intensity.

Results: Hummingbird–flower networks were more specialized than honeyeater–flower networks. Specifically, hummingbird–flower networks had a lower proportion of realized interactions (lower C), decreased niche overlap (greater H2) and greater modularity (greater Q0). However, we found no significant differences between hummingbird– and sunbird–flower networks, nor between sunbird– and honeyeater–flower networks.