IMPLEMENTING A USABLE 3D WEB PAGE FOR SARAWAK MUSEUM

Indra Sumantri Bin Eddie Mat Hj. Senal

TK 5105.
888
138
2003

UNIVERSITI MALAYSIA SARAWAK
2003
UNIVERSITI MALAYSIA SARAWAK

BORANG PENGESAHAN STATUS TESIS

Judul: IMPLEMENTING A USABLE 3D WEB PAGE FOR SARAWAK MUSEUM

SESI PENGAJIAN: 2006-2003

Saya INDRA SUMANTRI BIN EDDIE MAT HJ. SENAL

mengaku membenarkan tesis * ini disimpan di Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sarawak
2. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan untuk tujuan pengajian sahaja
3. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat penggitan untuk membangunkan Pangkalan Data Kandungan Tempatan
4. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi
5. * * sila tandakan ()

☐ SULIT (mengandungi maklumat yang berdarah keselamatan atau kepentingan seperti termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat Terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

(INDRA SUMANTRI B. EDDIE MAT)

Alamat Tetap:
Lot 1391, Lorong 28 A5, Phase 2, R.P.R Batu Kawa, 93250 Kuching, Sarawak.

Tarikh: 16/4/03

Disahkan oleh

(PUAN SHAZHITI B. AMAN)

Tarikh: 16/4/03

Catatan: *Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Pahala, Sarjana dan Sarjana Muda

*Jika tesis ini SULIT atau TERHAD, sila lamparkan surat disampaikan pada/organisasi bertemu dengan meminta untuk sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD
IMPLEMENTING A USABLE 3D WEB PAGE FOR SARAWAK MUSEUM

by

Indra Sumantri Bin Eddie Mat Hj. Serial

This project is submitted in partial fulfillment of the requirements for a Bachelor of Science (Honours) in Cognitive Science Faculty of Cognitive Sciences and Human Development, University Malaysia Sarawak
The project entitled Implementing A Usable 3D Web Page For Sarawak Museum was prepared by Indra Sumaniri Bin Eddie Mat Hj. Senal and submitted to the Faculty of Cognitive Sciences and Human Development in partial fulfillment of the requirements for a Bachelor of Science (Honours) in Cognitive Science.

Received for examination by:

[Signature]

(Puan Shazam Bt. Aman)

Date:

16/03/03
ACKNOWLEDGEMENT

First and foremost, I would like to dedicate my sincere thanks to my supervisor Madam Chen Chwen Jen. Her support, advice, encouragement, and suggestion have certainly played an important role in developing this project from the beginning until the final stage of the project. She had played a primary role in preparing several chapters, in working with me to enhance the website and the system in many other ways.

Secondly, it is also a pleasure to express my appreciation to Puan Shazii binti Aman, my latter supervisor and development editor for her outstanding help in keeping the project on track and pulling all the loose ends together.

Thirdly, I wish to express my thanks to my colleagues and respondents who, through their feedbacks, comments and suggestions had helped me to shape the contents and form of this project. These individuals are listed as below:-

Ainin Alizah Bt. Parnon,
Castro Ak Junga,
Chua Chee Seng,
Fazryemia Binti Fazari,
Khairul Anwar Bin Syarkawi,
Mdm. Chang Nyuk Fah,
Mdm. Ketumah Hj. Senal,
Moh Fakhrulrman Bin Ibrahim,
Mohd Yazir Bin Mohamad Ayub,
Mohd. Asman Bin Ahmad Bero,
Mr. Edmond Dahi Nyalin,
Mr. Rohim Hj. Senal,
Noor Wahidah Binti Mohd Nasri,
Olivia Bt. Norbert Muppy,
Othman Bin Mohd Yudin,

I also want to extend my personal thanks to Mr. Ipoi Datan and his staff in Sarawak Museum Department for their outstanding commitment and various ancillaries. I am truly indebted to them for their help in providing excellent references, information and materials about Sarawak Museum in many different ways.

Speaking of slipping through the cracks, I want to take this opportunity to thank my father, Mr. Eddie Mat Senal for his outstanding comments and ideas throughout this project. I wish to thank him for a careful, intelligent, professional and constructive job of proof reading. He had helped me on clarifying important points and to avoid errors and inconsistencies that otherwise would have escaped my notice.

Finally, I want to dedicate my special thanks to my lecturer Mr. Teh Chee Siong for his kindness in providing the 3D Webmaster software as the accomplishment for this project.

To all these exceptional people, and to many others, too I offer my warmest personal regards.
TABLE OF CONTENTS

Acknowledgement iii
Table of Contents iv
List of Figures viii
List of Tables xii
Abstract xiii

1.0 Introduction
1.1 Virtual Reality 1
1.2 Non-immersive VR 2
1.3 Background of the Study 3
1.4 Problem Statement 4
1.5 Objectives
 1.5.1 General Objective 4
 1.5.2 Specific Objectives 4
1.6 Significance of Project 5
1.7 Scope of Study 5
1.8 Key Concepts
 1.8.1 Human-Computer Interaction (HCI) 5
 1.8.2 Usability 6
 1.8.3 Prototype 6
 1.8.4 Cooperative Evaluation 6
 1.8.5 Think Aloud 7
1.9 Limitation of Studies 7
1.10 Summary 8

2.0 Literature Review
2.1 Web-based Virtual Reality in Tourism 8
2.2 Examples of Applied 3D Modeling 8
 2.2.1 VR Leeds 9
 2.2.2 Euro VR 9
 2.2.3 VR Marketing.net 10
 2.2.4 The Natural History Museum of United Kingdom 10
 2.2.5 This Old Digital City; Virtual Historical Cedar Rapids Circa 1900 11
 2.2.6 Desktop VR Applications for Statnet SF 11
 2.2.7 Halden VR Center 12
 2.2.8 The Museum of National Antiquities (SHM) 12
 2.2.9 Titanic-Fast-Tour 13
 2.2.10 Taj Mahal 13
 2.2.11 The Virtual Mummy: Unwrapping a Mummy by Mouse Click 14
 2.2.12 Virtual Tour of the Asmolean 14
2.3 Information Arrangement in Web Site 15
 2.3.1 Organization Scheme 15
 2.3.1.1 Obvious Order 15
 2.3.1.2 Not-So-Obvious-Order 17
2.4 Organization Structure 17

3.0 Method
3.1
3.0 Methodology

3.1 System Analysis and Design
3.1.1 Task Analysis
3.1.2 Requirements Specification
3.1.3 Conceptual Design
3.1.4 Prototyping
3.1.5 Implementation
3.1.6 Evaluation

3.2 Research Design Approach

3.3 Research Tools

3.4 Cooperative Evaluation

3.5 Procedures for Cooperative Evaluation
3.5.1 Recruit Users
3.5.2 Prepare Tasks
 3.5.2.1 Write the Task Instructions for the Users
 3.5.2.2 Estimate the Time It Will Take to Complete Each Task
 3.5.2.3 Try out the Instructions and Task Sheet
3.5.3 Interact and Record
 3.5.3.1 Before the Users Arrive
 3.5.3.2 When the Users Arrive
 3.5.3.3 While the Users Are Using the System
 3.5.3.4 Debriefing

3.6 Requirements

3.7 Research Location

3.8 Research Subject

3.9 Analysis Data

3.10 Observation
3.10.1 Unexpected Behavior
3.10.2 Types of Users
 3.10.2.1 The Shy or Reticent User
 3.10.2.2 The Absorbed User
 3.10.2.3 The Inarticulate User
 3.10.2.4 The Disinterested or Defensive User
 3.10.2.5 Silences
 3.10.2.6 The Involved Designer
3.11 Conclusion

4.0 Design and Development of the First Prototype
4.1 Software Used
 4.1.1 3D Webmaster
 4.1.2 Microsoft Front Page XP
 4.1.3 Adobe Photoshop 6.0
4.2 Virtual Environment Development
 4.2.1 Gallery Room
4.3 Web Design and Implementation
 4.3.1 Information Arrangement in Web Site
 4.3.1.1 Organization Scheme
 4.3.1.2 Obvious Order
 4.3.1.3 Not-So-Obvious-Order
 4.3.2 Organization Structure
 4.3.2.1 Hierarchy
 4.3.2.2 Web
4.4 Contents
 4.4.1 Information Division
 4.4.2 Label
 4.3.3 Title
4.5 Text
 4.5.1 Language
 4.5.2 Sentence Structure
 4.5.3 Fonts
4.6 Summary

5.0 Findings and Discussion: Evaluation of the First Prototype
5.1 Results of the Evaluation and Discussion
 5.1.1 Navigation in the Virtual Environment
 5.1.2 Interaction with the Objects
 5.1.3 Web Design
 5.1.3.1 Colors
 5.1.3.2 Contents
 5.1.3.3 Graphics
 5.1.3.4 Menu Buttons
 5.1.3.5 Sentences
5.2 Summary

6.0 Design and Development of the Second Prototype
6.1 Virtual Environment
 6.1.1 VE Longhouse
 6.1.2 Interaction with Objects
6.2 Web Design
 6.2.1 Colors
 6.2.2 Contents
 6.2.3 Graphics
 6.2.4 Menu Buttons
 6.2.5 Sentences
6.3 Conclusion
LIST OF FIGURES

Figure 1.0
Types of Virtual Reality Systems

Figure 2.1
The 360° panoramic view of Perp Cross Square, Leeds

Figure 2.2
The Virtual Tour of the House and Grounds produced by the Look at 360° views of Althorp and The Exhibition.

Figure 2.3
The virtual tour of VR Marketing

Figure 2.4
The fossil sample

Figure 2.5
The interactive museum called 'Cedar Rapids Circa 1900' (TODC)

Figure 2.6
The GIS System and Cell Model

Figure 2.7
The 3D Environments applications by Holdren

Figure 2.8
The VR panoramic view of one part of the gallery in the museum

Figure 2.9
The sample of the Titanic on-line tour developed by Paramount Pictures

Figure 2.10
The interface of Taj Mahal Virtual Travel

Figure 2.11
The application of Virtual Mummy using Desktop VR approach

Figure 2.12
The layout plan and on-line virtual Tour of the Azhoiian

Figure 2.13
The example of web site using alphabetical arrangement

Figure 2.14
The example of web site using chronological arrangement

Figure 2.15
The example

Figure 2.16
The example

Figure 2.17
The importance

Figure 2.18
Using short articles

Figure 2.19
Using the www

Figure 2.20
The Sun's Secret

Figure 3.1
The Star Life

Figure 3.2
The site-map of

Figure 4.1
The display of

Figure 4.2
The display of

Figure 4.3
The display of

Figure 4.4
The layout of

Figure 4.5
Chronologies

Figure 4.6
The text-label

Figure 4.7
The hierarchy

Figure 4.8
The chunking

Figure 4.9
The information
Figure 2.15
The example of web site using geographical arrangement

Figure 2.16
The example of web site using Not-So-Obvious-Order

Figure 2.17
The important information is put at the top of the hierarchy

Figure 2.18
Using short and simple sentences

Figure 2.19
Using the wrong fonts

Figure 2.20
The Sans-Serif Typeface and Serif Typeface in small size character

Figure 3.1
The Star Life Cycle Model

Figure 3.2
The site-map of the web system used in the project

Figure 4.1
The display of 3D Webmaster

Figure 4.2
The display of Microsoft FrontPage XP

Figure 4.3
The display of Adobe Photoshop 6.0

Figure 4.4
The layout plan of the Longhouse Gallery (Rumah Panjang)

Figure 4.5
Chronological arrangement of the Sarawak Museum monthly activities

Figure 4.6
The text-label menu displays the information arrangement of Sarawak Museum web site

Figure 4.7
The hierarchy structure of the Sarawak Museum web system

Figure 4.8
The chunking of information

Figure 4.9
The information presentation in the form of video and graphics
Figure 4.10
The text label and icon label

Figure 4.11
The title selection used in the Sarawak Museum web site

Figure 4.12
The short and simple sentences used in the Sarawak Museum web site

Figure 4.13
The example of structure sentences in point form

Figure 4.14
Fonts used in the Sarawak Museum web site

Figure 6.1
The comparison between the realistic picture and VE in the project

Figure 6.2
The help instruction on how to navigate the VE Longhouse

Figure 6.3
The sounds instruction-’Guidelines.wav’

Figure 6.4
The example of sounds applied onto the objects

Figure 6.5
The examples of light color usage on the site

Figure 6.6
Watermark is chosen as the background on the web site

Figure 6.7
The example of photos used on the web site

Figure 6.8
The arrangements of buttons in the menu

Figure 6.9
The example of easy and simple sentences used on the web site

Figure 7.0
The font size of text links is not suitable

Figure 8.1
The VE Longhouse gallery

Figure 8.2
The Main page
Figure 8.3
The History page

Figure 8.4
The Artifacts page

Figure 8.5
The Exhibits page

Figure 8.6
The Travel page

Figure 8.7
The Photo page

Figure 8.8
The Info page

Figure 8.9
The How to go about page

Figure 8.10
The Contact page
LIST OF TABLES

Table 3.1
The targeted user to evaluate the system

Table 5.1
The comments of the respondents on the first prototype system

Table 5.2
The suggestions of the respondents on the first prototype system

Table 7.1
The feedback of the respondents on the second prototype system after changes and improvement.

Table 7.2
The comments of the respondents on the second prototype system

Table 7.3
The suggestions of the respondents on the second prototype system
ABSTRACT

IMPLEMENTING A USABLE 3D WEB PAGE FOR SARAWAK MUSEUM

Indra Sumentri B. Eddie Mat Hj. Senel

The project aims to design and implement a usable 3D web page prototype system for the Sarawak Museum in Kuching Sarawak. This prototype system is to ensure that the general public are aware of the capabilities of VR technology. Specifically, this 3D Sarawak Museum web page intends to provide useful information to the users about the Sarawak Museum in particular through non-immersive Virtual Environment approach. In addition, this study is also to assess the importance of the usability design in the development of the 3D Sarawak Museum web page as major contribution to its user-friendly where user can use the system easily. The Star-life Cycle is used in the development process of the 3D Sarawak Museum web page. The VE was modeled using the 3D Webmaster while the web system was designed using Microsoft FrontPage XP and Adobe Photoshop 6.0. The Cooperative Evaluation method was applied to evaluate the prototype system. The evaluation is to make sure that the design of the web fits and meets the users' requirement. A total of 15 respondents consisting of students from the Faculty of Cognitive Science and Human Development (FSCHD) in the University of Malaysia Sarawak (UNIMAS) participated in the evaluation. The results of the Cooperative Evaluation were gathered from observation based on the respondents' performance during evaluation. The comments and suggestions of the respondents were recorded using aid-kit, microphone and tape recorder, which were used to improve the prototype system. In conclusion, majority of the respondents realized the importance of VE and correspond positively to the implementation of integrating VE through the web.
ABSTRAK

MENGIMPLIMENTASIKAN HALAMAN 3D YANG NEMPUNTAI KEOLEHgunaan BAGI MUZIUM SARAWAK

Indira Samantri B. Eddie Mat Hj. Senol

1.0 Introduction

Virtual with component interaction stress occurs when an application is in a partial interface, Some of the aerospace

No, with the help of the help and design and many as the more, they do to perform the

Rt in prominence display or to walk forward, the

Ons. 3D tourism, experience and Why experience 2D. 3D visualization degrees 3
CHAPTER 1
INTRODUCTION

1.0 Introduction

Virtual Reality (VR) offers one of the most powerful and natural methods of interacting with computers. According to Roy Kadavsky (1993), VR is the state where the level of interaction, autonomy and feeling of presence is indistinguishable from the real world. He also stresses out that there is a certainty about the extent to which the general-purpose of VR application will be cheap, reliable and effective. VR can offer the user to interact and experience in a particular domain of immersive environment. There have been many areas concerning VR. Some of the areas include training, scientific visualization and interaction, engineering design, aerospace, games, medical and architectural are moving towards its extent.

Nowadays, VR also known as Virtual Environment (VE) is widely used and incorporated with the web. The extent to which the web is incorporated into VE is in areas such as tourism and design. The design mainly focuses on areas such as the museum proper, historical building and many others. Web designer incorporated VE in computer graphic buildings-modeling such as the museum because they believed that VE is interactive enough to attract users and help them to gain experience and learn interactively. VE on the web also provide the cheapest way to perform Three Dimension (3D) if compared to the immersion systems which includes peripherals such as head-mounted display-based and datagloves.

Realizing the necessity of VE, this project is aimed at developing and incorporating 3D in promoting the tourism industry by integrating VE to the web. On the web, VE involves the display of 3-D images that a user can explore and manipulate interactively. It also allows users to walk through and experience in a non-realistic environment by moving the mouse, either forward, backward or any other sides that the user wishes in 0 to 360° degrees angle.

One of the most famous 3D applications is in movies like Toy Story, Bugs Life and Ants. 2D applications were expected to boost up in the areas such as automobile design, tourism, education and entertainment. 3D environment provide a platform for the user to experience in a realistic environment to view virtually the effect of 3D compared to traditional 2D. 3D helps user to visualize the image on the mind better in different angle rather than 2D visualization. This is because 3D objects can be rotated in many different angles from 0-360° degrees. It can also perform almost actual image of an object in the mind.
1.1 Virtual Reality

There are many definitions of VR. According to MA Gigante (1996), Virtual Reality is the illusion of participation in a synthetic environment rather than external observation of such an environment. VR relies on 3D, stereoscopic, head tracked displays, hand or body tracking and binaural sound.

"Virtual Reality refers to a participation of a person in a three- dimensional, which is immersed and interactive based on computer generation" (Green, 1996). VR also provides a way for human to manipulate, interact and experience with or through a computer with complex information. This means that an individual can see, feel, touch and listen in a simulated world of the virtual environment. The greatest impact of VR is the effect and manipulation of the human cognition.

According to Ayman (1997), Virtual Reality can be classified into two categories based on its immersion and interface level in a simulated environment. The first one which he acknowledged is immersive approaches where the relationship between virtual environment and the individual is related and maintain. In particular, Head-Mounted Display (HMD) helps the user to interact with the virtual environment.

The second one is the Virtual Environment Non-immersive which refers to the display of virtual environment on the screen. This type of VR helps the user to interact with the monitor by using the mouse or other computer input devices to feel the surroundings which had been simulated. One of the technologies which have been used until today is the Virtual Reality Markup Language (VRML). VRML is a programming language that helps the user to interact in a three-dimensional environment using a World Wide Web (WWW) interfaces.

In this Virtual Environment project, non-immersive technique is applied. The advantages of using non-immersive technique is that the cost is cheap and it is the easiest way to manipulate VR if compared to the immersive approach which is more difficult to built and more expensive in cost.

In this project, VR will be integrated and applied to Sarawak Museum. This system will focus on the human computer interface. Based on McMillan (1994), the advantage of a system does not depend only on the technology but the communication between human and computer must be considered as well.
1.2 Non-immersive VR

Non-immersive VR is also known as Desktop VR. There are many researches concerning non-immersive VR. With Desktop VR, a computer screen is normally used as the display medium. The user views the VE on the computer screen. In order to experience the VE, the user must look at the screen the whole time.

There have been a lot of applied applications based on this approach. Some of the application examples are the Virtual Zoo, Virtual Home, Virtual Tour and etc. The application uses in VE software are VRML and Quick Time VR to integrate VE to the web.

Typically, non-immersive VE is a desktop system that uses single, large, color screen for input and output, a three-dimensional mouse and keyboard. The software and controller involved make the VE possible for example to ‘fly’ around a model of a house, and inspect and ‘turn around’ to survey the rooms. In this project, 3D Webmaster software is used, which can perform the drag and drop properties to further enhance the creating and modeling buildings for virtual environment.

1.3 Background of the Study

Sarawak Museum is one of the first museums in Malaysia and South East Asia. The first temporary museum built in 1886 was located in one of the buildings in Gambir Road. In 1891, the main building was built and opened to the public. It was later named as Sarawak Museum. After its establishment, it is well known in the world as a cultural museum and became a center for research and tourist attraction in Sarawak.

The display at the museum (old building) includes preserved animals such as mammals, invertebrate, reptiles, insects, fish, and birds. There are also artifacts that are related with ethnography. Some of the displays in the museum include model-house of the ethnic and indigenous people of Sarawak, musical instrument, weaponry, handicrafts, skeletons and many others.

1.4 Problem Statement

Currently, there are no web sites that provide detailed information about Sarawak Museum. So this project needs to become the first ever sites that provide information about Sarawak Museum in 3D approach.

Moreover, Sarawak Tourism Board (STB) is using 2D web-sites to promote Sarawak to the eyes of the world. 2D site refers to a web site which only offers information using only flat graphics and text. Although it can provide the best quality of image and graphics but it could not offer users the tools to communicate interactively with the system. Subsequently, the web that has been developed confuses the users, mostly in the orientation of the graphics provided.

A clear example of 2D tourism site is the Virtual Tour around Sarawak, which has been designed by the STB. These 2D sites only offer users with information but failed to attract users to experience the tour more deeply.

What happened today on most traditional sites is that users are concerned whether the information provided on the web reflects what really is. In terms of reliability, the users sometimes might be confused and perceive from what the real world actually looks like differently from the explanation provided. This problem can be overcome if the users can see graphics, moves and pictures and experience for themselves in the VE.

1.5 Objectives

1.5.1 General Objective

The objective of this project is to design a usable 3D Web page for the Sarawak Museum. This project is intended to provide useful information to users about the Museum in particular through non-immersive VE approach.

1.5.2 Specific Objectives

i. To design and implement a usable 3D Web page prototype for the Old Building of Sarawak Museum;
ii. To integrate VE prototype system into the web so that users are able to interact on the web interactively;
iii. To provide useful information about the Sarawak Museum; and
iv. To perform evaluation to ensure the usability of the system.

1.6 Significance

In Sarawak Museum has tried many brochures, display of dioramas, using other multimedia effect. However, this effort is rather limited.

Hence, this project is to design a 3D VE using other media effect. It is believed that it will be able to attract more tourists to Sarawak Museum. Hence, it is believed that the display of Sarawak Museum will be able to provide the real world situation to the user.

1.7 Scope

This project is only to concentrate on the eight well-known museums in Sarawak and their usability. In this project, the focus will be on the museum that is the most visited in Sarawak.

1.8 Key Concepts

The term "usability"

1.8.1 Human Factors

This term is related to the ability of the user to understand between the user's actions and the feedback from the system. The environment is also an important factor that has to be evaluated and studied in the design of the system.

1.8.2 Usability Design

Usability design used by the museum, its safety and easy to use. The design is complex design that the users can use.
1.6 Significance of Project

In Sarawak, tourism has been one of the major incomes of the State. As it is now, STB has tried many alternatives to promote places of interest in Sarawak by using pamphlets, brochures, road shows, magazines, newspapers and even in the radio and television. Sarawak dubbed the “Land of the Hominids” attracts visitors with its rich rainforests and the diverse lifestyles of its indigenous people. Sarawak has one of Asia’s finest museums with an excellent collection of Borneo ethnological and archeological exhibits.

There is a need to promote Sarawak using internet technology. Promoting the museum using other media is usually limited, even though it provides the highest quality of photo-realism effect. However, in certain extend, it fails to attract visitors from other developed countries worldwide. It is because this traditional approach involves high cost and time consuming.

Hence, the introduction of 3D concept is necessary. This is to enhance the tourism industry in Sarawak, by providing useful information about the renowned Sarawak Museum through the web. It is also to help the user to gain experience when they do not have a chance to go to Sarawak by using VR technologies. And foremost, the project is aimed to ensure that the general public is aware of the capabilities of VR technology. In addition, the project is to make sure that the design of the web fits and meets the users’ requirement.

1.7 Scope of the Study

This project will focus mainly on the old buildings Sarawak Museum, although there are eight well known museums in Sarawak. This is only a prototype system to evaluate the system usability. In this regard, only a part of the sections in the Museum is modeled in VE. The part of the museum that will be modeled in a VE is the Longhouse (Rumah Panjang) section.

1.8 Key Concepts

The terms below are some concepts that will be used in this project.

1.8.1 Human-Computer Interaction (HCI)

This term is mainly concern with all the aspects that are related to the interaction between the users and computers. According to Barck and Buxton (1987), HCI refers to the processes, dialogues and actions that a user employs to interact with a computer in a given environment. ACM SIGCHI (1992) defined HCI as ‘A discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them’.

1.8.2 Usability

Usability can be defined as a measure of the ease with which a system can be learned or used, its safety, effectiveness and efficiency and the attitude of its users towards it.

Usability which is a key concepts in HCI is concerned with making systems easy to learn and easy to use by the users. According to Benneat and Sackde (1984), usability refers to a complex design system which uses many functions needs a high time and effort to make sure the users can use the system at an optimum level.
1.8.3 Prototype

A prototype is an experimental incomplete design of an application used for testing design ideas. It is also a representation of the user interface that a user can interact with, built to be changed and improved. It might be a short user guide, a paper simulation, a software simulation using a prototyping tool or interface generator, an early version of software and the system that is going to be replaced. It can also be referred as constructing a version of a system that may functionally incomplete, does not cover the whole system and lacks the performance of final system. Users can involve in testing design ideas by using prototypes. Developing prototypes is an integral part of iterative user-centered design because it enables designers to try out their ideas with users and to gather feedback.

1.8.4 Cooperative Evaluation

According to Monk et al. (1993), “Cooperative Evaluation is a technique to improve a user interface specification by detecting the possible usability problems in an early prototype or partial simulation. It sets down procedures by which a designer can work with the sort of people who will ultimately use the software in their daily work, so that together they can identify potential problems and their solutions”. Generally, Cooperative Evaluation is a procedure to identify problems experienced with a prototype design where the user and the designer work together as a team to improve the design of the system or product. It is necessary to that changes can be made to ensure the usability as to fit the needs of the user. Cooperative Evaluation is the most useful way when the designer wants to obtain data about problems and early feedback about redesigning the system in a rapid iterative cycle. Cooperative Evaluation is most useful to work on with an existing product that is to be improved or extended, an early partial prototype or simulation and with a full working prototype.

1.8.5 Think Aloud

Think aloud is the term given to a special kind of verbal or oral protocol in which the user says out loud what they are thinking while they are carrying out task or doing some problem solving. This term will be mainly used for evaluating the user in the Cooperative Evaluation session.

1.9 Limitation of Studies

Since this project concentrates on the usability of the virtual environment, therefore, it would not focus and concentrate on the effectiveness of the system that would be applied later. This is because of the time limitation, cost limitation, hardware constraint and user constraint.

a. **Time constraint** - To test the effectiveness of the system requires a year or more to see its impact on the users.

b. **Cost constraint** - A very high cost is needed to test the effectiveness of the system.

c. **Hardware constraint** - The graphic card must be powerful enough for VE application. This is because incompatibility will only make the users feel uneasy, awkward and stress in using the VE technology.
d. **User constraint:** This project also depends on the attitude (preferences/interests) of the users. Ostensibly, some users shun away from browsing the information through the internet and some even prefer getting information from the newspapers or elsewhere. Some users are not even ready to accept VE technology.

This project is to evaluate the usability of the system and does not concentrate on the effectiveness of the system. This is due to the time constraint and the scope of the project itself. It is limited to the longhouse gallery only and not the Museum per se.

1.10 **Summary**

This chapter is an introductory chapter, which attempts to put the project in perspective. This includes giving the background, scope and importance of the project, objectives of developing this project as well as discussing the key concepts. The next chapter will discuss on the literature review that is related to the project.
CHAPTER 2
LITERATURE REVIEW

2.0 Introduction

This chapter reviews the references and previous research, which is related to the significant process of designing and developing of the 3D Sarawak Museum web system. The references also include some examples on the applications of 3D in various fields that are related to this project. It also covers the development and the various studies that have been done by recent researchers on the system-applications and the evaluation process that is related to this project.

2.1 Web-based Virtual Reality in Tourism

VR Technology has been introduced in various 3D building modeling, such as museums to boost up the tourism industry. Many countries and cities used VR to attract visitors and tourists alike. This is because VR contributes many attractive and realistic features and environment before the users can actually experience it in reality. The introduction of VR in tourism industry and building modeling has been applied through the internet and e-commerce.

The use of VR Tourism has helped web users to experience the environment interactively without actually going to that particular place. Some of the 3D modeling was applied to help users to visualize historical building that no longer exist for example the city of Athens. In addition, VR has been employed in certain museums in the world such as The Virtual Museum of Colorado, The Japanese Art Museum and the famous Eiffel Tower in Paris. A reconstructed historical setting provides stories of the lives of the people that lived in a time and place that no longer exists. Through interactive Desktop VR the users will have the opportunities to freely navigate, explore and interact with these historical places by using input devices such as a mouse and a joystick.

2.2 Examples of Applied 3D Modeling

VR has been applied in promoting cities, buildings such as museum. The following are examples of applied Desktop VR in Tourism and other related applications.