TOWARDS AN INTELLIGENT TUTORING SYSTEM
A CASE STUDY ON SSX1012 TAMADUN ISLAM DAN TAMADUN ASIA 1

by

Jamalludin Bujang
Mohamad Rozman Besiri
Sinarwati Mohamad Suhailli

A report submitted
in partial fulfillment of the requirements for the degree of Bachelor of Information Technology
ACKNOWLEDGEMENT

By the name of Allah the Gracious and the Merciful

A special thanks to our supervisor Miss Faaizah Shahboden for her help, patience, guidance and brilliant ideas throughout the research and development of this project. Her enthusiasm and support is the key of our success in achieving our goals. The greatest gratitude goes to Dr. Rosziati Ibrahim for her confidence and consideration in examining the project.

First of all, I would like to thank Almighty Allah S.W.T, my parents (Mr. Besiri Hj. Keri and Latifah Hj Baijuri), lecturers and my precious friends. Your thoughts, support, guidance and sparks of humor had given me the strength and light that could let me play my part successfully.

Mohamad Rozman bin Besiri

In completion of this project, I am immensely grateful to my beloved wife and two dearest children for their understanding and sacrifice. I was so pleased with our lecturers and friends, especially my partners, Rozman and Sinarwati who both have the wonderful talent of solving problems and friendship when it is most needed. No price will pay your sacrifice, encouragement and trust.

Jamalludin bin Bujang

A warmest gratitude dedicated to my parents (Mohd Suhaili and Khanafiah Hj Ali), brother and sisters, lecturers and my beloved friends. Thanks for your good time, patience, enthusiasm and support. Life goes on but our memories lie on. Thank you for everything.

Sinarwati Mohd Suhaili
TABLE OF CONTENT

Declaration ii
Acknowledgment iii
Table of Contents iv
List Of Figures ix
List of Tables xii
Abstrak xiii
Abstract xv

Chapter 1: An Overview

1.1 Introduction 1
1.2 Problem Statement 5
1.3 Project Objectives 7
1.4 Scope and Limitation 8
1.5 Significance of Research 10
 1.5.1 Research Contribution to the Student 11
 1.5.2 Research Contribution to the Teacher 11
1.6 Methodology 12
 1.6.1 System Development Life Cycle 12
1.7 Chapter Flow 15
Chapter 2: Literature Review

2.1 Introduction 17

2.2 Intelligent Tutoring System (ITS) 17
 2.2.1 General Architecture of an ITS 18
 2.2.1.1 Expert Module 20
 2.2.1.2 Tutor Module 21
 2.2.1.3 Student Module 23

2.3 Expert System or PC Artificial Intelligent 25

2.4 System Review 29
 2.4.1 Commercial Courseware Packages 29
 2.4.1.1 Web-Bases ITS 29
 2.4.1.1.1 PDIM System 30
 2.4.1.1.2 Camelot 32
 2.4.1.1.3 CALAT 35
 2.4.1.2 Standalone ITS 37
 2.4.1.2.1 MITAS System 37
 2.4.1.2.2 ADIS 38
 2.4.1.2.3 ANDES 42

2.5 Categories of ITS 44
 2.5.1 Performance Oriented ITS 44
 2.5.1.1 Device Simulation and Equipment 44
 2.5.1.2 Special Purpose System 44
 2.5.1.3 Expert Systems and Cognitive Tutors 45
 2.5.2 Pedagogy Oriented ITS 45
 2.5.2.1 Multiple Knowledge Types 45
 2.5.2.2 Intelligent/adaptive Hypermedia 46
 2.5.2.3 Curriculum Sequencing and Planning 46
 2.5.2.4 Tutoring Strategies 46

2.6 Analysis Result on the Existing ITS 48

2.7 Comparison between Web based ITS and Standalone ITS 49
Chapter 3: Methodology

3.1 Introduction 50

3.2 System Development Life Cycle 50
 3.2.1 System Planning 51
 3.2.2 System Analysis 52
 3.2.3 General (Conceptual) System Design 52
 3.2.4 System Evaluation and Selection 53
 3.2.5 Detailed System Design 55
 3.2.6 System Implementation 55

3.3 System Requirement 55

Chapter 4: System Design

4.1 Introduction 57
4.2 Entity Relationship Diagram 61
4.3 Data Flow Diagram (DFD) 67
 4.3.1 Context Diagram 67
 4.3.2 Level 0 69
 4.3.2.1 Identifying User (Process 1.0) 71
 4.3.2.2 Generating Student Info (Process 2.0) 71
 4.3.2.3 Generating Tutor Info (Process 3.0) 71
 4.3.2.4 Generating Teacher Info (Process 4.0) 72
 4.3.3 First Level Decomposition Diagram: Identifying User 73
 4.3.3.1 Loading In ID and Password (Process 1.1) 74
 4.3.3.2 Verifying ID and Password (Process 1.2) 74
 4.3.3.3 Display Message (Process 1.3) 74
 4.3.4 Second Level Decomposition Diagram: (Generating Student Info) 75
 4.3.4.1 Verifying Student (Process 2.1) 76
 4.3.4.2 Update Student Information (Process 2.2) 76
 4.3.5 Third Level Decomposition Diagram: (Generating Tutor Info) 77
 4.3.5.1 Third Level Decomposition Diagram: 78
 (Generating Tutorial Info)
 4.3.5.2 Display Topic (Process 3.1) 79
 4.3.5.3 Display Assessment (Process 3.2) 79
 4.3.5.4 Verify Answer (Process 3.3) 79
 4.3.5.5 Display Notes (Process 3.4) 80
 4.3.5.6 Produce Mark (Process 3.5) 80
Chapter 5: System Implementation

5.1 Introduction

5.2 Implementation of Identifying User Module

5.3 Student Module Implementation
 5.3.1 Student Main Page
 5.3.2 Student Sub Module: View List of Users
 5.3.3 Student Sub Module: Add New Password
 5.3.4 Sub Module: View Lecture Notes
 5.3.5 Sub Module: Sit for Tutorial
 5.3.6 Sub Module: Sit for Quiz
 5.3.7 Sub Module: View Student Performance and Result
 5.3.8 Sub Module: View Discussion Board

5.4 Tutor Module Implementation
 5.4.1 Teacher Main Page
 5.4.2 Teacher Sub Module: View Number List of Users
 5.4.3 Teacher Sub Module: View Student Performance

5.5 System Administrator Implementation
 5.5.1 Sub Module: Update Students and Teachers Records
 5.5.2 Sub Module: Registration
 5.5.3 Sub Module: Add New Users (Student and Teachers)
 5.5.4 Sub Module: Delete Users Details

5.6 Messaging Facilities

5.7 Conclusion
Chapter 6: Conclusion and Future Works

6.1 Introduction 114
6.2 Conclusion 115
6.3 System Limitation 116
 6.3.1 Security Issues 116
 6.3.2 Tutoring Features 116
 6.3.3 Limitation to User Registration 117
 6.3.4 Web-based Application 118
6.4 Recommendation for Future Works 118
 6.4.1 Encrypt the Database 118
 6.4.2 Video Conferencing 119
 6.4.3 Artificial Intelligent Technology 119
 6.4.4 Online Course Management Facilities 119
6.5 Summary 120

Bibliography

Appendix A
Appendix B
Appendix C
Appendix D

Demo (Visit http://www.pdfsplitmerger.com)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Steps of SDLC</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>General Architecture of an ITS</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of Expert Module</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Description for every sub component of student module</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Basic Architecture of an Expert System</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>General Architecture of Camelot</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>CALAT Architecture</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>General Architecture of ADIS</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>System Development Life Cycle</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow Chart for Student</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow Chart For Teacher</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Administrator Flow Chart</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Entity Relationship Diagram (ERD) for ITS</td>
<td>66</td>
</tr>
<tr>
<td>4.5</td>
<td>Context Diagram</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>Level 0</td>
<td>69</td>
</tr>
<tr>
<td>4.7</td>
<td>First Level Decomposition Diagram (Identifying User)</td>
<td>73</td>
</tr>
<tr>
<td>4.8</td>
<td>Second Level Decomposition Diagram (Generating Student Info)</td>
<td>75</td>
</tr>
<tr>
<td>4.9</td>
<td>Third Level Decomposition Diagram: Generating Tutorial Info</td>
<td>78</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.10</td>
<td>Fourth Level Decomposition Diagram: Generating Tutorial Info</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Main Modules of TITAS 1 Tutoring System</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>Identifying User Structure</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Main Page</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>Student Login Module</td>
<td>91</td>
</tr>
<tr>
<td>5.5</td>
<td>Student Main Page</td>
<td>92</td>
</tr>
<tr>
<td>5.6</td>
<td>Student Sub Module: View List of Users</td>
<td>93</td>
</tr>
<tr>
<td>5.7</td>
<td>Add New Password Page</td>
<td>94</td>
</tr>
<tr>
<td>5.8</td>
<td>Made Selection for Lecture Notes Pages</td>
<td>95</td>
</tr>
<tr>
<td>5.9</td>
<td>Viewing Detail Lecture Notes</td>
<td>96</td>
</tr>
<tr>
<td>5.10</td>
<td>Tutorial Pages</td>
<td>97</td>
</tr>
<tr>
<td>5.11</td>
<td>Viewing Tutorial Result Page</td>
<td>97</td>
</tr>
<tr>
<td>5.12</td>
<td>Quiz Welcoming Page</td>
<td>98</td>
</tr>
<tr>
<td>5.13</td>
<td>Quiz Page</td>
<td>99</td>
</tr>
<tr>
<td>5.14</td>
<td>View Tutorial Performance</td>
<td>100</td>
</tr>
<tr>
<td>5.15</td>
<td>View Tutorial Performance on Student Main Page</td>
<td>100</td>
</tr>
<tr>
<td>5.16</td>
<td>View Quiz Performance</td>
<td>101</td>
</tr>
<tr>
<td>5.17</td>
<td>Discussion Board Page</td>
<td>102</td>
</tr>
<tr>
<td>5.18</td>
<td>Teacher Login Module</td>
<td>103</td>
</tr>
<tr>
<td>5.19</td>
<td>Teacher Main Page</td>
<td>104</td>
</tr>
<tr>
<td>5.20</td>
<td>View Numbers of Users</td>
<td>105</td>
</tr>
<tr>
<td>5.21</td>
<td>Teacher Sub Module:</td>
<td>106</td>
</tr>
</tbody>
</table>
View Student Performance

Figure 5.22: View the Number of Specify Users 107
Figure 5.23: View List of Users 107
Figure 5.24: Update the Users Record 108
Figure 5.25: Online Pre-registration Page for New Student 109
Figure 5.26: Add New Student and Teacher Details 111
Figure 5.27: Message generated when the user details are deleted 112
Figure 5.28: Messaging Facilities 113
LIST OF TABLES

Table 2.1: Classification of ITS and their Categories 47
Table 2.2: Comparison of ITS application 49
Table 4.1: List of Entities and Attributes 62
Table 5.1: Users and Activities 90
Abstrak

Internet menyediakan suatu struktur yang menyokong keupayaan komunikasi dan peluang usahasama yang di luar jangkaan. Ciri-ciri unik dan kemungkinan pada Internet seperti hiperteks, dan hypermedia, sejumlah laman web yang mempunyai sumber maklumat yang berkualiti, pembangunan drastik dalam perdagangan elektronik, penyiaran dan pemindahan digital, peralatan kerjasama adalah merupakan pembolehubah yang bekerjasama untuk membina persekitaran yang menakjubkan, di mana kेलbagaian pengalaman dalam pengajaran dan pembelajaran boleh dibangunkan. Dalam zaman Teknologi Maklumat (IT) sekarang, peranan tradisional para pengajar dan pelajar dalam menyediakan satu persekitaran yang menarik para pelajar, memenangkan pengetahuan dibina dengan jalan yang bermakna. Towards an Intelligent Tutoring System (ITS) bertujuan untuk menggabungkan beberapa ciri-ciri web untuk membangunkan satu sistem pengajaran prototaip bagi subjek SSX1012 Tamadun Islam dan Tamadun Asia 1 (TITAS1). Senibina ITS tipikal yang serupa akan diimplimentasikan kepada sistem yang mengandungi Modul Pelajar, Modul Pengajar dan Modul Pakar. Ketiga-tiga modul ini berkongsi satu dasar pengetahuan, menyediakan satu contoh yang menarik kepada guna semula pengetahuan yang disahkan. bidang yang tertentu khususnya dalam bidang pendidikan. Sistem ini memberi faedah kepada pelajar yang mengambil kursus SSX1012 iaitu Tamadun Islam dan Tamadun
Asia 1, dalam mempertingkatkan lagi mutu persembahan mereka dengan menggunakan sistem tutorial secara 'online' dan kurang melibatkan kertas. Dalam pada itu, pelajar dapat melihat kemajuan dan pencapaian yang telah mereka perolehi.
Abstract

The Internet provides an infrastructure that supports unprecedented communication capabilities and collaboration opportunities. The unique features and possibilities of the Internet such as hypertext and hypermedia, numerous websites with good quality sources of information, drastic development in electronic commerce, digital broadcasting and transfer, collaboration tools, are variables working together to create a fascinating environment where in diverse teaching and learning experiences can be developed. In today's Information Technology (IT) age, the traditional role of teachers and learners is being changed by multimedia courseware. Hypermedia offers much to learners in terms of providing an environment that engages the learner, allowing the construction of knowledge in a meaningful way. Towards an Intelligent Tutoring System (ITS) project aims to merge some features of the web to build a prototype learning system for SSX1012 Tamadun Islam dan Tamadun Asia 1 (TITAS1). Similar architecture of a typical ITS will be implemented in the system that includes Student Module, Tutor Module and Expert Module. Those three shares the same knowledge base providing an interesting example of reusability of declarative knowledge. This system will benefit the students taking SSX1012 which is known as Tamadun Islam dan Tamadun Asia 1 course, in increasing their performance by using online

Demo (Visit http://www.pdfsplitmerger.com)
tutorial and paperless tutoring system. Besides that, students will have the opportunity to monitor their progress and achievement.
CHAPTER 1
AN OVERVIEW

1.1 Introduction

'The essence of knowledge is having it, to apply it. Not having it, to confess your ignorance'.

Confucius

Knowledge is Power. The short three words best describe how knowledge confers power to any kinds of business. Knowledge is defined as the base of personal information, which is integrated in a fashion that allows it to be used in further interpretation and analysis of data [Lowe & Hall, 1999]

Knowledge is the competitive factor in the K-Economy. Wealth and business success depends on the generation, distribution and utilization of knowledge. The 'Portal Mania' has been sweeping the Internet Economy. Everybody is talking about knowledge portal, a gateway to access knowledge products. This will surely accelerate learning to learners, maximize intellectual resources and provide access to all learning opportunities and advice from one place, integrates disparate functions, dissolves cognitive boundaries between different
functions and facilitates "home schooling". After this point, only the corporate strategy to provide virtual teaching and learning will be discussed.

Teaching and learning approaches has become greatly affected by tidal waves of Information Technology and Multimedia, which have been put as standard feature in education. One of the alternatives to the economy-driven drift is to teaching as the primary medium of teacher-student contact, which is often presented in the use of technology in teaching and learning. Various terms such as open learning, flexible delivery or flexible learning environment is used to emphasize different aspects of approaches involving the use of computers in the learning process. Some of the way in which they are used includes, among others, simple communication applications, web access to learning material. Teaching and learning are also complex processes where a wide variety of techniques and facilities are needed to support them. Their focus on particular subject and group of students may vary at different times in many ways.

The Internet introduces a professional bond between teachers and learners where it enhances teaching and learning with its increasing capacity for multimedia, communication and information presentation, easy access to an ever growing body of information and new way of data presentation, presents educators with exciting opportunities to enhance teaching and learning. Due to these advantages, many people and organizations from the entire world attempt to convert this advance technology into solution in their teaching and
learning problems. For instance in Malaysia, Smart School program was introduced in order to enhance learner competence of using IT, multimedia technologies and pedagogy. Besides that, the Knowledge Portal that described in the first place can be the motivation to achieve corporate strategy towards excellence in learning.

The purpose of this project is to develop and implement an Intelligent Tutoring System (ITS) prototype for Tamadun Islam dan Tamadun Asia 1 (SSX1012). Intelligent Tutoring System (ITS) is a computer-based instructional system with models of instructional content that specify what to teach and teaching strategies that specify how to teach and aims to provide students with individualized, dedicated tutoring based partly upon an analysis of the procedures followed by the user and AI techniques which may provide some assistance on how the user should progress. [Hegarty & Routen, 1996]

The goal of the Tamadun Islam dan Tamadun Asia 1 tutoring system is to provide cost-effective training that teaches the users to perform appropriate way and at suitable place. TITAS1 is implemented by using three types of knowledge: knowledge of teaching strategy and methods, knowledge of the subject matter and the knowledge of the students based on the concept that knowledge is not simply transmitted from teacher to student. It is flexible and easy to use innovative technology where it is a useful tool as consultation to support student facilities and services.
This system focused on the learner, which is TITAS1, students which is attempts to capture a method of teaching and learning exemplified by one-on-one human tutoring interaction.

One-on-one tutoring allows learning to be highly individualized and consistently yields better outcomes than other methods of teaching. [Bloom, 1984]

TITAS1 consists of three major modules that is the Student Module, Tutor Module and Expert Module:

- **Student Module** – It keeps track of the status of the student knowledge and level of student understanding from the subject matter via maintaining student database.

- **Tutor Module** – Instructional techniques for teaching the procedural knowledge. Tutor module is important component because its can be represented as a teacher. It should design the desirable properties of the human tutor and it must know how to take learners from one skill to another. The set of instructional activities in TITAS1 provide discussion board and email facilities for investigating, exploring and simulating learning process.
1.2 Problem Statement

This project is proposed because the facts have shown that IT, multimedia tools and educational methodology could transform old learning environment to be a conducive, creative, learner-centered learning environment which can develop different style of learning, abilities enthusiasm, independence and towards a level of excellence. Although teachers are also using the Intelligent Tutoring System as they see fit, Intelligent Tutoring System is intend primarily to be used by students to do their exercises, studies and analysis. All other instructional activities, such as lectures, recitations and laboratories, can continue as before.

This system conduct students to be self paced, self explored and independent to develop their own way of thinking, maturity and discipline, based on the systems main goal as described later. In addition, this project targeted to be a new prototype or model for future improvement and extension to provide a solution for upcoming learning environment.
Noticeably, current tutoring system (Tutoring System for SSX1012 Tamadun Islam dan Asia 1 (TITAS1))\(^1\) has several weaknesses and problems. Though it is online, it lacks of several elements such as the expert module or intelligent portion of the system, which can respond to learner's progress.

Human Computer Interaction (HCI) aspect and usability studies regarding the system needs some improvements. Plain hypertext documents and static media can cause an unattractive and boring learning sessions. Still graphics used met satisfaction but some overuse of animation distracts student and could lead to uncomfortable learning.

Every learner has different learning style. A distinct learning style that is oriented to the learner’s need and background can add values in delivering knowledge. [Noami Salim, 1999].

Intelligent system is introduced where an instructional system with models of instructional content needed to specify what to teach and teaching strategies. In the context of an Intelligent Tutoring System (ITS), the learner is hypothesized in a knowledge base and instruction is individualized to the learner based on the knowledge learned about the learner.

\(^{1}\) SSX1012 Tamadun Islam dan Tamadun Asia 1 TITAS1 tutoring system can be accessed at http://ole.fit.unimas.my/titas
Why does a web-based tutoring system needed? From the concept of virtual class where learning and teaching environment is time and place independent, online tutoring system should be introduced. Web-based tutoring can deal with some matters such as the increasing number of students resulting more classes to be organized, timetable must be carefully arranged and the number of teachers to handle the classes should satisfy the student needs.

1.3 Project Objectives

The Intelligent Tutoring System on SSX1012 Tamadun Islam and Tamadun Asia 1 is constructed for the purpose

- To design the learning and tutoring environment that suit the needs of the student based on requirements and specifications.
- To design a system that is able to monitor the student's performance.
- To prepare an assessment such as quiz and tutorials those enhance student's understanding of the subject matter.
- To monitor the student understanding by analyzing the student's answers, comparing them with the correct answer system generated answers
- To develop as an online prototype for Faculty Information Technology
- To evaluate the developed prototype
1.4 Scope and Limitation

The main objective of this proposal is to develop a prototype of a web-based Intelligent Tutoring System for Faculty of Information Technology only. This prototype will conceal SSX1012 Tamadun Islam dan Tamadun Islam Asia 1 subject, which is a generic course that must be taken by all students in Universiti Malaysia Sarawak (UNIMAS).

As a web-based system, this tutoring system will provide online course for student to perform their studies, tutorial, exercises and consultation. The consultation is given to user's answers to the specific question.

Besides that, a discussion board (collaboration tool) is also provided in the system to enable students to post up their questions or enquires on a room on a web page and let the other people to provide answers and suggestions. This can help vertical and horizontal communication occur among learners or their teachers and closing the gap between those two.

However, as for the implementation of the prototype, this project focuses only on basic components of an ITS and will cover the complete three modules for Student, Tutor and Tutoring Expert module. It is also important to understand that the developed prototype is expandable and enable to support a very wide range of applications and features.
In this research, each module will be implemented with some limitations. This is happening due to the limited time and development tools used. The basic functions and the architecture for every module of the components will be described clearly.

Generally, in the learning environment, the student's requirement and teacher's requirements are personalized. The system will be able to cater learners' need in terms of providing an assessment that based on their level of understanding and guide them to monitor and track their academic performance. The tutorial or exercise page is dynamically generated HTML form used to analyze the learner's comprehension status. Simulation pages allow the learner to acquire a procedural knowledge on a target (simulated) system, which is presented as a state transition machine.

Furthermore, this system is implemented to enable students to access interactive features including motions pictures and images or sounds in a way that user can gain more understanding to the real situation. Thus an explanation page is provided for the task to simulate real problems with explanations. Explanation page presents a material describing or explaining the conceptual learning sub-goals of the courseware. As an explanation page, the ITS accepts any type of HTML data including plain text, image, audio, JAVA applet, and/or plug-in application such as VRML and Shockwave.