BEHAVIOURAL ECOLOGY OF THE SUNDÁ COLUGO
Galeopterus variegatus (MAMMALIA: DERMOPTERA) IN BAKO
NATIONAL PARK, SARAWAK, MALAYSIA

Muhammad Dzulhelmi Bin Muhammad Nasir

Master of Science
2011
BEHAVIOURAL ECOLOGY OF THE SUNDA COLUGO *Galeopterus variegatus*
(MAMMALIA: DERMOPTERA) IN BAKO NATIONAL PARK, SARAWAK, MALAYSIA

MUHAMMAD DZULHELMI BIN MUHAMMAD NASIR

A thesis submitted
in fulfillment of the requirements for the degree of
Master of Science
(Zoology)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2011
Declaration

I hereby declare that no portion of the work referred to this thesis has been submitted in support of an application for another degree or qualification to this or any other university or institution of higher learning.

(Muhammad Dzulhelmi Bin Muhammad Nasir)

Date:
Acknowledgements

I would like to thank Universiti Malaysia Sarawak (UNIMAS) for giving me the opportunity to continue my MSc. postgraduate study and providing the UNIMAS Zamalah Postgraduate Scholarship. I am very grateful to be one of the students in the Department of Zoology, Faculty of Resource Science and Technology. I am honored to be one of the MSc. students of Prof. Dr. Mohd Tajuddin Abdullah as my supervisor in conducting my postgraduate study and motivated me to understand on the zoological knowledge.

I thank Sarawak Forestry Department (SFD) and Sarawak Forestry Corporation (SFC) for the research permit (NPW.907.4.2 (III)-47) to conduct the research in Bako National Park. Special appreciation to Mr. Siali Aban, Bako National Park Manager and all the other staff members of Bako National Park for providing the accommodation, giving useful information and helping in search for the Sunda Colugo throughout my study in Bako National Park, Sarawak, Malaysia. I am also grateful to the boatmen of Bako National Park for providing transport and the cafeteria owner for providing the food at considerable price. I was grateful for the map of the study area which was given to me for the use in this thesis by Mr. Hu Hien Liong (Site Supervisor YMNR Heritage Sdn. Bhd). In addition, I am very grateful to Mr. Mohd Sufri Awang Sarudin from the Faculty of Science and Creative Arts, UNIMAS for his fine work in the illustrations for this thesis. I am very grateful to Mr. Hidir Marzuki and Prof. Dr. Sulaiman Hanapi for the identification of plants and ant species respectively.
A special gratitude to all my direct and indirect reviewers (Datuk Sri Earl of Cranbrook, Dr. Les Hall, Dr. Lim Chan Koon, Mr. Jayaraj Vijaya Kumaran, Mr. Kamarul Rahim Kamarudin, Mrs. Munirah Abdul Wahid, Mr. Dzulhaziq Nasir and Mrs. Suriyanti Su Nyun Pau) for the comments to improve the initial draft of the chapters (and published manuscripts). Not forgetting Mr. Charlie J. Laman, Dr. Ramlah Zainuddin, Mr. Jongkar Grinang and Ms. Siti Mariam Jamaluuddin who has contributed the statistical idea in analysing my data. A special thanks to Dr. Charles Leh for giving the permission to examine the Sunda Colugo specimens at the Sarawak museum. I am also greatly appreciating my colleagues, Mr. Millen Patrick, Mr. Ahmad Syazwan Saidin, Mr. Mohd Firdaus Ibrahim for assisting me in conducting my research, photographs and videos of the Colugo in Bako National Park, Sarawak, Malaysia. I am also very thankful to Mr. Huzal Irwan Husin, Mrs. Wan Nurainie Wan Ismail, Mr. Badiozaman Sulaiman, Mr. Mohamad Sharil Dahrawi Edrus and Mr. Mohd Zacaery Khalik from Department of Zoology, UNIMAS as well as Ms. Hashimatul Fatma Hashim, Mr. Mohd Naim Kamaruzaman for helping in preparing the line transect. I am very grateful to Mr. Norman Lim who has always giving me useful information regarding the Sunda Colugo in Singapore. This postgraduate study would have not been completed without the support from my parents, Ir. Muhammad Nasir Mokhtar, Mrs. Munirah Abdul Wahid for reviewing my English grammar for my thesis, my brothers; Mr. Dzulqamain, Mr. Dzulfeqar, Mr. Mr. Dzulhaziq, Dzulfiqri and Mr. Dzulhaxif for financial support when urgently needed. I thank my wife, Mrs. Suriyanti Su Nyun Pau for giving me supports especially sending and picking me up from field trips at the Bako National Park terminal and helping in measuring the Sunda Colugo specimens.
Abstract

A study on the behavioural ecology of the Sunda Colugo (*Galeopterus variegatus*) in Bako National Park headquarters was conducted between 16th August 2008 and 22nd July 2009. The objectives of this study were to determine the roosting selection, diet preferences and behaviour patterns of the Sunda Colugo in its free ranging habitat. Visual daytime search and focal samplings technique was applied for this study. A total of 56 sightings of the Sunda Colugo found roosting on 32 selected trees comprising 10 species and nine families within the main study area. The Sunda Colugo have preferences for *Illex cymosa* as its roosting tree species (Fisher's exact test: 0.705 > 0.05). A total of 12 species from 10 families were identified as the diets for the Sunda Colugo. Interestingly, the Sunda Colugo with young (GY) have higher preferences for *Buchanania arborescens*. Furthermore, a total of ten main behaviour categories comprising 39 behaviour patterns have been catalogued from this observation. Only the Maintenance Pattern (Kruskal-Wallis test: $H = 14.85, P = 0.001$) and grooming (Kruskal-Wallis test: $H = 11.84, P = 0.003$) differs significantly among the individual categories (GY, GN, ON). This database reveals potential studies which can be use to conserve this species especially in Bako National Park.

Key words: behaviour, diets, roosting selection, *Galeopterus variegatus*
EKOLOGI TINGKAHLAKU KUBONG (Galeopterus variegatus) DI TAMAN NEGARA BAKO, SARAWAK, MALAYSIA

Abstrak

Kata kunci: tingkahlaku, pemakanan, tempat tidur, Galeopterus variegatus
Table of contents

Declaration i
Acknowledgements ii
Abstract iv
Abstrak v
Table of contents vi
List of tables xiii
List of figures xiv

Chapter 1: Introduction

1.1 Dermoptera 1
1.2 Study species 3
 1.2.1 Internal and external characteristics 3
 1.2.2 Morphological measurements 5
 1.2.2.1 Body measurements 5
 1.2.2.2 Skull 7
 1.2.2.3 Dental 8
 1.2.3 Roost sites 12
 1.2.4 Gliding ability 12
 1.2.5 Social behaviour 13
 1.2.6 Diets 14
 1.2.7 Reproduction 14
 1.2.8 Parasites 15
1.2.9 Distribution

1.2.10 Laws and regulations

1.2.10.1 Protection of Wildlife Act 1972 (Peninsular)

1.2.10.2 Wildlife Conservation Enactment 1997 (Sabah)

1.2.10.3 Wildlife Protection Ordinance 1998 (Sarawak)

1.3 Rationale

1.4 Aim of study

1.5 Outline of thesis

Chapter 2: Materials and methods

2.1 Study area

2.1.1 Climate and physiography

2.1.2 Eco-tourism

2.1.3 Flora

2.1.4 Fauna

2.1.5 Sampling site

2.2 Field methodology

2.2.1 Visual daily search

2.2.2 Observations

2.2.3 Statistical analysis

2.2.4 Vegetation samplings

2.3 Research constraints

2.3.1 Equipment

2.3.2 Tracking and observing
2.3.3 Individual identification 40
2.3.4 Disturbances 41

Chapter 3: Roosting selection and diet preferences of the Sunda Colugo

3.1 Introduction 42
3.2 Materials and methods 45
 3.2.1 Tree species within the main study area 45
 3.2.2 Roosting and foraging site preferences analysis 45
 3.2.3 Roosting tree species preferences analysis 46
 3.2.4 Diet preferences analysis 48
3.3 Results 50
 3.3.1 Tree species within the main study area 50
 3.3.2 Roosting and foraging site preferences 52
 3.3.3 Roosting tree species preferences 56
 3.3.4 Diet preferences 59
3.4 Discussion 63
 3.4.1 Tree species within the main study area 63
 3.4.2 Roosting and foraging site preferences 64
 3.4.3 Roosting tree species preferences 68
 3.4.4 Diet preferences 72
3.5 Conclusion 77
Chapter 4: Ethogram and rates of movements of the Sunda Colugo

4.1 Introduction 79

4.2 Materials and methods 82
 4.2.1 Ethogram construction 82
 4.2.2 The main behaviour categories analysis 84

4.3 Results 86
 4.3.1 Ethogram construction 86
 4.3.1.1 Stationary body position 86
 4.3.1.1.1 Sleeping 86
 4.3.1.1.2 Resting 88
 4.3.1.2 Locomotion pattern 90
 4.3.1.2.1 Walking 90
 4.3.1.2.2 Hopping 91
 4.3.1.2.3 Climbing 92
 4.3.1.2.4 Jumping 93
 4.3.1.2.5 Switching direction 95
 4.3.1.2.6 Gliding 96
 4.3.1.3 Visualisation pattern 98
 4.3.1.3.1 Observing 98
 4.3.1.3.2 Staring 99
 4.3.1.4 Self-orientation pattern 100
 4.3.1.4.1 Yawning 100
 4.3.1.4.2 Swaying 101
 4.3.1.4.3 Clinging 102
4.3.1.4.4	Raised-tail	103
4.3.1.5	Maintenance pattern	104
4.3.1.5.1	Mouth-lick	104
4.3.1.5.2	Shaking	104
4.3.1.5.3	Scratching	105
4.3.1.5.4	Grooming	106
4.3.1.6	Vocalisation pattern	107
4.3.1.6.1	Greeting vocalisation	107
4.3.1.6.2	Disturbed call	107
4.3.1.6.3	Calling	107
4.3.1.6.4	Courtship vocalisation	108
4.3.1.7	Elimination pattern	109
4.3.1.7.1	Defecating	109
4.3.1.7.2	Territorial marking by urinating	110
4.3.1.8	Feeding and digestive pattern	111
4.3.1.8.1	Licking	111
4.3.1.8.2	Drinking	112
4.3.1.8.3	Eating	113
4.3.1.9	Companion-oriented locomotion	114
4.3.1.9.1	Departing	114
4.3.1.9.2	Following	114
4.3.1.9.3	Approaching	115
4.3.1.9.4	Visiting	116
4.3.1.9.5	Courtship	116
4.3.1.9.6 Mounting
4.3.1.9.7 Breast feeding
4.3.1.9.8 Nuzzle
4.3.1.10 Threat companion posture and pattern
 4.3.1.10.1 Aggression
 4.3.1.10.2 Retreating
 4.3.1.10.3 Threat posture
 4.3.1.10.4 Unnoticed escape
4.3.2 The main behaviour categories
4.4 Discussion
 4.4.1 Ethogram construction
 4.4.2 The main behaviour categories
 4.4.2.1 Stationary body position
 4.4.2.2 Locomotion pattern
 4.4.2.3 Visualisation pattern
 4.4.2.4 Self-orientation pattern
 4.4.2.5 Maintenance pattern
 4.4.2.6 Vocalisation pattern
 4.4.2.7 Elimination pattern
 4.4.2.8 Feeding and digestive pattern
 4.4.2.9 Companion-oriented locomotion
 4.4.2.10 Threat companion pattern
4.5 Conclusion
Chapter 5: General Discussion and Conclusion

5.1 General discussion 146
5.2 Conclusion 150
5.3 Recommendations 152

References 154

Appendices

Appendix A: The roosting tree species used by the Sunda Colugo at Bako National Park headquarters, Sarawak. 174
Appendix B: The duration periods of the foraging activities of the Sunda Colugo at Bako National Park headquarters, Sarawak. 176
Appendix C: The duration (minutes) and frequencies of the Sunda Colugo behaviour patterns. 179
Appendix D: The duration (minutes) on the behaviour patterns of the Sunda Colugo categories (ON, GY, GN). 180
List of Tables

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Body measurements of the Sunda Colugo from previous studies.</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Cranial characters measurements of dwarf and large form Sunda Colugo (Stafford and Szalay, 2000).</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Summary of the incisors, canine, premolars and molars measurements of dwarf and large form Sunda Colugo (G. variegatus) (Stafford and Szalay, 2000).</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>List of parasites found on the Sunda Colugo (G. variegatus).</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>List of plant species occurring at Bako National Park headquarters (Chah, 2007; Farhan-Ihsan, 2007).</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Species dominance and important value analysis formula (Brower, 1990).</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>List of tree species within the main study area at Bako National Park headquarters.</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>The numbers of time the Sunda Colugo (ON, GY, GN) were found within the main study area throughout the 120-days of field sampling.</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Twelve cranial characters for measurements (mm) for male and female adult Sunda Colugo. Figures modified from Stafford and Szalay (2000). Figures are not drawn to scale.</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Dental characters (length, width and height) for measurements (mm) for the Sunda Colugo. Figures are modified from Stafford and Szalay (2000). Figures are not drawn to scale. H: height; W: width; L: length.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Dental characters (lower and upper) measurements (mm) for the Sunda Colugo. Figures modified from Stafford and Szalay (2000). Figures are not drawn to scale. L: Left; R: Right; M: Molar tooth; PM: Premolar tooth; C: Canine tooth; I: Incisor tooth.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Distribution map of the Sunda Colugo (G. variegatus) and the Philippine Colugo (C. volans) in Southeast Asia. Figure is not drawn to scale.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Summary of total monthly rainfall (mm), surface air temperature (°C) and relative humidity (%) at Kuching, Sarawak, Malaysia (Malaysian Meteorological Department, 2008; 2009).</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Summary of local and foreigner tourists visiting Bako National Park from year 2000 and 2007 (Anon, 2007).</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Map of study area, Bako National Park, Sarawak, Malaysian Borneo. Figures are not drawn to scale. A: Borneo; B: Bako National Park; C: Bako National Park headquarters (main study area).</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The rainfall (mm), humidity (%), temperature (°C) and the total number of Sunda Colugo (%) found roosting within the study area between August 2008 and July 2009.</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Locations of roosting trees and diet preferences utilised by Sunda Colugo in the main study area in Bako National Park headquarters (Arkitek KDI Sdn. Bhd). Figure is not drawn to scale. The alphabets indicate the tree species: A: B. arborescens; B: Campnospermum sp.; C: I. cymosa; D: O. tigillarium; E: C. soulattri; F: G. hombroniana; G: M. pruinosa; H: F. microcarpa; I: S. acuatinervium; J: Syzygium sp.; K: G. eugenifolia; L: Sarchotheca sp.; M: G. axillaris; N: V.</td>
<td>55</td>
</tr>
</tbody>
</table>
Figure 3.3 The roosting trees used by the individual Sunda Colugo categories (GY, GN, ON).

Figure 3.4 Strauss linear index of selectivity (L) applied to the selected roosting tree species used by the Sunda Colugo within the main study area. L > 0: preference; L < 0: avoidance.

Figure 3.5 The selected tree species and an ant species consumed by the Sunda Colugo.

Figure 3.6 Strauss linear index of selectivity (L) applied to the selected diet preferences of the Sunda Colugo within the main study area. L > 0: preference; L < 0: avoidance.

Figure 4.1 A Colugo found sleeping on *Ilex cymosa* tree species.

Figure 4.2 A mother Colugo with young resting by hanging under trees branches.

Figure 4.3 A Colugo resting its head downward to avoid from rain dropping on its head.

Figure 4.4 The Colugo normally walks in an inverted position.

Figure 4.5 A mother Colugo with young hopping upward to reach the crown of a tree.

Figure 4.6 A Colugo climbing its way through the branches.

Figure 4.7 The Colugo is estimating its distance before jumping to another tree.

Figure 4.8 The Colugo is twisting its body to switch to the opposite direction.

Figure 4.9 The Colugo expands its patagium and glides through an open space.

Figure 4.10 The Colugo is observing the surrounding carefully.

Figure 4.11 This Colugo stares at its partner for a long period of time.

Figure 4.12 The Colugo yawning just before dusk.

Figure 4.13 The mother Colugo with young normally sways before dusk.

Figure 4.14 The mother Colugo clings while the young correct its position.
Figure 4.15 The tail is raised for balancing itself on the tree bole.
Figure 4.16 The hind leg is used to scratch the Colugo’s head.
Figure 4.17 The tongue is used to groom the Colugos’ body fur.
Figure 4.18 The tail is raised folded up on the back of the body to defecate.
Figure 4.19 The urine is released smoothly on the bole of a tree.
Figure 4.20 The head is put inside the tree hole to obtain water.
Figure 4.21 The Colugo extending its neck to reach for the leaves.
Figure 4.22 The male Colugo (bottom) approaching slowly towards the female Colugo (top).
Figure 4.23 The mother Sunda Colugo breast feeding its young.
Figure 4.24 The threat posture shows that the Colugo feels threatened.
Figure 4.25 The Colugo slowly pulls itself to the back of the tree trunk without being notice.
Figure 4.26 The ten main behaviour categories based on duration (minutes) in percentage (%) (Appendix 3). SBP: Stationary body position; VP: Visualisation pattern; MP: Maintenance pattern; FDP: Feeding and digestive pattern; VNP: Vocalisation pattern; LP: Locomotion pattern; SOP: Self-orientation pattern; EP: Elimination pattern; COL: Companion oriented locomotion pattern and TCP: Threat companion pattern.
Figure 4.27 The percentage (%) of time spent of the six selected behaviours between the individual Colugo categories (GY, GN, ON).
Figure 4.28 The percentage (%) of time spent of the six selected behaviours between the Colugo with young (GY) and Colugo without young (GN and ON).
Chapter 1

Introduction

1.1 Dermoptera

The Order Dermoptera contains a single living family, Cynocephalidae which are divided into two separate genus with a single species namely, Sunda Colugo (Galeopterus variegatus) and Philippine Colugo (Cynocephalus volans) (Stafford and Szalay, 2000; Stafford, 2005). Previously, some authors classified the species under Galeopithecidae instead of Cynocephalidae and also uses Galeopithecus Pallas, 1783 for species G. volans while placing C. variegatus in separate genus, Galeopterus Thomas, 1908 (Chasen and Kloss, 1929; Ellerman and Morrison-Scott, 1955). The classification of the Colugo was accepted as a single genus (Cynocephalus) with two species (Chasen and Kloss, 1929; Corbet and Hill, 1992; Wilson and Reeder, 2005).

The evolutionary relationships of the Dermoptera to Chiroptera, Primates and Scandentia are frequently debatable among biologists who are using classical methods, proteins, molecular DNA and vision pathways. Historically, the Colugo is taxonomically grouped in the superorder Archonta with Primates (ape, monkey and gibbon), Chiroptera (bats) and Scandentia (tree shrews) (Novacek, 1992). They are considered closely related to Primates based on analysis of fossil and morphological data (Nováček, 1992, 1993), visual pathways, particularly from eye to midbrain (Pettigrew, 1995) and molecular evidence (Janecka et al. 2007). However, molecular study challenged the association of the Colugo with Primates (Schmitz et al., 2003) and supports the Colugo to be related to
Scandentia (Schmitz et al., 2002; Nie et al., 2008; Martin, 2008). Based on evidence from craniodental and functional morphology, Stafford and Szalay (2000) concluded that the Dermopteran contains two distinct species, namely the Sunda Colugo (G. variegatus) and the Philippine Colugo (C. volans).

Previously, Colugo are known as “flying lemur” (Yasuma and Andau, 2000; Feldhamer et al., 2003), the Malayan flying lemur referred to the Sunda Colugo (G. variegatus) and Philippine flying lemur referring to the Philippine Colugo (C. volans). But the term was misleading as they do not fly but rather glide, nor they are lemur because lemurs are categorised in the Order Primates (Yasuma and Andau, 2000). Thus, the term ‘Colugo’ was adopted and accepted among researchers. The species name G. variegatus was adopted from the Greek words variegatus – ‘variegated’ (Yasuma and Andau, 2000). The species name for C. volans were obtained from the Greek words, Cyno – ‘dog’, and cephalus – ‘head’ which means “dog-head”, while volans – “to fly” (Lim, 2007).
1.2 Study Species

Galeopterus variegatus (Audebert 1799)

The Sunda Colugo or *G. variegatus* have two forms but are not morphologically distinct from one another, the large form occurring on the mainland of the Sunda shelf area and the mainland of Southeast Asia while the dwarf form occurring in Central Laos and some other adjacent islands (Stafford and Szalay, 2000). According to Ruggeri and Etterson (1998), the Sunda Colugo from Laos specimen is smaller (about 20%) than the other known mainland population. Despite the large and dwarf form, there are four known subspecies of *G. variegatus*: *G. v. variegatus* (Java), *G. v. temminckii* (Sumatra), *G. v. borneanus* (Borneo), and *G. v. peninsulæ* (Peninsular Malaysia and mainland of Southeast Asia) (Stafford and Szalay, 2000) incorporating on the genetic species concept due to geographic isolation and genetic divergence. Recent molecular and morphological data provide the evidence that the mainland, Javan and Borneo Sunda Colugo subspecies may be recognised as three separate species in the genus *Galeopterus* (Janecka *et al.*, 2008).

1.2.1 Internal and external characteristics

There are three groups of mammals that possess skin membrane as one of the special features for their locomotion – Dermoptera (colugo),Rodentia (e.g. flying squirrel) and Chiroptera (bat). However, the function of the extended membrane differs as Dermoptera and flying squirrel are modified for gliding while the Chiroptera are highly adapted for
powered flight. This gliding mammal is about the size of a domestic cat. It has large eyes, a blunt muzzle, mottled fur (for camouflage) and strong claws for climbing (Burnie, 2001). Morphologically, male and female shares the same basic features.

Sunda Colugo is grayish white and heavy black with markings (Payne and Francis, 1985). Some are mixed with white spots on limbs and bright orange on under part of body. There are few white or yellowish spots (some have no spots) which may or may not be seen very obviously on the head. The colour on the neck can be yellowish or grayish colour - can be pale. There are also fur of totally reddish-brown or orange colour covering the body with white spots (or without any spots) on parts of the body except yellowish and whitish spots on the limbs and heads. In addition, Sunda Colugo can also be brown and black stripes (some may not be clearly seen) on the patagium, with few white spots concentrated on tails, limbs and head. To explain this variation, Khan (1992) mentioned that the colours may vary according to their surroundings.

Both male and female can have identical fur colouration although of different gender. Gender determination based on fur colouration was examined by Lim (2004) and he concluded that fur colouration may not be a reliable method for gender determination. Fur colourations of the Sunda Colugo populations depend on the geography, localities and their habitats.
1.2.2 Morphological measurements

1.2.2.1 Body measurements

Other than molecular analysis, the measurements on body, skull and dental on large form Sunda colugos can be an informative data to differentiate between the small and large form Sunda colugos. Previous measurements of the Sunda Colugo are obtained from Chasen and Kloss (1929), Lekagul and McNeely (1977), Medway (1978), Payne et al. (1985), Khan (1992), Hill (1993), Burnie (2001), Yasuma and Andau (2000), Feldhamer et al. (2003), Parr (2003), Ketol et al. (2006), Francis (2008) and Maryanto et al. (2008) (Table 1.1). Unfortunately, some authors did not mention the number of individual(s), locations and important morphological measurements (e.g. ear length).
Table 1.1: Body measurements of the Sunda Colugo from previous studies.

<table>
<thead>
<tr>
<th>References / Authors</th>
<th>HB</th>
<th>T</th>
<th>HF</th>
<th>E</th>
<th>TL</th>
<th>Wt</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lekagul and McNeely (1977)</td>
<td>340-420</td>
<td>175-270</td>
<td>65-73</td>
<td>na</td>
<td>na</td>
<td>1,000-1,750</td>
<td>na</td>
</tr>
<tr>
<td>Medway (1978)</td>
<td>330-380</td>
<td>239-265</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>1108-1320</td>
<td>4</td>
</tr>
<tr>
<td>Khan (1992)</td>
<td>245-360</td>
<td>170-255</td>
<td>na</td>
<td>19-23</td>
<td>na</td>
<td>509-1100</td>
<td>4</td>
</tr>
<tr>
<td>Hill (1993)</td>
<td>340-420</td>
<td>220-270</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>1,000-1,750</td>
<td>na</td>
</tr>
<tr>
<td>Burnie (2001)</td>
<td>330-420</td>
<td>175-270</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>900-2,000</td>
<td>na</td>
</tr>
<tr>
<td>Yasuma and Andau (2000)</td>
<td>344-377</td>
<td>237-245</td>
<td>63.7-73</td>
<td>18.5</td>
<td>na</td>
<td>850-1,300</td>
<td>na</td>
</tr>
<tr>
<td>Feldhamer et al. (2003)</td>
<td>340-400</td>
<td>170-270</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>1,000-2,000</td>
<td>na</td>
</tr>
<tr>
<td>Parr (2003)</td>
<td>340-420</td>
<td>175-270</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Ketol et al. (2006)</td>
<td>310</td>
<td>250</td>
<td>56</td>
<td>21</td>
<td>560</td>
<td>1,200</td>
<td>1</td>
</tr>
</tbody>
</table>

Head and body length (HB); Tail length (T); Hind foot length (HF); Ear length (E); Total length (TL); Weight (Wt). Length in millimeters (mm); Weight in grams (g); n: Number of specimen(s); na: Data is not available.