WATER RESOURCES MANAGEMENT STRATEGY: REVIEW ON THE IMPACTS OF SARAWAK RIVER BARRAGE ON THE WATER QUALITY

HARTINI BINTI MAHIDIN

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Environmental Science (Land Use and Water Resource Management)

SLUSE-M MASTER PROGRAMME

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
May 2006
ACKNOWLEDGEMENT

(Bismillahirrahmannirrahim)

In the name of Allah, All-Merciful, the Mercy-Giving,

First and foremost, I would like to extend my heartfelt appreciation to Associate Professor Dr Lau Seng, my supervisor for his superb guidance and understanding throughout the course of writing this dissertation. I would also wish to acknowledge and fully express my gratitude to SLUSE-M Masters Program Coordinator, Dr Siti Rubiah bt Zainuddin for her generosity, support and her belief in me to complete this dissertation right from the start.

My sincere appreciation is also extended to the list of names below for their generous assistance in giving ideas plus for making available to me the latest related information and data during the course of researching for this thesis. They are:-

1) En. Kalana bin Drahman (Department of Environment - DOE)
2) Pn. Hidayati bt. Ismail (Department of Irrigation and Drainage - DID)
3) Pn. Rahayu bt Ahmad Bohari (Batu Kitang Water Treatment Plant)
4) En. Hitler Edward Dandu (Sarawak Rivers Board - SRB)
5) Capt. Goh Chin Guan (Kuching Barrage Management Sdn.Bhd. -KBM)
6) En. Justin Jok Jau Imang (Natural Resources Environmental Board)
7) En. Ngab Dollah b. Salam (Soil Management Branch, DOA)

I wish to thanks all technical staff of UNIMAS, especially to the Director of Centre for Technology Transfer and Consultancy (CTTC), Dr. Lee Nyanti, Deputy Vice Chancellor of Research and Innovation, Prof. Murtedza Mohamed, Dean of Centre for Graduate Study, Prof. Madya Dr. Kopli bin Bujang and Mr. Robert Malong for their great administrative, technical and management for the program.
Thanks are also due to all my colleagues and good friends at Universiti Teknologi Mara Kampus Samarahan for their interest and valuable suggestions for the improvement of this thesis. Thank you Suzana Narawi, Azilawati Banchit, Sh. Zakiah Wan Hassan and an unmentionable list of others.

My love and gratitude is also extended to my Mak, (Pn Hamsiah Yahya), Abah (En Mahidin Ahmad) and all my brothers and sisters for understanding and giving me the support I need to complete the thesis.

Finally, I would be remiss if I did not mention the two extraordinary gentlemen who have given me the strength, support, belief and trust and most importantly my main reason for living. Firstly, my dear husband, Hj Edmund Shah Bin Tambi, for understanding, caring, helping and always giving me that shoulder to cry on during those trying times. I really do love you. And last but definitely not least, without doubt the most precious gift whom Allah have entrusted me to take care of, the air that I live to breath in, the joy of my life, my beautiful son, Emir Hazrin Shah, this is for you dear. I love you with all my heart.

Despite the help and support of so many able people, I alone accept full responsibility for any deficiencies this thesis may possess.

Wallahuallam

Thank You

Hartini Bt Mahidin
May 2006
TABLE OF CONTENTS

Declaration ii
Acknowledgement iii
Table of Contents v
List of Tables viii
List of Figures ix
List of Abbreviations x
Abstract xi
Abstrak xii

Chapter 1

Introduction

1.1 Preamble 1
1.2 Problem Statement 3
1.3 Significance of the Study 3
1.4 Objectives of study 4

Chapter 2

Literature Review

2.1 Water Resource Management 6
2.2 Sarawak River: Water Resource and Management Plan 8
2.3 Early Water Quality Issues in the Sarawak River 12
2.4 Sungai Sarawak Regulation Scheme 12
2.5 Water Quality Criteria for SSRS 17
2.6 Kuching Barrage Management (KBM) 19
2.7 River Modification and Barrage’s Concept 20
2.8 Case Studies: Barrage Impacts on Water Quality
 2.8.1 The Tees Barrage 22
 2.8.2 Arkansas River Navigation Project 24
 2.8.3 The Cardiff Bay Barrage 25
Chapter 3 Materials and Methods

3.1 Study Area 29
3.2 Data Collection
 3.2.1 Interview and Consultation (Primary Data) 31
 3.2.2 Water Quality Data (Secondary Data) 31
 3.2.3 Other Secondary Data 34
3.3 Data Analysis
 3.3.1 Trend Analysis 35
 3.3.2 Statistical Methods for Water Quality Analysis 36

Chapter 4 Results and Discussion

4.1 Climate 39
4.2 Stages of Analysis 44
4.3 Observations Failing to Meet Proposed Interim National Water Quality Standards (INWQS, DOE) 45
4.4 Detailed Analysis of Differences between Pre-barrage and Post-barrage 56
4.5 Trend Analysis 62
4.6 Total Dissolved Solids Trend Analysis at Batu Kitang 69

Chapter 5 Conclusion 74

References 79

Appendices

Appendix 1: Interim National Water Quality Standards for Malaysia (DOE, 1993) 82
Appendix 2: Results of Normality Test (using One-Sample Kolmogorov Smirnov Test) 83
Appendix 3a & 3b: Total Monthly Rainfall for 5 Stations from 1990 to 2004 86
LIST OF TABLES

Table 2.1:	Water Quality Target for SSRS (INWQS, DOE)	18
Table 2.2:	Water Quality Impacts of the Cardiff Bay Barrage	27
Table 3.1:	DOE Sampling Stations	32
Table 3.2:	Raw Data and their Sources	32
Table 3.3:	Parameters and Years of Data	33
Table 4.1:	DO’s Percentage of Non-Compliance to the INWQS.	46
Table 4.2:	BOD’s Percentage of Non-Compliance to the INWQS	47
Table 4.3:	COD’s Percentage of Non-Compliance to the INWQS	49
Table 4.4:	NH3-N’s Percentage of Non-Compliance to the INWQS	50
Table 4.5:	Total Coliform’s Percentage of Non-Compliance to the INWQS	51
Table 4.6:	Conductivity’s Percentage of Non-Compliance to the INWQS	52
Table 4.7:	Salinity’s Percentage of Non-Compliance to the INWQS	54
Table 4.8:	Turbidity’s Percentage of Non-Compliance to the INWQS	55
Table 4.9:	Results of T-Test (paired) for comparisons between Pre-barrage and Post-barrage at each Stations	58
Table 4.10:	Linear Regression Result (Using the of Least Squares) with Corresponding Coefficients (r-Squared Values)	66
LIST OF FIGURES

Figure 1.1: Map of the Sarawak River Catchment 5
Figure 2.1: Locality Plan and Project Components for SSRS 14
Figure 2.2: Recommended Water Levels to Maintain Upstream of Barrage 16
Figure 2.3: Organization Chart of Kuching Barrage Management Sdn. Bhd. 19
Figure 3.1: Location of Water Quality Sampling Points and SSRS 30
Figure 4.1: Mean Monthly Rainfall Recorded at Five Stations of Sarawak River Catchment (1990 – 2004) 40
Figure 4.2: Total Monthly Rainfall at Five Stations of Sarawak River Catchment from 1990 to 2004 42
Figure 4.3: Annual Total Rainfall Recorded at Five Stations of Sarawak River Catchment 43
Figure 4.4: TDS Levels at Batu Kitang Water Intakes Point 71
Figure 4.5: TDS Reading that Exceed the Standard Level (24/6/2004 – 9/7/2004) 73
LIST OF ABBREVIATIONS

BOD Biochemical Oxygen Demand
COD Chemical Oxygen Demand
DO Dissolved Oxygen
NH$_3$-N Ammonical Nitrogen
NTU Nephelometric Turbidity Unit
TDS Total Dissolved Solids

EIA Environmental Impact Assessment
EMP Environmental Management Plan
EQA Environmental Quality Act
INWQS Interim National Water Quality Standards
MSL Mean Sea Level
SSRS Sungai Sarawak Regulation Scheme
UNEP United Nations Environmental Programme

ANOVA Analysis of Variance
H_0 Null Hypothesis
H_a Alternative Hypothesis
SPSS Statistical Program for Social Science

CTTC Centre for Technology Transfer and Consultancy
DOA Department of Agriculture
DOE Department of Environment
DID Department of Irrigation and Drainage
JKR Jabatan Kerja Raya (Public Works Department)
KBM Kuching Water Board
NREB Natural Resources and Environmental Board
SRB Sarawak Rivers Board
ABSTRACT

The Sungai Sarawak Regulation Scheme (SSRS) is the first of its kind in South East Asia and could be one of the very few “three in one” infrastructure-combining barrage, lock and bridge. This scheme aimed to improve and maintain the water quality to the quality standard acceptable as a reservoir for water supply for Kuching City and its surrounding areas besides improving the aesthetic value of the river. The effectiveness of SSRS as a tool for water resource management in Kuching area was evaluated by comparing the water quality data of the pre-barrage era against the post-barrage era. The data were tested first for normality by using One-Sample Kolmogorov Smirnov test followed by a descriptive statistics, ANOVA (analysis of variance), Paired Samples T-Test and Trend Analysis. This study concluded that the installation of the barrage across Sarawak River has brought about significant improvement to the dissolved oxygen (DO) levels, biochemical oxygen demand (BOD) levels, salinity, turbidity and the bacteria counts, to the section of the river upstream of the barrage. Other water quality parameters such as chemical oxygen demand (COD) and ammoniacal nitrogen (NH₃-N) were deteriorated after the installation.
Skim Pengawalaturan Sungai Sarawak (SPSS) merupakan satu-satunya yang seumpama di rantau Asia Tenggara yang merangkumi struktur tiga dalam satu; tambak, kekunci dan 'penghalang'. Skim ini diwujudkan bertujuan untuk mempertingkatkan dan mengekalkan tahap kualiti air mengikut piawaian yang ditetapkan disamping mengekalkan nilai estetika kawasan sekitar sungai. Keberkesanan SPSS sebagai salah satu medium pengurusan sumber air di sekitar kawasan Kuching telah dinilai berdasarkan perbandingan kualiti air era sebelum dan selepas pemasangan tambak Sungai Sarawak. Pada mulanya, ujian kenormalan menggunakan 'One-Sample Kolmogorov Smirnov' dijalankan, diikuti analisa statistik secara deskriptif, Ujian ANOVA (Analisis Varians), Ujian T-Berpasangan dan Analisis Tren/Masa. Hasil kajian ini membuktikan bahawa, pemasangan tambak merentasi Sungai Sarawak secara signifikan telah mempertingkatkan mutu paras oksigen terlarut (DO), BOD, kemasinan (salinity), kekeruhan (turbidity) dan kiraan bakteria terutamanya di bahagian hilir Sungai Sarawak. Parameter kualiti air yang lain, seperti COD dan ammonia nitrogen telah menurun selepas pemasangan tambak tersebut.
CHAPTER 1
INTRODUCTION

1.1 Preamble

Sarawak River has two major tributaries, namely Sungai Sarawak Kiri and Sungai Sarawak Kanan, which originate from the mountains near the Kalimantan border. Both streams meet near Batu Kitang approximately 55 kilometres upstream of the river mouth. From the confluence, the mainstream Sarawak River flows north and through Kuching City. Further downstream near Pending area, the river splits into two, forming a distributary called Sungai Santubong. The Bako causeway has now closed this watercourse, which carries about half the flow. Sarawak River is joined by Sungai Kuap and Sungai Loba Batu Belat before flowing north east into the South China Sea.

This river has served as one of the most important medium of transportation as well as a source of water supply for drinking, domestic and industrial uses. It also plays an important recreational role and contributes to the unique scenic beauty of the city. Within this catchments area is where the State capital city, Kuching, is located, with its’ rapid growth of human population and land-use development. The exponential development activities along its’ riverbanks have led to the increasing of source and non-source pollution to the river. Sarawak River has been a recipient of waste and effluent discharges from both grey and black water of domestic, commercial and industrial activities. Thus, the water quality was reported to gradually decreased due to rapid economic development and increase in population, particularly in the river alongside Kuching City.
Many issues relating to water quality resulted directly or indirectly to changes especially in the physical changes. The construction of structures such as barriers, barrages or weirs, which are designed to modify or totally prevent the progression of the tide up an estuary or inlet, may indirectly deteriorate the water quality. Burt and Rees (2001) pointed out that both upstream and downstream water quality may be affected by the introduction of a tidal control structure. They also stated that tidal flushing will be altered and the pattern of salinity variation will be changed as a result of changes to tidal propagation upstream of the barrage.

On 27th August 1998, the Sarawak River Barrage, Lock and Bridge were officially opened under the Sungai Sarawak Regulation Scheme (SSRS). The SSRS was planned to assist in facilitating the development strategies for Kuching City and its environment. It is also the first step towards future efforts to rehabilitate the coastal beaches and provide an attractive site with clear shore waters. This scheme also aimed to improve and maintain the water quality to the quality standard acceptable as a reservoir for water supply for Kuching City and its surrounding areas besides improving the aesthetic value of the river. All of these efforts were formulated to enhance best practices management in water resources especially for Sarawak River Catchment (Figure 1.1).

The objectives of the Scheme were:

i. to provide transport links between the City of Kuching and Sejingkat area, thus facilitating infrastructural and industrial growth in Kuching region

ii. to regulate the river water level upstream of the barrage

iii. to mitigate fluvial and tidal flooding in the City of Kuching

iv. to secure Kuching’s water supply

v. to reduce the transport of muddy sediments to the foreshores of Santubong and Damai
Based on the Environmental Impact Assessment (EIA) report (VOL 1) for the SSRS project, (Jabatan Kerja Raya, 1994), the implications and effects of the Scheme were evaluated and the study concluded that the most feasible Scheme to achieve the objectives would comprise of the following:

i. The Santubong causeway at Jalan Bako
ii. The Sarawak causeway at Jalan Keruing
iii. The barrage and ship lock gate at the cut in the isthmus
iv. Bridge over barrage and the Pending-Sejingkat link road
v. Diversion channel with gated barrage structure in the isthmus between Sejingkat and Pending
vi. Land reclamation and road infrastructure in isthmus

1.2 Problem Statement

An alteration of any river/floodplain including channel modifications such as barrage’s construction will either lead to direct or indirect impacts on the biotic environment such as the loss of existing vegetation and its dependent habitats and fauna, as well as abiotic factors such as riverbank erosion, nutrient transfer, saline intrusions, sedimentation and water resources in terms of deterioration of water quality, flooding, drainage and run off. The impact of the installation of the Barrage on the river environments need to be verified against the potential impacts suggested in the EIA reports.

1.3 Significance of the Study

The Sarawak River Catchment is one of the fastest growing regions in the State of Sarawak. With the state capital of Kuching, located in the catchments and the Country’s vision of forging ahead towards industrialisation, the pace of development is expected to
accelerate even further. Added to that, with the SSRS, whereby the barrage has cut off tidal flushing of the river, it is necessary that such study be carried out to determine the effectiveness of the barrage performance in terms of water resources practices and its impact on water quality.

1.4 Objectives of study

The general objective of this study was to review the impact of the Sarawak River Barrage on water quality, which was planned under the SSRS. The study evaluated the effectiveness of SSRS as a tool for water resource management in Kuching area.

The specific objectives of this study were:

i. to study the current operation and management practices (for barrage) from the perspective of water resources management;

ii. to compare and analyse the water quality data for the selected station of Sarawak River (near the barrage area) for pre-barrage operation and post-barrage operation; and

iii. to determine if there have been improvements in selected water quality parameters over time (trend analysis).
Figure 1.1: Sarawak River Catchment
(Source: KTA (Swk) Sdn. Bhd. In association with CMPS, UNIMAS and DHI; May 1995)
CHAPTER 2
LITERATURE REVIEW

2.1 Water Resource Management

Water is one of the most vital resources on earth. Despite its chemical simplicity (H₂O), water's properties make it absolutely essential for all life form. Our planet is very rich in water, which covers over 70% of the planet's surface. Unfortunately, most of this (97.4%) is saltwater which is not usable by land life. Only 2.6% of earth's water is made up of fresh water to satisfy most of our needs. About $\frac{3}{4}$ (three-quarter) of freshwater occurs as ice and is inaccessible. Ninety percent of this ice occurs in Antarctica. Only about 0.6% of earth's water is fresh water in the readily available liquid state. The vast majority of this occurs as groundwater. Only a very tiny fraction (less than 0.014%) of earth's water occurs as freshwater lakes and rivers that we usually associate with water (McKinney & Schoch, 2003).

An adequate supply of affordable water of suitable quality makes major contribution to economic and social development. More than a billion people, mostly the poor, still have no access to clean water. Almost 1.7 billion people are without adequate sanitation. Many parts of the world are constantly struggling with drought and floods; in addition, many countries face problems of fast-growing populations, rapid urbanization, rising costs of supplying water and pollution of inland (fresh) water. All of these problems have increased the urgency of formulating policies and associated strategies that will ultimately lead to effective measures to manage water as a social and economic resource with emphasis on its conservation (Moigne et al., 1994).
Water resource management can be looked at from two different viewpoints: non-structural and structural. The non-structural sections may involve the water resource strategy, policies, guidelines, law and legislations and other rules and regulations that enacted on paper. Structural sections may include designing, engineering works and implementation, which involved operational and monitoring level. This may involved the engineers who were taught to design the various works for water resource management from the structural and functional viewpoints. The implementation level seek the involvement and cooperation from all kind of parties including the government agencies, private sectors, educational, scientist, sociologist, public and individual.

In the non-structural viewpoint, one of the most important agenda that should be looked into is the water resource strategy. A water resources management strategy is a set of medium to long-term action programs to support the achievement of development goals and to implement water-related policies. Development goals might concern, for example, aspects of water supply security, population growth, flood mitigation, rural and urban development, and the role of public and private sectors. Water-related policies might include government decisions about the preservation and protection of ecosystems, water quality monitoring programs and water rights (World Bank, 1994).

According to Rast and Thornton (1999), the water regulations should cover land use rights related to water management, watershed development, environmental quality and pollution control standards, dam safety standards, service standards for water supply, and financial and management standards.

Susan S. Seacrest, President of The Groundwater Foundation, Nebraska, (Cech, 2005), explains that watershed approach to water management has become a template for
integrated natural resources stewardship, and this approach is being adapted on almost
every level: local, state and federal. She added that the growth at grassroots watershed
level may also be part of our need to “act locally, think globally”.

The United Nations Environmental Programme (UNEP) has developed a new holistic
approach of freshwater resources management. Its comprehensive water resources
planning approach to the management of both water quantity and water quality in
international river and lake basins were formalized by UNEP as the environmentally sound
management of inland waters (EMINWA) process. Through EMINWA, the inventory and
analysis of freshwater resources, water needs and water management in this international
water system extend also to the national rivers and that form an integral part of the
international water systems.

2.2 Sarawak River: Water Resource and Management Plan

Water is one of the major development assets in Sarawak, mainly derived from 23 major
river basins in the State. Sarawak River, which is approximately 120 km long and
navigable up to 34 km consist of two principal tributaries namely Sungai Sarawak Kanan
(with catchment area of 691 km2) and Sungai Sarawak Kiri (with catchment area of 524
km2). The catchment areas of Sarawak River is estimated to be 1,423.6 km2 (with SSRS)
comprising multipurpose land use pattern including urban areas, agricultural areas, fishery
and aquaculture areas, mining areas, rural areas and the barrage.

In Sarawak, water resource harvesting and utilisation is reliant on the ability of its
catchment areas. Murtedza Mohamed and Ali Memon (1999) estimated that the total
water resource to be about 460 billion m3 of which 41% returns to the atmosphere through
evapotranspiration process, 52.3% occurs as surface run-off and 6.5% infiltrate into
ground water. Almost 95% of the water supplies for Kuching region are obtain from Sungai Sarawak Kiri through Kuching Water Boards pumping station at Batu Kitang.

Based on paper presented by Sawal (2003), the current State annual aggregate treated water demand for domestic and industrial sectors is estimated at 180 million m3, serving about 70% of the State population. The City of Kuching alone needs more than 240 megalitres of treated water daily.

According to the Annual Report 2003 produced by Kuching Water Board, a total of 105,732 megalitres of fully treated water was produced representing a 2.8% increase over 2002 production. The average daily consumption rose from 282 megalitres in 2002 to 290 megalitres in 2003, an increase of 2.8%.

Within the context of the State of Sarawak, the government has given serious outlook towards the management of water resources. For example, Sungai Sarawak Kiri has been gazetted as a water catchments area to protect this important water resource. A lot of study has been done pertaining to the above matter.

A research done by Murtedza Mohamed and Ali Memon (1999), recommended that the State’s strategy for sustainable water management should have a statutory based to accomplish the following tasks:

1) formulate State policies and plans for integrated water management on a catchments basis. Each plan could include a single catchments or more than one catchments. The scope of these plans should relate to water allocation; water quality; catchments land management; and flood hazard mitigation;
2) develop regional river basin plans for allocating water and protecting water quality. Such plans should be based, amongst other things, on specific policies on land use regulation, water quality standards, water allocation and pricing, minimum flows and allocation priorities between different users during low flows;

3) implement river plans and carry out enforcement. It is preferable that the task of enforcement is decentralised as much as possible;

4) monitor and evaluate the effectiveness of the plans; and

5) encourage participation of user groups (e.g. water supply companies and the local community groups in urban and rural areas) in the planning and implementation process.

As stated in the EIA report for the SSRS, it was recommended to have an Environmental Management Plan (EMP) that covers not only the scheme itself but the management of the whole river and its catchments, including management of land use, wastewater discharges, water supply, resources and aesthetics. The Sarawak State Government has commissioned KTA (Sarawak) Sdn Bhd to do a Study of the Sarawak River Catchments, upstream of the barrage, focusing on environmental control and river management under post-barrage conditions. The primary delivery of the Study was a River Management Plan (Volume 2). It was a first step towards ensuring that the quality and amenity of Sarawak River is maintained at an acceptable level.

The Sungai Sarawak Environmental Control and River Management Study have outlined the objectives of the study as follows (NREB, 1996):

1) to maintain and enhance the water quality of Sarawak River, particularly in the post-barrage conditions;
2) to maintain the hydrological integrity of the river and provide for effective
drainage and flood mitigation;
3) to conserve the ecological resources of the catchments, and in particular, riparian
ecosystem, birds and wildlife, and mangrove forest;
4) to balance the needs of all forms of development (including industrial, urban and
agricultural development) with the requirements of conservation of the catchments
natural resources;
5) to assist and ensure that all relevant parties implement the principles of sustainable
development by establishing stronger links with developers, government agencies,
and the local communities; and
6) to enhance the aesthetics of the river corridor.

The Study draws together the findings and recommendations of the following (NREB,
1996):

1) Volume 2: The River Management Plan

Describe the River; its current status in respect of particularly
environmental land use conservation, water quality, vegetation,
wildlife, aquatic resources, socio-economic status, public health and
sedimentation.

2) Volume 3: Flood Mitigation Study and Report
3) Volume 4: Floating Waste management Study and Report
4) Volume 5: Urban Drainage Study and Report
5) Volume 6: Sewerage Study and Report
6) Volume 7: Institutional and Organisational Aspects and Public Health Program
2.3 Early Water Quality Issues in the Sarawak River

There are four main key issues identified in the Executive Management Plan (EMP) (NREB, 1996) mainly the water quality, land use, flood management and floating waste issue.

Based on the study above, the water quality issues generally highlight the major problems on high heavy metal, poor dissolved oxygen and wastewater pollution from pig ranching. The heavy metal readings were reported high in the upstream of Sungai Sarawak Kanan which could be attributed to waste from mines or the one processing plant at Bau. While the mine has undertaken studies and believes that there is little threat to the river from this point source there is no enforcement or monitoring programme in place to ensure sustainability of the water supply in this area and the downstream communities generally.

The general water quality modelling works predicts severe deterioration in quality as identified by poor dissolved oxygen levels in the river upstream of the barrage during dry periods. The wastewaters from piggeries are causing high bacteria levels in the river upstream of Kuching. In order to reduce the pollution levels of the discharges, regulations need to be implemented on site treatment.

2.4 Sungai Sarawak Regulation Scheme

According to Goh (2004), the original concept of a scheme to regulate the flow in Sarawak River has been attributed to the Sarawak Chief Minister in the early 1980’s. He also mentioned that, the first serious action towards implementation was made in 1990 within KTA (Sarawak) Sdn. Bhd. and the Sarawak Government on the proposed concept adopting the present configuration. This was followed up in May 1991 when consulting engineers, Rendel Palmer and Tritton (RPT) of the U.K, in association with KTA
(Sarawak) Sdn. Bhd. and H.R Wallingford was commissioned to undertake a feasibility study of the proposed Sarawak River Regulation Scheme (SSRS). The final report of this study, which incorporated comments from the steering committee appointed to oversee the study, was submitted in December 1991.

Based on EIA report (Vol 1) (JKR, 1994), the Scheme has been developed as an initial objective to reduce the sedimentation nearby coastal beaches of Pasir Pandak, Pasir Panjang and the Santubong Peninsula. Other than that, SSRS was also formulated to achieve the following objectives:

i) to improve transport links between the City of Kuching and the Sejingkat area
ii) to mitigate fluvial and tidal flooding in the City of Kuching
iii) to regulate the river water level upstream of the barrage
iv) to secure Kuching's water supply
v) to enhance the beauty of waterfront through the City

The construction of the SSRS near Kuching has been developed through a three phase time frame (Figure 2.1). The project comprises the following components:

Phase 1 : The Construction of the Bako Causeway, a rock fill dam across the Loba Santubong on the Bako Road.

Phase 2 : The Construction of the main Barrage Facility comprising:

(i) A tidal exclusion barrage of five radial gates controlling the Sarawak River,
(ii) A 125m long by 25m wide ship lock, and