CHARACTERIZATION OF FLAVIVIRUS RECOMBINANT PROTEINS

Fatimah Binti Elie

Master of Science
2012
CHARACTERIZATION OF FLAVIVIRUS RECOMBINANT PROTEINS

FATIMAH BINTI ELIE

A thesis submitted
in fulfilment of the requirements for the degree of Master of Science

Institute of Health and Community Medicine
UNIVERSITY MALAYSIA SARAWAK
2012
ACKNOWLEDGEMENTS

I would like to thank my supervisor Miss Tio Phaik Hooi for all the guidance, support and advice throughout my study. To Professor Dr. Mary Jane Cardosa, many thanks for your advice and guidance. To everyone in the lab Dr David, Dr Magdline, Yuwana, and all my labmates, thanks for supporting me. I’ll always remember us as a team. Thank you also to the staff of IHCM whom had helped kept the lab smooth running. Last but not least, I would like to thank my parents and family for their encouragement.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ABBREVIATIONS

ABSTRACT

ABSTRAK

CHAPTER 1: INTRODUCTION

1.1: Flavivirus

1.2: Genome Structure

1.3: Viral Protein
 1.3.1: Capsid protein
 1.3.2: Membrane protein
 1.3.3: Envelope protein
 1.3.4: Non-structural proteins

1.4: Dengue Viruses
 1.4.1: Transmission cycle of Dengue virus
 1.4.2: Clinical features of dengue virus infection

1.5: Japanese Encephalitis Virus
 1.5.1: Transmission cycle of JE virus
 1.5.2: Clinical features of JE virus infection

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiv</td>
</tr>
<tr>
<td>Abstrak</td>
<td>xvi</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1: Flavivirus</td>
<td>1</td>
</tr>
<tr>
<td>1.2: Genome Structure</td>
<td>2</td>
</tr>
<tr>
<td>1.3: Viral Protein</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1: Capsid protein</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2: Membrane protein</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3: Envelope protein</td>
<td>5</td>
</tr>
<tr>
<td>1.3.4: Non-structural proteins</td>
<td>6</td>
</tr>
<tr>
<td>1.4: Dengue Viruses</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1: Transmission cycle of Dengue virus</td>
<td>10</td>
</tr>
<tr>
<td>1.4.2: Clinical features of dengue virus infection</td>
<td>10</td>
</tr>
<tr>
<td>1.5: Japanese Encephalitis Virus</td>
<td>11</td>
</tr>
<tr>
<td>1.5.1: Transmission cycle of JE virus</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2: Clinical features of JE virus infection</td>
<td>16</td>
</tr>
</tbody>
</table>
1.6: West Nile Virus
 1.6.1: Transmission cycle of WN virus
 1.6.2: Clinical features of WN virus infection

1.7: Kunjin Virus
 1.7.1: Transmission cycle of Kunjin virus
 1.7.2: Clinical features of Kunjin virus infection

1.8: Murray Valley Encephalitis Virus
 1.8.1: Transmission cycle of Murray Valley encephalitis virus
 1.8.2: Clinical features of Murray Valley encephalitis virus infection

1.9: Diagnosis of Flavivirus Infection
 1.9.1: Virus Isolation
 1.9.2: Molecular Detection
 1.9.3: Serologic Diagnosis

CHAPTER 2: STATEMENT OF THE PROBLEM
2.1: Importance and Control of the Disease
2.2: Literature review of domain III
2.3: Objectives

CHAPTER 3: MATERIALS AND METHODS
3.1: Cloning and expression of envelope domain III gene of flavivirus into pET-SUMO system
 3.1.1: Amplification of Domain III DNA fragment using Polymerase Chain Reaction
3.1.2: Agarose gel electrophoresis
3.1.3: Gel extraction
3.1.4: Ligation of purified Domain III fragment into pET-SUMO vector
3.1.5: Transformation of vector into E.coli Mach-1 Competent cells
3.1.6: Colony screening
3.1.7: Miniprep plasmid extraction
3.1.8: Amplification of insert from extracted plasmid for sequencing analysis
3.1.9: Sequencing Preparation
3.1.10: Transformation of plasmid into E.coli BL21 (DE3) competent cells
3.1.11: Induction of cells for protein expression

3.2: Testing for protein expression and reactivity
3.2.1: SDS PAGE and Western Blot
3.2.2: Expression of recombinant DIII proteins
3.2.3: Reactivity Test of recombinant DIII proteins

3.3: Purification of domain III proteins using his-bind resin column
3.3.1: Cell Extract Preparation
3.3.2: Resin Preparation
3.3.3: Column Chromatography

3.4: Quantification of protein concentration

3.5: Enzyme Linked Immunosorbent Assays (ELISAs)
3.5.1: Serum Samples
3.5.2: IgG Antibody Captured ELISA (GACE)
3.5.3: Cut off value determination
3.5.4: Optimization of recombinant proteins in ELISA
3.5.5: Indirect Domain III IgG ELISA 66
3.5.6: Preparation of Cell Lysates Western Blot Strips 67
3.5.7: Immunopробing of Western Blot Strips 68
3.6: Testing of recombinant domain III proteins in latex beads agglutination assay 68
 3.6.1: Coating of Domain III Proteins on Latex Beads 68
 3.6.2: Latex Beads Agglutination Assay 69
3.7: Plaque Reduction Neutralization Test 70
 3.7.1: Media preparation 70
 3.7.2: Cell culture 70
 3.7.3: Viruses 71
 3.7.4: Preparation of pooled samples 71
 3.7.5: Neutralization test 71

CHAPTER 4: RESULTS AND DISCUSSION 73
4.1: Cloning of envelope domain III gene into pET-SUMO system 73
4.2: Target gene expression and antigenicity test 83
4.3: Purification of expressed recombinant domain III proteins 100
4.4: Quantification of protein concentration 102
4.5: Enzyme Linked Immunosorbent Assays (ELISA) 110
 4.5.1: IgG Antibody Captured ELISA (GACE) 110
 4.5.2: Optimization of recombinant proteins in ELISA 116
 4.5.3: Indirect IgG ELISA using domain III recombinant protein 121
 4.5.4: Comparison of the domain III IgG ELISA result to the GAC-ELISA 128
 4.5.5: Comparison of domain III IgG ELISA result to the western blot strips 136
4.6: Latex Beads Agglutination Assay

4.7: Plaque Reduction Neutralization Test of pooled samples

4.8: Result discussion

4.8.1: Cloning of DIII recombinant proteins into pET-SUMO system

4.8.2: Protein expression and antigenicity test

4.8.3: Purification of recombinant protein

4.8.4: Enzyme linked Immunosorbent assay (ELISA)

4.8.5: Latex beads agglutination assay

4.8.6: Plaque reduction neutralization test of pooled samples

CHAPTER 5: SUMMARY AND CONCLUSION

5.1: Summary

5.2: Conclusion

REFERENCES

APPENDIX A

APPENDIX B

APPENDIX C
LIST OF FIGURES

Figure 1.2.1: Flavivirus genome structure and expression. 3
Figure 1.4.1: Geographic distribution of dengue infection. 9
Figure 1.5.1: Geographic distribution of Japanese encephalitis virus infection. 13
Figure 1.5.2: Transmission cycle of Japanese encephalitis virus 15
Figure 1.6.1: Geographic distribution of West Nile virus infection. 19
Figure 1.6.2: Transmission cycle of West Nile virus. 21
Figure 1.7.1: Geographic distribution of Japanese encephalitis serocomplex in 2000. 24
Figure 2.2.1: Structure of envelope protein of flavivirus. 41
Figure 4.1.1: Agarose gel electrophoresis pictures of the amplified PCR products for (i) DENV 1, (ii) DENV 2, (iii) DENV 3 and (iv) DENV 4. 75
Figure 4.1.2: Agarose gel electrophoresis pictures of the amplified PCR products for (i) WNV and (ii) JEV. 76
Figure 4.1.3: Agarose gel electrophoresis of colony PCR performed on randomly picked colonies for DENV1, DENV2, DENV3 and DENV4. 80
Figure 4.1.4: Agarose gel electrophoresis of colony PCR performed on randomly picked colonies for WNV, JEV, KUNV and MVEV. 81
Figure 4.2.1: Coomassie brilliant blue stained 15% SDS-PAGE showing the expression of recombinant domain III protein for DENV 1 and DENV 2. 86
Figure 4.2.2: Coomassie brilliant blue stained 15% SDS-PAGE showing the expression of recombinant domain III protein for DENV 3 and DENV 4. 87
Figure 4.2.3: Coomassie brilliant blue stained 15% SDS-PAGE showing the expression of recombinant domain III protein of WNV and JEV. 88

vii
Figure 4.2.4: Coomassie brilliant blue stained SDS-PAGE showing the expression of recombinant domain III protein of KUNV and MVEV.

Figure 4.2.5: Western blot analysis of expressed domain III protein probed with Ni-HRP.

Figure 4.2.6: Western blot analysis of expressed domain III protein probed with Ni-HRP.

Figure 4.2.7: Western blot analysis of expressed domain III protein probed with Ni-HRP.

Figure 4.2.8: Western blot analysis of expressed domain III protein probed with Ni-HRP.

Figure 4.2.9: Western blot analysis of expressed domain III protein probed with HPR and PNR.

Figure 4.2.10: Western blot analysis of expressed domain III protein probed with HPR and PNR.

Figure 4.2.11: Western blot analysis of expressed domain III protein probed with HPR and PNR.

Figure 4.2.12: Western blot analysis of expressed domain III protein probed with HPR and PNR.

Figure 4.3.1: Analysis of purified recombinant DENV 3-DIII protein on a 15% SDS-PAGE.

Figure 4.4.1: Standard curve for BSA standards used in quantification of concentration for purified recombinant DIII proteins.

Figure 4.4.2: 12% SDS-PAGE analysis of recombinant domain III proteins.
Figure 4.4.3: Western blot analysis of recombinant domain III proteins probed with Ni-HRP.

Figure 4.4.4: Western blot analysis of purified recombinant protein.

Figure 4.5.1: Scatter plot analysis of GACE DENV IHCM versus GACE JEV IHCM.

Figure 4.5.2: Graph showing the coating amount (μg/ml) of antigens versus OD reading that were obtained from ELISA plate probed with Ni-HRP.

Figure 4.5.3: Graph showing the coating amount (μg/ml) of antigens versus OD reading that were obtained from ELISA plate probed with HPR.

Figure 4.5.4: Graph showing the coating amount (μg/ml) of antigens versus OD reading that were obtained from ELISA plate probed with PNR.

Figure 4.5.5: Scatter plot analysis of indirect DIII IgG ELISA for individual raw data of DENV1, DENV2, DENV3 and DENV4.

Figure 4.5.6: Scatter plot analysis of indirect DIII IgG ELISA for individual raw data of WNV, JEV, KUNV and MVEV.

Figure 4.5.7: Scatter plot analysis of indirect DIII IgG ELISA.

Figure 4.5.8: Scatter plot analysis of indirect DIII IgG ELISA.

Figure 4.5.9: Scatter plot analysis of GACE data and domain III ELISA data.

Figure 4.5.10: Scatter plot analysis of indirect IgG domain III ELISA for DENV 1, DENV 2, DENV 3, and DENV 4.

Figure 4.5.11: Scatter plot analysis of indirect IgG domain III ELISA for WNV, JEV, KUNV, and MVEV.

Figure 4.5.17: Western blot strips of positive E serum.

Figure 4.5.18: Western blot strips of negative serum.

Figure 4.7.1: Percentage of plaque reduction for neutralization test of DENV 1.
Figure 4.7.2: Percentage of plaque reduction for neutralization test of DENV 2.

Figure 4.7.3: Percentage of plaque reduction for neutralization test of DENV 3.
LIST OF TABLES

Table 1.9.1: Flavivirus universal upstream (mFU1) and downstream (CFD2) primers for conventional RT-PCR of dengue virus 31

Table 1.9.2: Serotype-specific probe for direct serotyping of dengue virus 31

Table 3.1.1: Name of colleague with responsible clone(s) 47

Table 3.1.2: Pairs of primers used in amplification of domain III fragment. 48

Table 3.1.3: Thermal cycling program used in amplification of domain III fragment. 50

Table 3.1.4: Ligation reagents mixture. 52

Table 3.1.5: List of vector forward and reverse primers. 54

Table 4.1.1: Summary of PCR results. 77

Table 4.1.2: Positive clones selected for sequencing analysis 82

Table 4.2.1: Summary of protein expression result 85

Table 4.4.1: Absorbance of different BSA concentration 103

Table 4.4.2: Protein concentration 105

Table 4.5.1: GACE interpretation mode. 112

Table 4.5.2: Summary of GACE result. 115

Table 4.5.3: The contingency analysis of GACE to domain III ELISA 135

Table 4.5.4: Contingency analysis of western blot to domain III ELISA. 139

Table 4.6.1: Comparison of domain III IgG ELISA and domain III agglutination assay. 141

Table 4.6.2: Comparison of GACE result and domain III agglutination assay result 142

Table 4.7.1: Comparison of end point titer for each pooled sera. 145
ABBREVIATIONS

APS ammonium persulfate
Bp base pair
BCA bicinchoninic acid
BSA bovine serum albumin
C capsid
cDNA complementary DNA
DIII domain III
DENV dengue virus
DNA deoxyribonucleic acid
dNTPs deoxnucleotide triphosphate
E envelope
ELISA enzyme-linked immunosorbent assay
ER endoplasmic reticulum
GACE IgG antibody captured ELISA
FCS fetal calf serum
HPR high dengue pooled reference sera
HRP horseradish peroxidase
IHCM Institute of Health and Community Medicine
IPTG isopropyl thiogalactosidase
JEV Japanese encephalitis virus
Kb kilobase
kDa kilodalton
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>KUNV</td>
<td>kunjin virus</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>M</td>
<td>membrane</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MVEV</td>
<td>Murray Valley encephalitis virus</td>
</tr>
<tr>
<td>NS</td>
<td>non-structural</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>prM</td>
<td>premembrane</td>
</tr>
<tr>
<td>PNR</td>
<td>pooled negative reference sera</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RO</td>
<td>reverse osmosis</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcriptase</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N' - tetramethylethylenediamine</td>
</tr>
<tr>
<td>TPB</td>
<td>tryptose phosphate broth</td>
</tr>
<tr>
<td>UHQ</td>
<td>ultra high quality</td>
</tr>
<tr>
<td>WNV</td>
<td>West Nile virus</td>
</tr>
</tbody>
</table>
ABSTRACT

The envelope protein of the flavivirus consists of three distinct domains named domain I, II, and III. Secondary structure of envelope protein shows that this protein is folded in such a way that makes the domain III protein separate from domains I and II. This has made domain III protein possible to be cloned on its own because of continuity in gene sequence compared to domains I and II which overlaps with each other. Besides that, function of domain III as a receptor binding domain and its ability to elicit neutralizing antibodies when challenged has made this protein interesting to study. Here, we cloned and expressed the domain III of eight different flaviviruses which are of DENV1-4, WNV, JEV, KUNV and MVEV. The domain III fragment was cloned into pET-SUMO cloning vector and the expression was done in a bacterial expression system. All the domain III proteins were expressed as a fusion protein to histidine-tag protein. The expression of domain III was confirmed by probing a western blot with Ni-HRP which detects the presence of his-tag in the recombinant protein. The reactivity test done on these recombinant domain III proteins had shown that they were reactive when probed with high positive pooled dengue reference sera (HPR). These domain III proteins were then purified using nickel affinity chromatography before characterization work were performed. The purified products were tested in indirect IgG ELISA and the results were compared to the GACE which uses native antigens. The result shows that the sensitivity of domain III based assay is only 55.28%, however the specificity is 91.70%. The domain III proteins were also tested in latex beads agglutination assay, however results were worse in terms of sensitivity and specificity. The results obtained suggest that domain III is not a good candidate for use in diagnostic assay in place of authentic antigen. However, due to the simpler work involve in constructing the
recombinant protein, its still can be used for other various functional studies. Interestingly, neutralization test using domain III positive pooled serum shows nearly 10 fold higher neutralizing antibodies titer compared to domain III negative pooled, indicating that this domain might be a good candidate in developing an antiviral agent or vaccine for preventing the infections by flavivirus.
keputusan yang diperolehi menunjukkan bahawa protei domain III tidak begitu sesuai untuk penggunaan dalam asai diagnostik. Walau bagaimanapun, disebabkan protei rekombinan ini lebih mudah untuk disediakan, maka ia masih boleh digunakan untuk kajian-kajian berfungsi yang lain. Menariknya, ujian peneutralan menggunakan sampel positif domain III memberikan hampir 10 kali ganda titer antibodi peneutralan dibandingkan dengan sampel negatif domain III. Ini menunjukkan bahawa, domain ini mungkin boleh digunakan untuk menghasilkan ejen antivirus ataupun vaksin bagi menghalang jangkitan oleh virus flavi.
CHAPTER 1: INTRODUCTION

1.1: Flavivirus

Flaviviruses are small single-stranded positive-sense RNA viruses that are transmitted primarily by arthropods, usually mosquitoes and ticks. The genus, once classified in the family Togaviridae, now constitutes one of three genera in the family Flaviviridae; the other two genera are Pestivirus and Hepacivirus. Viruses within the genus are categorized into clades, clusters, and species, according to molecular phylogenetics or into antigenic complexes and subcomplexes based on classic serological criteria (Calisher et al., 1989). Phylogenetic analyses of the 72 species of flaviviruses have shown 14 clades, which in turn can be grouped into three clusters: the mosquito-borne cluster, the tick-borne cluster and the no-vector cluster. However, all flaviviruses of human importance belong to the first two clusters (Kuno et al., 1998).

Flaviviruses can cause a variety of syndromes ranging from benign febrile illness to severe systemic diseases with hemorrhagic fever or major organ involvement. Entities of major global concern include dengue virus (DENV) with its associated dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), Japanese encephalitis virus (JEV), West Nile virus (WNV), and Yellow Fever virus (YFV). Other flaviviruses of regional or endemic concern include Murray Valley encephalitis virus (MVEV), St. Louis encephalitis virus (SLEV), and tick-borne encephalitis virus (TBEV). Decreases in mosquito control efforts during the latter part of the 20th century, coupled with societal factors (e.g., increased transportation and
dense urbanization) have contributed to the re-emergence of flaviviruses such as DENV in South and Central America (Lindenbach et al., 2007). More recently, other flaviviruses have emerged in new geographic regions and caused epidemics of human and/or animal disease, for example the introduction and subsequent spread of West Nile virus (WNV) in North America (Kilpatrick et al., 2006).

1.2: Genome Structure

The genome of flaviviruses is a single-stranded molecule, positive sense RNA of about 11 kb in size. This molecule contains a short untranslated region at 3' and 5' ends, which are known as the non-polyadenylated 3' terminus and the 5' cap (Wengler and Wengler, 1981). Flavivirus proteins are produced by translation of a single, long open reading frame (ORF) to generate a polyprotein. There are also a complex series of post-translational proteolytic cleavages of the polyprotein which are achieved by a combination of host and viral proteases, to generate mature viral proteins. The viral polyprotein is cleaved to generate three structural proteins (capsid, C; membrane protein, prM/M; and envelope, E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) (Sumiyoshi et al., 1987). The structural proteins are presented in the N-terminal region of the polyprotein, while the non-structural proteins are located in the C-terminal region of the polyprotein. Figure 1.2.1 shows the details of flavivirus genome structure.
Figure 1.2.1: Flavivirus genome structure and expression. A: Genome structure and RNA elements. The viral genome is depicted with the structural and nonstructural protein coding regions, the 5' cap, and the 5' and 3' noncoding regions (NCR) indicated. B: Polyprotein processing and cleavage products. Boxes below the genome indicate precursors and mature proteins generated by the proteolytic processing cascade. C: The proposed topology of the flavivirus polyprotein cleavage products with respect to the endoplasmic reticulum (ER) membrane is shown (reproduced from Lindenbach et. al., 2007).
1.3: Viral Protein

1.3.1: Capsid protein

The molecular mass of capsid (C) protein is approximately 11kDa. It is a highly basic or positively charged protein. Charged residues are clustered at the N- and C-termini, separated by an internal hydrophobic region that mediates membrane association (Ma et al., 2004). The capsid protein also contains a C-terminal hydrophobic anchor that functions as a signal peptide for endoplasmic reticulum (ER) translocation of prM. This hydrophobic region is cleaved from mature C by the viral serine protease (Lobigs, 1993).

1.3.2: Membrane protein

There are two forms of membrane protein, the precursor of M protein (prM) and membrane protein (M). The prM protein is a glycoprotein of about 26kDa. It is found in the intracellular immature virions and translocated into the ER by the C-terminal hydrophobic domain of capsid protein. A major function of prM protein is to prevent envelope (E) protein from undergoing acid-catalyzed rearrangement during transit through the secretory pathway. M protein is a much smaller protein of about 7-8 kDa in size. It is located in extracellular mature virions. The conversion of immature virus particles to mature virions occurs in the secretory pathway, together with cleavage of prM into pr- and M fragments. The cleavage of prM results in the
rearrangement of the virion surface, which makes the mature virions infectious (Wengler and Wengler, 1989).

1.3.3: Envelope protein

Envelope (E) protein is the major protein on the surface of flavivirus virions. The size of E protein is about 53kDa and it is synthesized as a type 1 membrane protein containing 12 conserved cysteines that form disulfide bonds (Nowak and Wengler, 1987)). Secretion of E protein together with proper folding and stabilization in low pH, is depends on the coexpression with the prM protein (Konishi and Mason, 1992). This protein is glycosylated in all flaviviruses except in Kunjin and West Nile virus. The native form of E folds into an elongated structure which is rich in β-sheets. This structure will form a head to tail homodimers that lie parallel with the virus envelope (Rey et. al., 1995). Each subunit of E protein consists of three distinct domains (I, II, III). Domain I, which forms a β-barrel, contains type-specific nonneutralizing epitopes and is believed to be the hinge region engaged in low-pH induced structural changes. Domain II, an elongated dimerization domain, involves in cell membrane fusion following virus entry and contains many cross-reactive epitopes eliciting neutralizing and nonneutralizing monoclonal antibodies. Domain III which maintains an immunoglobulin-like fold, involves in receptor binding and contains multiple type and subtype-specific epitopes eliciting virus neutralizing antibodies (Rey et. al., 1995; Crill and Roehrig, 2001).