Energy-Efficient Traffic-Aware Street Lighting Using Autonomous Networked Sensors

by

Sei Ping Lau

Thesis for the degree of Doctor of Philosophy

January 2016
Street lighting is a ubiquitous utility. It does not only illuminate the streets during the night but also helps to prevent crime and traffic collisions. However, to sustain its operation is a heavy burden both financially and environmentally. Because of this, several initiatives have been proposed to reduce its energy consumption. However, most initiatives are mainly aimed at energy conservation and have given little consideration about the usefulness of street lighting.

A Streetlight Usefulness Model, an evaluation metric used to measure the usefulness of street lighting to road users, is proposed. Using StreetlightSim, a real-time co-simulation environment developed as part of this research, the energy efficiency and usefulness of six existing street lighting schemes have been evaluated. Their performances were used as baseline results which later justified the proposal of Traffic-aware Lighting Scheme Management Network (TALiSMaN). Simulation results show that TALiSMaN can achieve comparable or improved usefulness (> 90%) to existing schemes, while consuming as little as 1 – 55% of the energy required by existing schemes.

To consider the limitation of ‘off-grid’ streetlights – those powered locally by renewable energy, TALiSMaN has been enhanced with an energy demand predictor to ensure that a limited energy budget can be used fairly throughout the whole night. This enhanced scheme is known as TALiSMaN-Green. Combined with knowledge of the amount of energy stored, and predicting sunrise times, TALiSMaN-Green modulates the lighting levels requested by TALiSMaN if the energy stored is predicted to be insufficient for an entire night. The results show that this scheme extends the operational lifetime of solar-powered streetlights from 2 to 16 hours. Evaluated with real traffic flow and solar readings, TALiSMaN-Green can maintain streetlight usefulness at 60 – 80% (mean = 73% with standard deviation of 9%). In comparison, the streetlight usefulness of TALiSMaN was reduced to below 30%.
Contents

List of Figures ix
List of Tables xiii
Declaration of Authorship xv
Acknowledgements xvii
Abbreviations xix
Nomenclature xxi

1 Introduction 1
1.1 Research Justification ... 3
1.2 Research Questions ... 4
1.3 Research Contributions ... 4
1.4 Published Papers ... 5
1.5 Structure of the Thesis ... 6

2 Effective and Efficient Street Lighting 7
2.1 Effective Street Lighting ... 7
2.1.1 Recommendations and Standards 8
2.1.2 A Motorist’s Perspective 9
2.1.3 A Pedestrian’s Perspective 10
2.1.4 Discussion and Summary 12
2.2 Energy Efficient Street Lighting 14
2.2.1 Light Sources ... 14
2.2.2 Lighting Level Control ... 15
2.2.2.1 Time-based .. 15
2.2.2.2 Sensor-based ... 17
2.2.2.3 Artificial Intelligence 20
2.2.3 Renewable Energy .. 22
2.2.4 Discussion and Summary 24
2.3 Introduction to Networked Street Lighting 25
2.3.1 Long-Range Wireless Communication 29
2.3.2 Short-Range Wireless Communication 29
2.3.2.1 IEEE 802.15.4 / ZigBee 29
2.3.2.2 Routing Protocol .. 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3 Discussion and Summary</td>
<td>34</td>
</tr>
<tr>
<td>2.4 Modelling and Simulating the Networked Street Lighting System</td>
<td>35</td>
</tr>
<tr>
<td>2.4.1 Simulating Communication Network</td>
<td>35</td>
</tr>
<tr>
<td>2.4.2 Simulating the Road Users</td>
<td>36</td>
</tr>
<tr>
<td>2.4.3 Simulating Streetlight Operation</td>
<td>38</td>
</tr>
<tr>
<td>2.4.4 Discussion and Summary</td>
<td>40</td>
</tr>
<tr>
<td>2.5 Research Gaps</td>
<td>41</td>
</tr>
<tr>
<td>3 StreetlightSim: A Tool for Evaluating Street Lighting schemes</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Quantifying the Usefulness of Street Lighting</td>
<td>43</td>
</tr>
<tr>
<td>3.1.1 A Motorist’s Perspective</td>
<td>44</td>
</tr>
<tr>
<td>3.1.2 A Pedestrian’s Perspective</td>
<td>45</td>
</tr>
<tr>
<td>3.2 StreetlightSim: A Simulation Environment to evaluate Networked and Adaptive Street Lighting</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1 Overview of StreetlightSim</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1.1 Bidirectional Coupling</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1.2 Road Traffic Profile</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1.3 Lamppost</td>
<td>51</td>
</tr>
<tr>
<td>3.2.1.4 Road User</td>
<td>53</td>
</tr>
<tr>
<td>3.2.2 Model Validation</td>
<td>53</td>
</tr>
<tr>
<td>3.2.2.1 Road Traffic Profile</td>
<td>53</td>
</tr>
<tr>
<td>3.2.2.2 Energy Model</td>
<td>54</td>
</tr>
<tr>
<td>3.2.2.3 Streetlight Usefulness Model</td>
<td>56</td>
</tr>
<tr>
<td>3.3 Evaluating State-of-the-art Street Lighting Schemes</td>
<td>58</td>
</tr>
<tr>
<td>3.3.1 Simulation Setup</td>
<td>59</td>
</tr>
<tr>
<td>3.3.1.1 Existing Lighting Schemes</td>
<td>59</td>
</tr>
<tr>
<td>3.3.1.2 Streetlights</td>
<td>59</td>
</tr>
<tr>
<td>3.3.1.3 Road Traffic Profile</td>
<td>60</td>
</tr>
<tr>
<td>3.3.2 Simulation Results</td>
<td>62</td>
</tr>
<tr>
<td>3.3.2.1 Streetlight Usefulness Experienced by Road Users</td>
<td>62</td>
</tr>
<tr>
<td>3.3.2.2 Energy Consumption</td>
<td>66</td>
</tr>
<tr>
<td>3.3.3 Limitation</td>
<td>67</td>
</tr>
<tr>
<td>3.4 Summary</td>
<td>67</td>
</tr>
<tr>
<td>4 TALiSMaN: A Traffic-Aware Lighting Scheme</td>
<td>69</td>
</tr>
<tr>
<td>4.1 Concept of TALiSMaN</td>
<td>70</td>
</tr>
<tr>
<td>4.2 Operation and Implementation of TALiSMaN using Autonomous Networked Sensors</td>
<td>71</td>
</tr>
<tr>
<td>4.2.1 System Operation</td>
<td>71</td>
</tr>
<tr>
<td>4.2.2 Adjusting the Lighting Level</td>
<td>72</td>
</tr>
<tr>
<td>4.2.2.1 Modulation of Lighting Level Based On Detected Pedestrians</td>
<td>73</td>
</tr>
<tr>
<td>4.2.2.2 Modulation of Lighting Level Based On Detected Motorists</td>
<td>74</td>
</tr>
<tr>
<td>4.2.2.3 Combined Pedestrian-Motorist Light Level Modulation</td>
<td>75</td>
</tr>
<tr>
<td>4.2.3 Accommodating the Void Region</td>
<td>76</td>
</tr>
<tr>
<td>4.3 Evaluating the Performance of TALiSMaN</td>
<td>76</td>
</tr>
<tr>
<td>4.3.1 Simulation Setup</td>
<td>76</td>
</tr>
</tbody>
</table>
4.3.1.1 Wireless Sensor Node .. 77
4.3.1.2 Routing Protocol ... 78
4.3.2 Simulation Results .. 79
 4.3.2.1 Streetlight Usefulness Experienced by Road Users 80
 4.3.2.2 Energy Consumption .. 83
4.4 Summary .. 91

5 Energy-Neutral Lighting with Predictive and Adaptive Behaviour 97
 5.1 Limitation of TALiSMaN ... 98
 5.2 Overview of TALiSMaN-Green 99
 5.3 Low-Complexity Online Predictors 102
 5.3.1 Naïve .. 102
 5.3.2 Simple Moving Average 103
 5.3.3 Fixed Weighted Moving Average 103
 5.3.4 Exponentially Weighted Moving Average 104
 5.3.5 Evaluating Low-Complexity Online Predictors in Estimating
 the Energy Demand of TALiSMaN 104
 5.3.5.1 Resolution of N Value 106
 5.3.5.2 D Value .. 108
 5.3.5.3 Data Aggregation Strategy 110
 5.3.5.4 Weighting Factor 111
 5.3.6 Prediction Overhead ... 114
 5.3.7 Predictor Selection .. 117
 5.4 Sunrise Time Estimator ... 118
 5.5 Evaluating the Performance of TALiSMaN-Green 119
 5.5.1 Case Study A: Controlled Experiments 120
 5.5.1.1 Modulation of Lighting Level 120
 5.5.1.2 Operational Lifetime of Streetlights 121
 5.5.1.3 Usefulness of Street Lighting 122
 5.5.2 Case Study B: Real Traffic Flow and Solar Radiation
 Readings .. 124
 5.5.2.1 Modulation of Lighting Level 127
 5.5.2.2 Operational Lifetime of Streetlights 128
 5.5.2.3 Usefulness of Street Lighting 129
 5.6 Summary .. 130

6 Conclusions and Future Work 133
 6.1 Conclusions .. 133
 6.2 Future Work ... 136

A Selected Publications 139

B Performance of IEEE 802.15.4 in TALiSMaN 141

C Shapiro-Wilk Normality Test 143

References 145
List of Figures

2.1 The performance of vehicle headlamps. ... 10
2.2 The apparent colour of objects under a light source with (a) low, and (b) high CCT values. ... 11
2.3 Different street lighting distributions. .. 13
2.4 Prices of electricity for non-domestic use between 2004 – 2013. 14
2.5 Part-night operation of some of the streetlights in Polesworth, Warwickshire. 16
2.6 A typical lighting adjustment during different operational hours of (a) Philips Chronosense and (b) Philips Dynadimmer. 17
2.7 (a) A streetlight fitted with a photo electric control unit; (b) Typical PECUs. 18
2.8 Solar-powered streetlights. ... 23
2.9 Tools for reporting a faulty streetlight: (a) web form, and (b) a note for the public to report a faulty streetlight. 27
2.10 IEEE 802.15.4 superframe structure. ... 31
2.11 The operation of coordinated depth forwarding. 33
2.12 A screenshot of SUMO’s graphical user interface. 37
2.13 Architecture of PKU-STRAW-L. ... 39
2.14 A linear topology consists of ten streetlights 39

3.1 Block diagram of StreetlightSim. ... 48
3.2 Vehicular traffic distribution ratio: (a) based on the days of week, and (b) aggregated by weekend and weekday. 49
3.3 The beam patterns in (a) rectangular and (b) circular form at a bend road. 52
3.4 A snapshot of Java OpenStreetMap Editor. 52
3.5 Simulation results showing the weekday and weekend traffic distribution generated by StreetlightSim at $V_{comb} = 3508$ road users per day. 54
3.6 Traffic distribution ratio of simulated traffic against the data from Department for Transport. ... 55
3.7 Simulation results show the mean of the pedestrian traffic composition is about 14%, while the road traffic model is validated with different traffic volumes. 56
3.8 Simulation results showing cumulative energy consumed by 112 streetlights while operating different lighting schemes. 57
3.9 The distance between the beam patterns of streetlights s_1 and s_5 are considered for usefulness evaluation. ... 58
3.10 Lighting scenario used to validate the streetlight usefulness model. 58
3.11 Simulation results showing the streetlight usefulness from (a) a pedestrian’s perspective, and (b) a motorist’s perspective. 59
3.12 Process flow for using StreetlightSim. .. 60
3.13 The locations of the streetlights and road network considered during the simulation. 61
3.14 The IQRs of mean streetlight usefulness experienced by simulated road users, while streetlights are operating: (a) Conventional, and (b) Part-night lighting schemes. 63
3.15 The IQRs of mean streetlight usefulness experienced by simulated road users while streetlights are operating: (a) Philips Chronosense, and (b) Philips Dynadimmer. 64
3.16 The IQRs of mean streetlight usefulness experienced by simulated road users, while streetlights are operating traffic-aware lighting schemes: (a) Multi-Sensor, and (b) Zoning. 65
3.17 Mean weekly energy consumption of 112 streetlights while operating various street lighting schemes from 16:00 to 08:00 the next day. 66

4.1 TALiSMaN operation state machine during streetlight operational hours. .. 72
4.2 A lit road segment developed after a pedestrian is detected while streetlights operating TALiSMaN. 74
4.3 A lit road segment developed after a motorist is detected while streetlights operating TALiSMaN. 75
4.4 Effect of different additional packet generation times of ‘Lamp Off’ state on the energy consumption of 112 streetlights. 80
4.5 The dynamics of lit road segments (from top view) when a pedestrian is travelling from left to right. 80
4.6 Power output modulation of a streetlight during operational hours from 16:00 until 08:00 the next day when TALiSMaN is evaluated with $V_{comb} = 3508$ road users per day. 81
4.7 The IQRs of mean streetlight usefulness experienced by simulated road users, while streetlights are operating (a) TALiSMaN, (b) Conventional and (c) Zoning schemes during different operational hours. 82
4.8 Mean weekly energy consumption of 112 streetlights while operating various street lighting schemes from 16:00 to 08:00 the next day. 84
4.9 Energy consumed by 112 streetlights with different pedestrian-motorist ratios between 17:00 and 18:00 while operating different traffic-aware lighting schemes. 87
4.10 Energy consumed by 112 streetlights with different pedestrian-motorist ratios between 02:00 and 03:00 while operating different traffic-aware lighting schemes. 88
4.11 Energy consumed by 112 streetlights with different motorist speeds between 17:00 and 18:00 while operating Multi-sensor and TALiSMaN lighting schemes. 92
4.12 Energy consumed by 112 streetlights with different motorist speeds between 17:00 and 18:00 while operating Multi-sensor and TALiSMaN lighting schemes. 93
4.13 Weekly energy consumption of 112 streetlights for different months of the year. 94

5.1 The performance of TALiSMaN whilst operating with 50% of the energy required for a 16-hour lighting operation. 99
5.2 System overview of TALiSMaN-Green. 100
5.3 The streetlight topology considered for the evaluation of energy demand predictors. .. 105
5.4 The IQRs of the MAE values for various predictors at different \(N \) values. .. 108
5.5 The \(D \) values for (a) SMA and (b) EWMA at different traffic volumes and data aggregation strategies that yield the minimum MAE values (3rd quartiles) with \(N = 288 \). 109
5.6 The IQRs of the MAE values for various predictors using different data aggregation strategies at different traffic volumes. .. 111
5.7 The IQRs of the MAE for FWMA with different weighting factors at \(N = 288 \) and PDD data aggregation strategy. 112
5.8 The IQRs of the MAE values for EWMA with different weighting factors at \(N = 288 \), and whilst the data is aggregated with DoW strategy. 113
5.9 Amount of mathematical operations required for different predictors to search for the \(N, D \), weighting factor and data aggregation strategy. 115
5.10 The memory footprint for various predictors at \(N = 288 \) against available memory configurations of a typical sensor node whilst historical data is aggregated with different strategies. 116
5.11 \(I_{sel} \) of various predictors at different \(\alpha_{sel} \) values. .. 118
5.12 The estimated sunrise times with different \(D \) values 119
5.13 The mean MAE of Naïve and SMA predictors at different \(D \) values in estimating the next sunrise time. 120
5.14 The IQRs and mean values of the conditioning factor whilst TALiSMaN-Green is evaluated with different available energy levels required by TALiSMaN for a complete night. 121
5.15 The conditioning factors of a streetlight at different prediction timeslots between 16:00 and 08:00 the next day. 122
5.16 Simulation results showing the number of depleted solar-powered streetlights whilst operating (a) TALiSMaN and (b) TALiSMaN-Green at different energy levels required to operate TALiSMaN for a complete night. 123
5.17 Simulation results showing the mean streetlight usefulness experienced by simulated road users using (a) TALiSMaN and (b) TALiSMaN-Green with different energy levels required to operate TALiSMaN for a complete night. 124
5.18 Location of real traffic flow. .. 125
5.19 Normalised traffic profiles during (a) weekdays and (b) weekends observed at Salisbury Road, Southampton, UK between 16-02-2015 and 22-03-2015. 126
5.20 Distribution of \(E_{stored} \) of the solar-powered streetlights before a 16-hour lighting operation. .. 127
5.21 The IQRs and mean values (dot) of the conditioning factors whilst TALiSMaN-Green is evaluated with (a) \(E_{stored} \) value of 90% in Case Study A, and (b) real traffic flow and solar radiation readings. 128
5.22 The conditioning factors of a streetlight during different operational times and days. .. 128
5.23 Simulation results showing the number of depleted solar-powered streetlights during operational hours from 16:00 to 08:00 the next morning whilst operating TALiSMaN and TALiSMaN-Green. 129
5.24 Simulation results showing mean streetlight usefulness experienced by simulated road users using TALiSMaN and TALiSMaN-Green. 130
B.1 Packet loss ratio of the refined packet flooding whilst TALiSMaN is evaluated with different traffic volumes. 142
B.2 End-to-end delay of the refined packet flooding whilst TALiSMaN is evaluated with different traffic volumes. 142
List of Tables

2.1 Summary of street lighting standards used in various countries 8
2.2 Required preview distance for different manoeuvre when travelling at different traffic speeds. .. 9
2.3 Lamp technology comparison according to luminous efficacy and their mean lamp service life. ... 15
2.4 Street lighting control techniques and their performance. 26
2.5 Communication technologies in networked street lighting systems. 28
2.6 Advantages and limitations of WSN and PLC in networked streetlight application. ... 30
3.1 Traffic weighting factors according to different days of the week 50
3.2 Streetlight operations for energy model validation. ... 56
3.3 Summary of evaluated street lighting schemes. ... 61
4.1 The relationship between road users’ distance and streetlight lighting levels. 71
4.2 Sensor parameters and values. ... 77
4.3 IEEE 802.15.4 parameters and their values. ... 77
4.4 Significance (2-tailed) p-value of U-test on different traffic volume pairs for Multi-sensor, Zoning and TALiSMaN lighting schemes. 84
4.5 Significance (2-tailed) p-value of U-test on different pedestrian-motorist ratio pairs during streetlight operational hour between 17:00 – 18:00. 89
4.6 Significance (2-tailed) p-value of U-test on different pedestrian-motorist ratio pairs during streetlight operational hour between 02:00 – 03:00. 89
4.7 Significance (2-tailed) p-value of U-test on different motorist speed pairs during streetlight operational hour between 17:00 – 18:00. 90
4.8 Significance (2-tailed) p-value of U-test on different motorist speed pairs during streetlight operational hour between 02:00 – 03:00. 91
5.1 Significance (2-tailed) p-value of U-test on different resolution pairs of N value to different energy demand predictors. 107
5.2 Significance (2-tailed) p-value of U-test on different data aggregation strategy pairs to different energy demand predictors and traffic volumes. . 110
5.3 Significance (2-tailed) p-value of U-test on weighting factor ‘Left’, ‘Even’ and ‘Right’ to FWMA energy demand predictor at different traffic volumes. 112
5.4 Significance (2-tailed) p-value of U-test on weighting factor ranging from 0.0 to 1.0 to EWMA energy demand predictors at different traffic volumes. 114
5.5 The N, D, data aggregation strategy and weighting factor that yield the most accurate energy demand prediction for Naïve, SMA, FWMA, and EWMA predictors and their respective MAE values at different traffic volumes. .. 115

C.1 Statistical result of S-W normality test for energy consumed by the traffic-aware lighting schemes at different pedestrian-motorist ratios during street-light operational hour 17:00 – 18:00. .. 143

C.2 Statistical result of S-W normality test for mean absolute error given by FWMA and EWMA energy demand predictors at different weighting factors, α, and traffic volumes. .. 144
Declaration of Authorship

I, Sei Ping Lau, declare that the thesis entitled *Energy-Efficient Traffic-Aware Street Lighting Using Autonomous Networked Sensors* and the work presented in the thesis are both my own, and have been generated by me as the result of my own original research. I confirm that:

- this work was done wholly or mainly while in candidature for a research degree at this University;
- where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
- where I have consulted the published work of others, this is always clearly attributed;
- where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
- I have acknowledged all main sources of help;
- where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
- parts of this work have been published as listed in Section 1.4

Signed:...

Date:..

Date:..
Acknowledgements

Undertaking this doctoral journey has been a life-changing experience and it would not have been achievable without the support that I have received from many people.

First and foremost, my sincere gratitude to my supervisory team, Geoff Merrett, Alex Weddell, and Prof Neil White for their supervision, encouragement and support. It was an honour to be able to work with them. I am especially grateful to Geoff and Alex for their constant feedback, having confidence in my work and inspiring me to achieve more than I could imagine.

I gratefully acknowledge the Ministry of Education, Malaysia and Universiti Malaysia Sarawak for granting me the opportunity to further my studies at the University of Southampton. Also, I am thankful for the research facilities provided by the School of Electronics and Computer Science, and for the use of the IRIDIS High Performance Computer Facility throughout my studies at Southampton.

My thanks also go to my friends in the ESS group, especially Teng Jiang and Huma Zia, who were always there for discussion and advice. Outside of my studies, I am especially lucky to have Chong Eng Tan, and my cousin Marlene Lee and her family for bringing joyful festival seasons to my family.

Finally, thanks to my parents for giving me strength and support over the past four years. Special acknowledgement must go to my wife, Mei Ching for being extremely patient and accommodating during my studies. Lastly, thanks to my two wonderful children, Denise and Ethan who are always putting a smile on my face.

With the oversight of my supervisory team, this thesis has been proofread and edited by Jane L. Watson of JLW Proofreading Services. However, no of intellectual content were made as a result from this service.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADF</td>
<td>Annual average daily traffic flow</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial intelligence</td>
</tr>
<tr>
<td>AODV</td>
<td>Ad hoc on demand distance vector algorithm</td>
</tr>
<tr>
<td>ARIMA</td>
<td>Auto-regressive integrated moving average</td>
</tr>
<tr>
<td>CAP</td>
<td>Contention access period</td>
</tr>
<tr>
<td>CCT</td>
<td>Correlated colour temperature</td>
</tr>
<tr>
<td>CDF</td>
<td>Coordinated depth forwarding protocol</td>
</tr>
<tr>
<td>CEN</td>
<td>European Committee for Standardization</td>
</tr>
<tr>
<td>CFP</td>
<td>Contention free period</td>
</tr>
<tr>
<td>CIE</td>
<td>International Commission on Illumination</td>
</tr>
<tr>
<td>CRI</td>
<td>Colour rendering index (also known as R_a)</td>
</tr>
<tr>
<td>CSMA-CA</td>
<td>Carrier sense multiple accesses with collision avoidance</td>
</tr>
<tr>
<td>DfT</td>
<td>Department for Transport, UK</td>
</tr>
<tr>
<td>DoW</td>
<td>Day-of-Week data aggregation strategy</td>
</tr>
<tr>
<td>EWMA</td>
<td>Exponentially weighted moving average</td>
</tr>
<tr>
<td>FB</td>
<td>IEC 61499 Function block</td>
</tr>
<tr>
<td>FC</td>
<td>Fuel cell</td>
</tr>
<tr>
<td>FWMA</td>
<td>Fixed-weighted moving average</td>
</tr>
<tr>
<td>GGPSR</td>
<td>Geocast greedy perimeter stateless routing protocol</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>GPRS</td>
<td>General packet radio service</td>
</tr>
<tr>
<td>GPSR</td>
<td>Greedy perimeter stateless routing</td>
</tr>
<tr>
<td>GTS</td>
<td>Guaranteed time slot</td>
</tr>
<tr>
<td>HPS</td>
<td>High pressure sodium</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>JiST</td>
<td>Java in simulation time</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>MAC</td>
<td>Media access control layer</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean absolute error</td>
</tr>
<tr>
<td>MOVE</td>
<td>Mobility model generator for vehicular network</td>
</tr>
<tr>
<td>NED</td>
<td>Network description language</td>
</tr>
<tr>
<td>ns</td>
<td>Network simulator</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>OMNeT++</td>
<td>Objective modular network testbed</td>
</tr>
<tr>
<td>OTcl</td>
<td>Object tool command language</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical layer</td>
</tr>
<tr>
<td>PIR</td>
<td>Passive infrared</td>
</tr>
<tr>
<td>PKU-STRAW-L</td>
<td>Peking University street random waypoint for Lamp</td>
</tr>
<tr>
<td>PLC</td>
<td>Power line communication</td>
</tr>
<tr>
<td>PDD</td>
<td>Previous-D-Days data aggregation strategy</td>
</tr>
<tr>
<td>RREQ</td>
<td>Route request message</td>
</tr>
<tr>
<td>RT</td>
<td>Routing table</td>
</tr>
<tr>
<td>SMA</td>
<td>Simple moving average</td>
</tr>
<tr>
<td>SMS</td>
<td>Short message service</td>
</tr>
<tr>
<td>STRAW</td>
<td>Street random waypoint mobility model</td>
</tr>
<tr>
<td>SUMO</td>
<td>Simulation of urban mobility</td>
</tr>
<tr>
<td>SWANS</td>
<td>Scalable wireless ad hoc network simulation</td>
</tr>
<tr>
<td>TALiSMaN</td>
<td>Traffic-aware lighting scheme management network</td>
</tr>
<tr>
<td>TIGER</td>
<td>Topologically Integrated Geographic Encoding and Referencing</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission control protocol</td>
</tr>
<tr>
<td>TraCI</td>
<td>Traffic control interface</td>
</tr>
<tr>
<td>TraNS</td>
<td>Traffic and network simulation environment</td>
</tr>
<tr>
<td>VANET</td>
<td>Vehicular ad hoc network</td>
</tr>
<tr>
<td>Veins</td>
<td>Vehicles in network simulation</td>
</tr>
<tr>
<td>WDE</td>
<td>Weekday-Weekend data aggregation strategy</td>
</tr>
<tr>
<td>WSNs</td>
<td>Wireless sensor networks</td>
</tr>
</tbody>
</table>
Nomenclature

α_{θ} Weighting factor of road traffic volume by days of week
α_{ped} Weighting factor of time spent by a pedestrian looking at the footpath
α_{cond} Conditioning factor to the requested lighting level, φ
α_{exp} Weighting factor of exponentially weighted moving average
α_{fix} Weighting factor of fixed-weighted moving average
α_{sel} Coefficient of predictor selection metric
α_{solar} Random solar noise factor
γ Ratio of streetlight lighting level at x metres from a road user to the minimum required lighting level designated for the road where the road user is travelling on
Γ Total number of simulated road users per day
φ_{mot} Lighting level of a streetlight for detected motorist (%) φ_{ped} Lighting level of a streetlight for detected pedestrian (%) Δ_{ped} Additional pedestrian traffic composition (%) d_{approx} Approximate relative distance from a streetlight to the detected pedestrian (m) d_{avg} Average distance to the next adjacent streetlight d_{det} Euclidean distance to the nearest sensor node that detects the road user (m) d_{rad} Maximum detection range of a road-user sensor (m) E_h Lighting level on a horizontal plate (lx) E_{cap} Capacity of an energy storage device (Wh) E_{cons} Energy consumed by a streetlight (Wh) E'_{demand} Expected energy demand of a streetlight until sunrise (Wh) $E_{\text{harvested}}$ Harvested solar energy (Wh) E_{stored} Energy stored in a battery (Wh) I_{sel} Predictor selection metric P_{max} Maximum power rating (W) P_{solar} Observed solar power (W/m^2) $P_{\text{efficiency}}$ Solar power conversion efficiency (%) P_{size} Size ratio of a solar cell
\(R_a \)
Colour rendering index

\(R_{MAE} \)
Ratio of MAE to average daily energy demand of TALiSMaN at specific traffic volume

\(R_{resources} \)
Ratio of computing resources required by a predictor to available computing resources of a wireless sensor node

\(T_{BO} \)
Random number of back-off periods

\(T_{CCA} \)
Clear channel assessment period

\(t_{exp} \)
Expiration time of the state delay counter (s)

\(t_{rise} \)
Actual sunrise time

\(t_{rise}^\prime \)
Estimated sunrise time

\(U_{mot} \)
Streetlight usefulness for motorist

\(U_{ped} \)
Streetlight usefulness for pedestrian

\(U_{ped(avoid)} \)
Streetlight usefulness for pedestrian in obstacle detection, navigation and facial recognition

\(U_{ped(prospect)} \)
Streetlight usefulness for pedestrian’s perceived safety

\(V_{mot} \)
Annual average daily traffic flow for vehicular traffic (vehicles per hour)

\(V_{comb} \)
Annual average daily traffic flow with both vehicular and pedestrian traffic (road users per hour)

\(V_{\theta} \)
Average daily, or average weekday and weekend traffic volumes

\(V_{avg} \)
Average weekly traffic volume

\(z \)
Ratio of the lighting level at location \(x \) metres from a road user at time \(t \) to the lighting level required at the illumination zone where location \(x \) is located

\(Z_{ped} \)
Illumination zone of streetlight according to the relative distance to detected pedestrian
Chapter 1

Introduction

Street lighting is a ubiquitous utility that can be found in most urban areas, and is used for a number of different purposes. As street lighting improves visibility during the hours of darkness, crime detection becomes easier and the presence of authority, such as the police, becomes more visible [1]. As a result, potential offenders are likely to desist from committing crimes. For example, crimes in Dover, Bristol, Birmingham, Dudley and Stoke-on-Trent, UK have been reduced by 38% by having adequate street lighting [2]. Fear of crime discourages many people from travelling at night; one of the causes of this is dark or poorly lit roads. As a result, improved street lighting encourages more socio-economic activities during the night [3,4]. Consequently, this promotes greater road use after dark. Street lighting also has a prominent role in reducing the risk of accidents after dark by reducing traffic collisions by over 50% [5]. Compared to during daylight hours, the risk of an accident involving pedestrians on a lit road increases by 141%. For unlit roads, however, this figure rises by 360%.

Although the benefits of street lighting are clear, sustaining its operation has become a concerning issue to local governments, both financially and environmentally. Globally, there are over 90 million streetlights consuming approximately 114 TWh of energy annually [6]. This represented about 33% of the UK’s annual electricity consumption in 2012 [7], equivalent to an emission of 52 million tonnes of CO$_2$ (based on the 2012 power conversion factor of 0.46 kg/kWh [8]). With rising energy prices and rapid urbanisation, the cost of street lighting is expected to grow as the number of streetlights is predicted to increase by over 300% by 2025 [9]. For example, in 2011, Nottinghamshire County Council in the UK spent more than £5m on the energy cost for street lighting, representing a 360% increment compared to 2005 [10].

Efforts to reduce the energy cost of street lighting, and hence reduce carbon emissions, have focussed on two aspects: replacement of each streetlight’s luminaire, and its control mechanism. The replacement of end-of-life streetlights with newer and more energy-efficient luminaires has delivered significant energy savings. For example, in Thailand,
a 25 – 30% energy saving was achieved with a new High Pressure Sodium (HPS)-based luminaire [11]. Recent developments in Light-Emitting Diode (LED)-based luminaires have resulted in a further 25% power reduction, and have virtually no disadvantage/deterioration over being regularly switched, and deliver light instantly when switched on [12,13].

Conventionally the control, or ‘switching mechanism’ of a streetlight, is realised by a clock with a predefined schedule or an integrated light sensor which indicates when the surrounding environment becomes dark. Once switched on, streetlights remain lit continually throughout the night. However, this conventional or ‘always-on’ lighting scheme can result in energy wastage, especially when roads are only intermittently used and lighting at full brightness is not necessary. Examples of this include the early hours of the morning, when very low traffic volumes are expected. Owing to this, 75% of local councils in the UK have selectively dimmed or completely turned off streetlights during late and early hours when low traffic volumes are expected [14]. Warwickshire County Council in the UK anticipates an annual saving of £0.5m and about a 25% reduction in CO₂ emissions caused by street lighting, if operating their streetlights on this basis [15].

In considering the energy and CO₂ emissions that can be saved via dimming, many have adopted communication and sensing technologies to improve the control of light levels. Remote-controlled street lighting offers significant prospects for saving energy as continual adjustment of light levels is possible [16–18]. With this approach, an operator at a remote control centre performs the necessary management and regulation of streetlight operation, such as dimming for energy conservation and health monitoring of the streetlights. In some cases, light levels are autonomously adjusted based on ambient information, such as weather and traffic conditions, collected by a local sensor array [19,20]. Most of the proposed remote- and sensor-controlled street lighting approaches adopt wireless communication networks to establish a communication link between a remote control centre and an individual streetlight. Instead of sensing the traffic, Müllner and Riener [21] utilised Global Positioning System (GPS) and Internet-enabled smartphones to track the precise location of pedestrians, and hence only streetlights within a defined radius of them are turned on. Recently, the adoption of artificial intelligence (AI) techniques such as agent-based systems [18,22], fuzzy logic [23] and artificial neural networks [24] in street lighting have also been reported. The main advantage of adopting AI is to enable the self-management of the streetlights with the ability to adapt with minimum human intervention.

The mains power grid is the typical energy source used for street lighting. Although energy demand for street lighting can be reduced via dimming, a significant amount of energy is still required. Access to the mains power grid and long-range communication network is limited in some areas. There has recently been increased interest in the use of renewable or green energy sources to provide their power [25]. These ‘off-grid’ streetlights, or streetlights which are powered locally from renewable energy, are most useful in remote