DECLARATION OF ORIGINAL WORK

This declaration is made on the 18 day of JUNE year 2015.

Student’s Declaration:

I, ELVIS YOON YU JING, 35951, FACULTY OF COGNITIVE SCIENCES AND HUMAN DEVELOPMENT, hereby declare that the work entitled, IMPLEMENTING WEB CUSTOMIZATION OF 3D INTERIOR HOME DESIGN is my original work. I have not copied from any other students’ work or from any other sources with the exception where due reference or acknowledgement is made explicitly in the text, nor has any part of the work been written for me by another person.

18 JUNE 2015

Elvis Yoon Yu Jing (35951)

Supervisor’s Declaration:

I, DR. NG GIAP WENG, hereby certify that the work entitled, IMPLEMENTING WEB CUSTOMIZATION OF 3D INTERIOR HOME DESIGN was prepared by the aforementioned or above mentioned student, and was submitted to the “FACULTY” as a *partial/full fulfillment for the conferment of BACHELOR OF SCIENCE WITH HONOURS (COGNITIVE SCIENCE), and the aforementioned work, to the best of my knowledge, is the said student’s work.

Received for examination by: ___________________________ Date: ___________________________

18 JUNE 2015
(DR. NG GIAP WENG)
I declare this Project/Thesis is classified as (Please tick (√)):

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organisation where research was done)*
☒ OPEN ACCESS

I declare this Project/Thesis is to be submitted to the Centre for Academic Information Services (CAIS) and uploaded into UNIMAS Institutional Repository (UNIMAS IR) (Please tick (√)):

☒ YES
☐ NO

Validation of Project/Thesis

I hereby duly affirmed with free consent and willingness declared that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic and research purposes only and not for other purposes.
- The Centre for Academic Information Services has the lawful right to digitize the content to be uploaded into Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis if required for use by other parties for academic purposes or by other Higher Learning Institutes.
- No dispute or any claim shall arise from the student himself / herself neither a third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student himself/herself without first obtaining approval from UNIMAS.

Student’s signature: ___________________ Supervisor’s signature: ___________________
Date: 18 JUNE 2015 Date: 18 JUNE 2015

Current Address:
46 JALAN TU 27, TAMAN TASIK UTAMA, 75450, AYER KEROH, MELAKA.

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organisation with the date of restriction indicated, and the reasons for the confidentiality and restriction.
IMPLEMENTING WEB CUSTOMIZATION OF 3D INTERIOR HOME DESIGN

ELVIS YOON YU JING

This project is submitted
in partial fulfillment of the requirements for a
Bachelor of Science with Honours
(Cognitive Science)

Faculty of Cognitive Sciences and Human Development
UNIVERSITI MALAYSIA SARAWAK
(2015)
The project entitled ‘Implementing Web Customization of 3D Interior Home Design’ was prepared by Elvis Yoon Yu Jing and submitted to the Faculty of Cognitive Sciences and Human Development in partial fulfillment of the requirements for a Bachelor of Science with Honours (Cognitive Science)

Received for examination by:

(DR. NG GIAP WENG)

Date:

Grade
ACKNOWLEDGEMENTS

I would like to dedicate my special and most heartfelt thanks to my parents who have always supported me throughout my three years in UNIMAS. Their encouragement has always been my source of hope to keep me striving to my utmost when obstacles arise and endure through all hardships.

Secondly, I would also like to thank my supervisor Dr. Ng Giap Weng for giving me the opportunity to learn from you. Your guidance and words of encouragement will always be remembered. I could not have possibly made it through all of this without your support.

Lastly, I would like to thank my friends whom we share the same supervisor. Thank you Tan Pei Lin, Albert Lee, Tan Jia Ee, Yeap Mae Ling, Andrian Tam and Rollan Tadong. It has been great working together with all of you.

Without all these wonderful people, I would not have been able to achieve what I have today and my thesis would not have become a reality. Thank you once again and I am forever grateful to have met you all.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER ONE INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER TWO LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER THREE METHODOLOGY</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER FOUR SYSTEM DEVELOPMENT</td>
<td>26</td>
</tr>
<tr>
<td>CHAPTER FIVE DISCUSSION</td>
<td>43</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>53</td>
</tr>
<tr>
<td>APPENDIX A: CONSENT FORM</td>
<td>56</td>
</tr>
<tr>
<td>APPENDIX B: TASK SHEET</td>
<td>57</td>
</tr>
<tr>
<td>APPENDIX C: OPEN ENDED QUESTIONS</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 Game engines and its best function ... 12
Table 2 Comparisons between 3D game engines ... 15
Table 3 Hardware and software needed .. 21
Table 4 Task accomplishment by participants .. 42
Table 5 Feedbacks for question 1 .. 43
Table 6 Feedbacks for question 2 .. 44
Table 7 Feedbacks for question 3 .. 44
Table 8 Feedbacks for question 4 .. 45
Table 9 Feedbacks for question 5 .. 45
Table 10 Feedbacks for question 6 ... 46
LIST OF FIGURES

Figure 1 Snapshots of the Unity Web Player visualizing urban landscape ... 9
Figure 2 Users are given the option to make layout selection on the web ... 10
Figure 3 System Development Life Cycle ... 17
Figure 4 Waterfall Model System Development Cycle .. 19
Figure 5 System Flow .. 21
Figure 6 Website of The free 3D Model where the house interior is obtained 28
Figure 7 Exporting the file .. 29
Figure 8 Selecting the FBX format before saving the file and exporting it ... 29
Figure 9 The initial outlook of the home interior before any modifications 30
Figure 10 Texture materials in the project ... 31
Figure 11 Drag and drop the texture as the wall paint ... 31
Figure 12 Point light .. 32
Figure 13 Directional light ... 33
Figure 14 Dawndusk skybox ... 34
Figure 15 Creating a first person controller .. 35
Figure 16 Creating the script for coding ... 36
Figure 17 Creating the C# script for SwitchMaterials ... 38
Figure 18 C# script for SwitchMaterials ... 39
Figure 19 The box to insert materials to be switched ... 40
Figure 20 Switching the interior wall paint ... 40
Figure 21 Script for toggle object ... 41
ABSTRACT

It is common nowadays for consumers to customize their products according to their preferences before purchasing. However, home customization is currently rarely adopted in Malaysia. Custom homes are known as unique houses that are built for specific customers according to their own preferences. These specially built houses allow users to have control over the layout and design of their house so that each and every unit of the house will be different depending on the client’s wants and needs. This is to ensure that the user’s needs are fulfilled and they will be satisfied with their future house. All this would increase customer satisfaction and improve usability of the new house. Therefore, this project endeavors to implement a website where people can easily customize the internal layout and design of their house using a web application. To implement this system, Unity3D is used to create the application. Upon completion, the system will be evaluated for its usability through qualitative study.

Keywords: Unity3D, Home Customization, Architectural Walkthrough, Housing Interior
ABSTRAK

Kata-kata kunci: Unity3D, Pengubahsuaian Rumah, Perjalanan Maya Arkitektural, Ruang Dalaman Rumah
CHAPTER ONE
INTRODUCTION

Overview

Today, various products can be easily bought online according to the customer’s own preferences by just a few clicks via the internet. Furthermore, the products bought online nowadays often provide customers with the option of customizing their products. E-commerce websites such as alibaba.com, Amazon, Ebay and Zalora are a few companies that have adopted this kind of service.

Housing development too has undergone great changes. However, customizing your personal house online using 3D software is still considered a rarity in Malaysia. Hence, this project will endeavor to help people customize the interior of their own homes just by the help of the internet.

This chapter will include the introductory chapter, the background of the study, problem statements, objectives, scope of the project, value of the research, significance of the development, structure of the project, conceptual framework and the limitations of this project.

Background

Custom homes are unique houses that are built for specific customers according to their own preferences. Custom homes allow users to have control over the layout and design of their house so that each and every unit of the house will be different depending on the client’s wants and needs. In fact, the housing market in Korea has proved that in order to remain competitive, customization of homes under customer-oriented market conditions is unavoidable (Shin, An, Cho, Kim, & Kang, 2008). Even though cost-efficient high rise apartments can be widely found
in urban areas, but they pose a downside in that the design of each unit can appear the same and might not meet different customer needs (Lee & Ha, 2013). Therefore, this project aims to create a website which enables clients to design their own home or apartments before sending in their design online to receive a price quotation for their modified home.

According to Chein and Shih (2000), apartments in Taiwan are sold before construction, and hence customers are given the option to customize their own unit beforehand. When customer’s needs are taken into consideration throughout the construction process, their active role would drive the development towards a more user-centered apartment unit. Thus, making customizing homes a reality will provide a solution towards dull, repetitive urban housing environments (Lee & Ha, 2013).

In a research done by Ozaki (2003), has stated that customer satisfaction is of utmost importance in the service industry especially in the house building industry. Furthermore, Ozaki (2003) has also found that there has been a progress driven by the government in the United Kingdom to improve customer satisfaction in this industry too. As a result, customers are given the choice to tailor their own home individually so that they will be satisfied with what they have paid to get.

Problem Statement

Nowadays, looking for a home that suits everybody wants and need can prove to be quite a challenge as different people has different preferences. Furthermore, it is a well known problem that users are not playing an active role in their house design process, or at least its interior design (Cheng & Lee, 2005).
This problem is especially apparent in apartment units because throughout the whole building, the interior design of the apartment unit is usually the same. The only difference is the number of rooms and the size of the living room of each unit. Hence, customers will face problems if they wanted some modifications because they would need to hire an interior designer to make the changes that they want for their apartment unit.

The problem arises when customers need to spend extra time to hire interior designers to do their job after the whole apartment has finished construction. This is time consuming and the buyers have to wait another few weeks or even months to move into their new home.

Today, the client’s usual practice is to discuss with sales agents or hire interior designers themselves in order to customize their own home (Zhu, 2000). Clients do not have the full authority and flexibility to modify their own property.

Objectives

The objective of the project is divided into two categories. These categories are general objective and specific objectives.

General Objective

The general objective of this project is to develop a website where people can easily customize the internal layout and design of their house using the internet. Customers can easily make changes to the wall paint and objects of the housing interior.
Specific Objectives

The specific objectives are:

(i) To design and develop a website that enables users to customize their own house interior using Unity software.

(ii) To evaluate the effectiveness of the online home customization website to the users.

Scope of the Project

The scope of this project is to develop a website that enables users to customize the layout and design of their own houses by using the Unity software. The website will enable users to select from variety wall paint and even the objects in the room can also be modified.

Significance of the Development

The main significance of this study is to help clients to customize the interior of their own house, be it layout or design. Hence, this project aims to develop a website that users can choose from a variety of house type that will be constructed by a particular developer and make interior customization based on their own preferences. This is to ensure that the user’s needs are fulfilled and they will be satisfied with their future house. All this would increase customer satisfaction and improve usability of the new house.

Structure of the Project

This project consists of 5 chapters. Each of the five chapters in this research will consecutively discuss about the heart of this study, literatures related to it, system development
and also the evaluation of this whole project. The following five chapters consist of introduction, literature review, research methodology, system development, and evaluation.

Chapter 1 focuses on introduction, background, problem statement, objectives, scope of project, significance of development, structure of the project, conceptual framework and conclusion.

Chapter 2 looks into the literature review of this project. Similar researches will be discussed and will be used as the foundation of this study. The uses of the Unity software will be further looked into in this chapter.

Chapter 3 is the research methodology of this project. The main intention of this chapter is to introduce to the user the overall concept of how the system works. It contains the specifications needed to produce this system, system flow, research design and system architecture.

Chapter 4 deals with the development of this project. It consists of coding, and the implementation of this system will be explained by using screenshots from the project.

Chapter 5 will include the results and evaluation of this whole project. Participants’ suggestion will be taken into consideration to make improvements. Summarize the overall project. A conclusion will be made and future works will be discussed.
Summary

This chapter has discussed introduction, background, problem statement, objectives, scope of project, significance of development, structure of the project, conceptual framework and conclusion. In the following chapter, literature review of this project will be discussed.
CHAPTER TWO
LITERATURE REVIEW

Overview

This chapter will present an overview of the literatures related to this research. The types of engine used to create 3D building models and the applications of gaming engines in architectures will also be included in the discussion. Technical aspects that will be needed for this project’s development will also be discussed. These approaches will be discussed in order to help the users to understand the whole project better.

Custom-made Homes

According to Claiborne and Ozanne (1990), custom-made products are co-created by a producer and a consumer. The consumer would communicate either implicitly or explicitly with the producer prior to the manufacturing of the product, which would thus shape the end product.

Therefore, in order for a product to be custom-made, both the consumer and the producer must cooperate. In fact, the consumer or the producer may be an individual or a group working hand in hand together to accomplish a specific product. The producer’s influence can range from directing the process of creation to merely carrying out the consumer’s preferences. The consumer, on the other hand, can influence the product by specifying the design, size, materials, time and so forth (Claiborne & Ozanne, 1990). As far as this project is concerned, when a consumer works with an architect to create the layout of the house before the actual house is built, only then this would be referred to as a custom-made product.

By offering consumers a customized market, it has the ability to empower them the very thing they can exercise freely, which is the power to choose (Marketing News, 2006). Therefore, by offering customization, consumers can get exactly what they want and companies will be able
to charge for premium quality, and at the same time be rewarded with customer loyalty (Valenzuela, Dhar, & Zettelmeyer, 2009).

Significance of Home Customization

One of the most significant achievements of customizing the consumer’s own home is that people are given the opportunity to encode meaning into them. Consumers are not forced to accept any cultural symbols encoded by the architect or developer of the house. According to Claiborne and Ozanne (1990), consumers would customize their home based on their life experiences, in other words, home actually mirrors the cultural background and life experiences that shape the consumers themselves.

Based on the study conducted by Clairborne and Ozanne (1990), customization also represents a way for consumers to express themselves. Besides that, consumption choices pervades every aspect of an individual’s life, thus providing consumers an option for home customization would also represent an opportunity for them to extend their cultural and personal meaning into the home that they personally want. Custom-made products are in fact by the user and for the user on a personal level.

Clairborne and Ozanne (1990) also found that participants of their research who have actually lived in their own customized home indeed experienced unexpected changes in their lives that had taken place because of their new home. The meaning that they experience is personal, experiential, and symbolic. People construct their homes as they would wish to construct their lives (Clairborne & Ozanne, 1990). Henceforth, the idea of letting consumers structure their home environment to reflect the way they would like to live would be very much applicable to home and condominium buyers.
An individual can create meaning by creating a product whereas the product can shape the consumer. Clairborne & Ozanne (1990), refer to this as the reciprocal co-creation process where the experience of customization affects both the product and the consumer itself.

Using Unity Game Engine in Urban Design Study. Indraprastha and Shinozaki (2009) have conducted a study to design an urban landscape by using the Unity engine. The trend of architectural visualization nowadays has reached the point of depicting the real world as real as possible using computer generated images, if possible, even hyper-realistic. Unity engine is used because it is able to provide interactive functions and also ease of use in the context of geometry data input and output. CAD (Computer-aided design) may have been left behind by other technologies. However, game engine technology which offers more productive and effective aid for design is still uncultivated.

Figure 1. Snapshots of the Unity Web Player visualizing urban landscape.
Web Environment Supported Apartment Customization in Taiwan. According to a research done by Chien and Shih (2000), apartments in Taiwan provide buyers with the option to customize their own units until contraction takes place. However, an abundant of information exchange has to be documented between related agencies for each apartment unit. Once the purchase has been made, buyers can easily customize the interior design of their own unit. Changes can be made to the layout, finishes and also fixtures. The customization has become a very unique form of user participation of 3D home design on the web in Taiwan.

Figure 2. Users are given the option to make layout selection on the web.

Classes of Game Engines Available

As a matter of fact game engines are myriad and there is a wide range of categories that users can choose from for development. Most of the gaming engines can be broken down according to their cost. However, there are times where a gap between the cost and features may exist. Thus choosing an appropriate gaming engine for development is very crucial.

At the very top of the game engine pyramid, would be A-listed software with top notch rendering techniques. These high performance engines have the ability to render large amounts of polygons using the latest rendering techniques and thus providing the most realistic graphics on the market nowadays. In most cases, engines like these have the capability to permit visual
programming, rapid prototyping, and provide numerous interface for the users to interact with
the engine without the need to code (Birch, 2009). These engines of course come at a very high
price given its functionality and usability. Today, the more well known engines would be CryTek
and also Unreal.

Stuck between the high-end and low-end game engines consist of a huge variety of
commercial engines. They are caught in the middle, without being too expensive and also
helping users achieve moderate performance needs. Usually, game engines like these are often
tailored to a specific need. Figure 2 depicts the functions of the game engine correlating to its
best performance. However, most of these engines provide editing system that helps users to
achieve what they want. In fact, it is even more user centered since they have less features to
learn (Birch, 2009).
Table 1

Game engines and its best function

<table>
<thead>
<tr>
<th>Quest3d Suite</th>
<th>Architectural visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unity3d Engine</th>
<th>Web and Iphone development capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At the back-end of this spectrum are mostly open source engines like Orgre3d, Axiom, Crystal Space and Irrlicht (Birch, 2009). Open source engines enable users to freely make changes to the engine itself because access to its own source code is readily available. Yet, none of these engines provide users with a supported editing system which users will need to rely on pure coding to build a prototype (Birch, 2009). But then again, open source engine’s benefit is that it enables user to have complete control over the rendering pipeline (Birch, 2009).

Given the availability of game engines to choose from, it is often up to the user himself to look for an engine that works best to accomplish his task, therefore subjective to the user.
Game engines

This part of the research will be looking into the type of game engine along with its pros and cons in dealing with its application and usability. At this point of the study, four game engines will be discussed, mainly: Unity3d, Torque, C4 Engine and 3D Game Studio.

Unity3D. Unity is currently the most balanced game engine to develop web deployable content. It is cost effective and readily available to any user (Schroeder, 2011). Unity has very basic CPU requirements that can easily cater for all kinds of computer even those which were manufactured few years back. Compared to other game engines, Unity is considered more flexible than others because it can easily run on Mac and Windows OS (Unity System Requirements, n.d.).

Unity is a partially free game engine. Users can easily download them on the Unity website and start creating whatever contents that the user desire. Furthermore, developers can use Unity to create and sell any contents that they have made. But the according to the end user license agreement, a company must purchase a Unity Pro license if the profits made by the company exceeds $100,000 per annum (Unity EULA, 2013).

One of the core advantage of Unity for this research is it offers plug-ins to easily create web deployable content. Furthermore, Unity allows user to install a plug-in on their web browser to navigate through the web content online. As for the case of this research, custom home buyers can also use Unity to access their desired home online without having to travel to the actual site (Schroeder, 2011).

Torque3D. Torque is an open source game engine created by GarageGames. This engine comes with a Software Development Kit (SDK) which helps users to save time and increase efficiency in building a rendering system (Torque, 2010). In fact, for users who intend to
visualize architectural models, *Torque* combines both interior and outdoor design modules in one software package (Torque, 2010). *Torque* is written in C++ language and since it is an open source engine, users can always access to the inner functions of the code to make customization that suits their needs. Also, *Torque* supports Windows and browser-based web deployment too (Torque, 2010).

C4 Engine. *C4 Engine* is developed by Terathon Software. This is a robust engine which has the capability to support a wide variety of platforms such as Windows, Mac OS X, Linux and Playstation 4 (C4 Engine, 2014). In fact, many schools around the world has adopted *C4 Engine* in connection to games-oriented curriculum including MIT, Georgia Tech, University of Alberta and many more (C4 Engine, 2014). This engine is at the fourth place out of the four most reviewed gaming engines on the market currently (DevMaster.net, 2007). These reviews are mostly from professional developers who use gaming engine for commercial purposes.

3D Game Studio. *3D Game Studio* claims itself to be the fastest authoring system for interactive 2D and 3D applications. It supports the development of simulations, video games and also other software programs. This engine runs on three programming languages, mainly C, C++ and Delphi. However, *3D Game Studio* can only support Windows platform unlike its counterparts which can also support Mac OS and also Linux OS. The platforms that this gaming engine supports is quite low and the system is not free for downloads.