Isolation and Detection of *Burkholderia* species in Soil Sample

Lua Viana Anak Pangau
(36811)

Bachelor of Science with Honours
(Resource Biotechnology)
2015
Isolation and Detection of *Burkholderia* species in Soil Sample

Lua Viana Anak Pangau

This project is submitted in partial fulfillment of the requirements for the Degree of Bachelor of Science with Honours (Resource Biotechnology)

Supervisor: Dr. Yuwana Podin
Co-supervisor: Dr. Micky Vincent

Resource Biotechnology
Department of Molecular biology
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
2015
Acknowledgements

I am grateful to the God for the good health and well-being that were necessary to complete project. Here, I also would like to express my deep gratitude to Dr. Yuwana Podin, my research supervisor, for her patient guidance, enthusiastic encouragement and useful critiques of this research work. I wish to thank my parents for their support and encouragement throughout my study. I also place on record, my sense of gratitude to one and all, who directly or indirectly, have lent their hand in this venture.
Declaration

I hereby declare that this thesis entitled “Isolation and Detection of *Burkholderia* species in Soil Sample” is based on my original works except quotations and citation, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at Universiti Malaysia Sarawak or other institutions.

Lua Viana Anak Pangau
Resource Biotechnology Programme
Department of Molecular Biology
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
Table of contents

Acknowledgements I
Declaration II
Table of contents III
List of abbreviations V
List of tables VI
List of figures VII
Abstract 1
1.0 Introduction 2
2.0 Literature review 4
 2.1 *Burkholderia pseudomallei* 4
 2.2 Melioidosis 6
 2.3 Previous studies on *B. pseudomallei* in soil and the environment 7
3.0 Materials and Methods 9
 3.1 Materials 9
 3.1.1 Soil sampling 9
 3.1.2 Ashdown’s selective broth 9
 3.1.3 Ashdown’s selective agar 9
 3.1.4 Chromosomal DNA extraction 10
 3.1.5 PCR analysis 10
 3.1.6 Gel electrophoresis 10
 3.2 Methods 11
 3.2.1 Soil sampling 11
 3.2.2 Ashdown’s selective broth preparation 13
 3.2.3 Ashdown’s selective agar preparation 13
3.2.4 Soil sample culture
3.2.5 Chromosomal DNA extraction
3.2.6 PCR analysis and Gel electrophoresis

4.0 Results and Discussion

4.1 Sampling location parameter
4.2 Sampling site
4.3 Morphology observation
4.4 PCR analysis

5.0 Conclusion

6.0 References

7.0 Appendices

7.1 Agarose gel assay
7.2 Study form
List of Abbreviations

GPS global positioning system
ng nano gram
PCR polymerase chain reaction
spp. species
UHQ ultra high quality
UV ultra violet
μ micro
w/v weight per volume
<table>
<thead>
<tr>
<th>Tables</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.2.1</td>
<td>List of targeted sites and random sites</td>
<td>12</td>
</tr>
<tr>
<td>Table 3.2.6</td>
<td>Bur 3/4 PCR condition</td>
<td>15</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Location parameter list</td>
<td>16</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>List of targeted area and random area with their respective site number</td>
<td>18</td>
</tr>
<tr>
<td>Table 4.3.1</td>
<td>The number of subculture colony and morphology of pure colony per sample</td>
<td>19</td>
</tr>
<tr>
<td>Table 4.3.2</td>
<td>Cultures morphology for plate B</td>
<td>21</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Percentage of positive Bur 3/4 PCR for random area and targeted area</td>
<td>23</td>
</tr>
<tr>
<td>Table 7.2.1</td>
<td>Study form for Riverbank, Ulu Lubai</td>
<td>32</td>
</tr>
<tr>
<td>Table 7.2.2</td>
<td>Study form for buffer zone, Ulu Lubai</td>
<td>33</td>
</tr>
<tr>
<td>Table 7.2.3</td>
<td>Study form for pineapple orchard</td>
<td>34</td>
</tr>
<tr>
<td>Table 7.2.4</td>
<td>Study form for open forest, Ulu Lubai</td>
<td>35</td>
</tr>
<tr>
<td>Table 7.2.5</td>
<td>Study form for Hill</td>
<td>36</td>
</tr>
<tr>
<td>Table 7.2.6</td>
<td>Study form for residence area</td>
<td>37</td>
</tr>
<tr>
<td>Table 7.2.7</td>
<td>Study form for UNIMAS- student walkway</td>
<td>38</td>
</tr>
<tr>
<td>Table 7.2.8</td>
<td>Study form for Kpg. Sebayor</td>
<td>39</td>
</tr>
<tr>
<td>Figures</td>
<td>Caption</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Burkholderia spp. in Ashdown’s agar</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3.2.1</td>
<td>Sampling site location at Ulu Lubai, Limbang, Sarawak</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3.2.4</td>
<td>Bacterial culture method</td>
<td>14</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The morphology of the subculture in Ashdown’s selective agar</td>
<td>20</td>
</tr>
<tr>
<td>Figure 4.4.1</td>
<td>Agarose gel staining with SYBR® Safe dye for Bur 3/4 PCR</td>
<td>21</td>
</tr>
<tr>
<td>Figure 4.4.2</td>
<td>TTSI real-time PCR analysis</td>
<td>24</td>
</tr>
<tr>
<td>Figure 7.1.1</td>
<td>Chelex number 1-8</td>
<td>29</td>
</tr>
<tr>
<td>Figure 7.1.2</td>
<td>Chelex number 9-24</td>
<td>29</td>
</tr>
<tr>
<td>Figure 7.1.3</td>
<td>Chelex number 25-40</td>
<td>29</td>
</tr>
<tr>
<td>Figure 7.1.4</td>
<td>Chelex number 41-44</td>
<td>29</td>
</tr>
<tr>
<td>Figure 7.1.5</td>
<td>Chelex number 45-60</td>
<td>30</td>
</tr>
<tr>
<td>Figure 7.1.6</td>
<td>Chelex number 61-77</td>
<td>30</td>
</tr>
<tr>
<td>Figure 7.1.7</td>
<td>Chelex number 78-103</td>
<td>30</td>
</tr>
<tr>
<td>Figure 7.1.8</td>
<td>Chelex number 104-110</td>
<td>30</td>
</tr>
<tr>
<td>Figure 7.1.9</td>
<td>Chelex number 111-128</td>
<td>31</td>
</tr>
<tr>
<td>Figure 7.1.10</td>
<td>Chelex number 129-146</td>
<td>31</td>
</tr>
<tr>
<td>Figure 7.1.11</td>
<td>Chelex number 147 & 148</td>
<td>31</td>
</tr>
</tbody>
</table>
ABSTRACT

Melioidosis may be fatal to the infected human and the animal. Exposure to the soil with high content of *Burkholderia pseudomallei* may result in fatal infections such as melioidosis. These bacteria dominating a wide range of ecological niches and mainly found in the soil. The prevalence of *Burkholderia* spp. in soil is high in disturbed areas such as paddy field, high water content soil and the presence of animals. Therefore, in this study, we isolate the *Burkholderia* spp. from soil sampled at different areas that probably have high content of these bacteria. The soils samples then were subjected to bacterial culture using Ashdown’s broth before further analysis with PCR of the Bur 3/4 gene and type III secretion system gene. Analysis showed 58% were positive for *Burkholderia* spp. while 2% of the isolates were tested weak positive for *B. pseudomallei*.

Key words: Ashdown’s broth, *B. pseudomallei*, melioidosis, soil, Bur 3/4 gene, environmental niches.

ABSTRAK

1.0 Introduction

Burkholderia genus is a large group of bacteria comprised of more than 70 species which have been dominating a wide range of ecological niches including the environment and human respiratory tract (Coenye & Vandamme, 2003; Angus et al., 2014). The *Burkholderia* genus previously part of *Pseudomonas*, refers to a group of virtually ubiquitous Gram-negative, motile, obligatory aerobic rod-shaped bacteria including both animal and plant pathogens, as well as some environmentally important species (Estrada-de los Santos et al., 2013).

According to Coenye and Vandamme (2003), these bacteria are normally exploited for plant growth stimulation, bio-remediation and bio-control purposes. However, the different agricultural activities - crop cycle, nonstop cropping and spadework, and the presence of animals such as livestock, dogs, wallabies as well as the soil texture (red brown clay) contribute to higher presence of *Burkholderia pseudomallei* (*B. pseudomallei*) which have been shown to cause variations of microbial emergence in soil (Salles, Veen & Elsas, 2004; Kaestli et al., 2009).

The excessive concentration of *Burkholderia species* (spp.) in our surrounding causes infections in humans such as opportunistic infections in cystic fibrosis (CF) patients (Mahenthiralingam et al., 2005) and melioidosis (Chen et al., 2010). In this project, we focus on *B. pseudomallei*, the causative agent of melioidosis which cause fatal to the infected human and the cases even found in animal (Brook et al., 1997; Limmathurosakul et al., 2013).

B. pseudomallei is a sub-species of the *Burkholderia* family which is a free-living organism of water and soil (Brook et al., 1997). These bacteria are endemic in Southeast Asia and northern Australia where melioidosis is directly linked to increased rainfall and extreme weather events (Baker et al., 2011). According to Wuthiekanun et al. (2005) and Chen et al.
1.0 Introduction

Burkholderia genus is a large group of bacteria comprised of more than 70 species which have been dominating a wide range of ecological niches including the environment and human respiratory tract (Coenye & Vandamme, 2003; Angus *et al.*, 2014). The *Burkholderia* genus previously part of *Pseudomonas*, refers to a group of virtually ubiquitous Gram-negative, motile, obligatory aerobic rod-shaped bacteria including both animal and plant pathogens, as well as some environmentally important species (Estrada-de los Santos *et al.*, 2013).

According to Coenye and Vandamme (2003), these bacteria are normally exploited for plant growth stimulation, bio-remediation and bio-control purposes. However, the different agricultural activities - crop cycle, nonstop cropping and spadework, and the presence of animals such as livestock, dogs, wallabies as well as the soil texture (red brown clay) contribute to higher presence of *Burkholderia pseudomallei* (*B. pseudomallei*) which have been shown to cause variations of microbial emergence in soil (Salles, Veen & Elsas, 2004; Kaestli *et al.*, 2009).

The excessive concentration of *Burkholderia species* (spp.) in our surrounding causes infections in humans such as opportunistic infections in cystic fibrosis (CF) patients (Mahenthiralingam *et al.*, 2005) and melioidosis (Chen *et al.*, 2010). In this project, we focus on *B. pseudomallei*, the causative agent of melioidosis which cause fatal to the infected human and the cases even found in animal (Brook *et al.*, 1997; Ljmmathuotsakul *et al.*, 2013).

B. pseudomallei is a sub-species of the *Burkholderia* family which is a free-living organism of water and soil (Brook *et al.*, 1997). These bacteria are endemic in Southeast Asia and northern Australia where melioidosis is directly linked to increased rainfall and extreme weather events (Baker *et al.*, 2011). According to Wuthiekanun *et al.* (2005) and Chen *et al.*
(2010), melioidosis patients are usually recreational or occupational with exposure to mud and surface water, particularly rice farmers. The disease can be occur after bacterial contamination of the skin through contact with soil and can also cause pneumonia from inhalation of aerosolised soil particles (Hassan et al., 2010; Chen et al., 2010).

In Taiwan, up to year 2000, small cases of melioidosis were recorded and it was categorized as being acquired during travels to the endemic region and the pathogen did not have been isolated from the environment (Chen et al., 2010). However, the number of melioidosis rapidly increased after a typhoon followed by flood at Taiwan in 2005 (Chen et al., 2010). This suggest that the prevalence of *B. pseudomallei* in the environment may increase in the event of extreme weathers as reported in Taiwan (Chen et al., 2010).

Therefore, following the case in Taiwan and recent flood events in Sarawak during January 2015, the wide utilization of lands and forest such as reforestation, residential area development and farming, the isolation of *Burkholderia* spp. from soil is of interest. The objectives of this study are

1. To isolate and identify *Burkholderia* spp. from soil samples
2. To identify the factors that influence the ecology of *B. pseudomallei* in the soil

The soil was sampled from target and random sites. The soil samples was cultured with Ashdown's broth before spread onto the Ashdown's agar to get the pure culture (Kaestli et al., 2009). The pure culture then undergo polymerase chain reaction with Bur 3/4 gene to indicate the presence of the *Burkholderia* spp. in the soil sample (Payne et al., 2005).
2.0 Literature review

2.1 *Burkholderia pseudomallei*

Burkholderia pseudomallei also known as *Pseudomonas pseudomallei*, is a Gram-negative bacteria, aerobic, motile rod shape bacterium and bipolar which can infect human and animals (Payne *et al.*, 2005; Pringle, 2010 & Mahbub *et al.*, 2015). *B. pseudomallei* is endemic to Southeast Asia, northern Australia and temperate regions that border the equator, and it is the etiological agent of melioidosis in humans and animals (Coenye & Vandamme, 2003, Kaestli *et al.*, 2009, Chen *et al.*, 2010 & Lau *et al.*, 2014). According to Lau *et al.* (2014), although melioidosis is mainly endemic in Southeast Asia and northern Australia, it also has increasingly being reported in countries outside the Asia-Pacific region including India, Mauritius, United States and Africa.

B. pseudomallei is a natural saprophyte that can be isolated from soil, groundwater, stagnant streams, rice paddies and ponds, and in major natural reservoirs of the bacteria (Baker *et al.*, 2011 & Lau *et al.*, 2014). *B. pseudomallei* can infect humans and animals through skin abrasion contact with contaminated soil, ingestion and inhalation of aerosol (Coenye & Vandamme, 2003, Pringle, 2010 & Lau *et al.*, 2014). Besides, *B. pseudomallei* is a resilient organism that is capable of surviving in hostile environmental conditions including prolonged nutrient deficiency antiseptic and detergent solutions, acidic environments, a wide temperature range and dehydration but not exposure to UV light (Cheng & Currie, 2005).

According to Lau *et al.* (2014), the diagnosis of melioidosis can be difficult because it incubation period varies widely from 2 days to 26 years as the bacterium may not be readily isolated from clinical specimens. *B. pseudomallei* cultures also can misidentified between *B.*
Pseudomonas and other closely related species such as *B. thailandensis*, *B. cepacia* complex, *Pseudomonas* spp., *Burkholderia vietnamiensis*, *Stenotropomonas maltophilia* and *Chromobacterium violaceum* which can cause an infection that similar to melioidosis symptoms (Peacock et al., 2005 & Novak et al., 2006). In some regions, *B. pseudomallei* is being classified to a category B select agent by the Centers for Disease Control and Prevention (CDC) because of its high infectivity, severity of disease and environmental persistence (Novak et al., 2006).

The possible identification of colonies of *B. pseudomallei* can be made from their characteristic purple color and dry and wrinkled appearance after 24 h to 48 h of incubation on Ashdown’s selective agar (Peacock et al., 2005 & Chantratita et al., 2007). Figure 2.1 show the example of the *Burkholderia* spp. isolated from sampling site in Ashdown’s agar.

![Figure 2.1: Burkholderia spp. in Ashdown’s agar. The example of Burkholderia spp. isolate from sampling site.](image-url)
These misidentifications were caused by some biochemical identification methods which may be inaccurate and \textit{B. pseudomallei} also undergoes adaptation which altered surface expression and colony morphology that facilitates bacterial survival in vivo (Novak \textit{et al.}, 2006 \& Chantratita \textit{et al.}, 2007). Hence, molecular-based identification methods are much more accurate and specific. For instance, Novak and co-workers showed that the real-time PCR assay which targets the open reading frame 2 (\textit{orf2}) of the \textit{B. pseudomallei} type III secretion system (TTS1) exactly distinguished \textit{B. pseudomallei} from non-\textit{B. pseudomallei} (2006). In addition, Payne \textit{et al.} (2005) also described a novel PCR assay targeting the \textit{recA} gene of \textit{Burkholderia} which is able to be sequenced to differentiate both putative and known \textit{Burkholderia} spp. and Bcc nucleotide by phylogenetic analysis.

2.2 Melioidosis

Melioidosis is more common among the immunocompromised and is an increasing public health concern in endemic regions (Brook \textit{et al.}, 1997). Melioidosis is the third most common cause of death due to infectious disease after HIV/AIDS and tuberculosis as reported in northeast Thailand (Limmathurotsakul \textit{et al.}, 2013) and it is an endemic disease in tropical Australia (Kaestli \textit{et al.}, 2009) where it has been acknowledged as the common cause of fatal community acquired bacteremic pneumonia (Limmathurotsakul \textit{et al.}, 2013).

Cheng and Currie stated that Alfred Whitmore and his assistant C. S. Krishnaswami in Rangoon, Burma, in 1911 described melioidosis as a “glanders-like” disease among morphia addicts where they recognized a new organism that fulfilled Koch’s postulates for causation of
disease (2005). In 1932, Stanton and Fletcher named the melioidosis from the Greek “melis”-distemper of asses and “eidos”-resemble (Cheng & Currie, 2005).

Melioidosis has associated co-morbidities such as diabetes, renal disease and alcoholism, causing infections that can resemble typhoid, tuberculosis and malaria (Kaestli et al., 2010). According to Hassan et al. (2010), patient with diabetes mellitus constituted the major underlying risk factor for developing and dying from melioidosis. Patients with diabetes also suffered significantly more mortality from melioidosis compared to those who did not have this risk factor (Hassan et al., 2010).

2.3 Previous study on B. pseudomallei in soil and environment studies

A study by Kaestli et al. (2009) in the Northern Territory of Australia reported that B. pseudomallei has been detected in untreated water supply and connection with monsoonal rain or extreme weather event. In another study, Castle Hill in Townsville, Queensland, has been recognized as a potential reservoir for melioidosis which is directly linked to heavy rainfall and extreme weather events (Baker et al., 2011). Baker et al. found that lower part of Castle Hill contained high number of B. pseudomallei especially after heavy rainfall in wet season (2011). This is because the water flows from high places at Castle Hill sweep along these bacteria and causes the accumulation B. pseudomallei at the lower part of the hill (Baker et al., 2011).

Agricultural work activities have also been shown to expose farmer to high level of B. pseudomallei in Thailand (Chen et al., 2010 & Kaestli et al., 2009). In addition, Kaestli et al. (2009) reported that B. pseudomallei can also found during dry seasons in undisturbed and environmentally disturbed sites such as farms and residential areas.
In Malaysia, the cases were reported from patients in Johor, Pahang state and Kuala Lumpur, but the cases pattern in Kedah were unknown despite its proximity and as the largest rice growing region of the country similar to Thailand (Hassan et al., 2010). Besides that, *B. pseudomallei* also has been isolated from hospitals in the central region of Sarawak such as Bintulu, Kapit and Sibu (Podin et al., 2014).
3.0 Materials & method

3.1 Materials

3.1.1 Soil sampling

- Local auger ‘sandak’
- Hand trowel
- Zip-lock bags
- Global positioning system (GPS) unit (GPSMAP®G2S, Garmin, Kansas, USA)
- 70% ethanol
- Light proof bags/box

3.1.2 Ashdown’s selective broth

- Tryptone (Oxoid, Thermo Fisher Scientific Co., MA, USA)
- 0.1% Crystal violet (Sigma, St. Louis, MO, USA)
- UHQ water
- Colistin (Sigma, St. Louis, MO, USA)

3.1.3 Ashdown’s selective agar

- Tryptone (Oxoid, Thermo Fisher Scientific Co., MA, USA)
- Glycerol
- 1% aqueous neutral red (Sigma, St. Louis, MO, USA)
- 0.1% crystal violet (Sigma, St. Louis, MO, USA)
- Agar powder (Sigma, St. Louis, MO, USA)
- UHQ water
- Gentamicin (Sigma, St. Louis, MO, USA)
3.1.4 Chromosomal DNA extraction

Centrifuge (Eppendorf, Hamburg, Germany)

10% Chelex 100 (Bio-Rad Laboratories, CA, USA)

3.1.5 PCR analysis

HotStar Taq DNA polymerase (Qiagen, Dusseldorf, Germany)

250 μM of deoxynucleoside triphosphate (Fermentas, Thermo Scientific, PA, USA)

1x PCR buffer (including 1.5 mM MgCl₂) (Qiagen, Dusseldorf, Germany)

10 pmol of each appropriate oligonucleotide primer

10-50 ng of template DNA

3.1.6 Gel electrophoresis

1x TBE buffer Agarose powder

SYBR® Safe DNA gel stain (Invitrogen™, USA)

6x Loading Dye DNA Ruler

Bio-Rad ChemiDoc™ XRS Gel Documentation system (Bio-Rad Laboratories, USA)

Safe Imager™ Blue-Light Transilluminator
3.2 Methods

3.2.1 Soil sampling

The samples were taken from nine sites, 5 targeted sites and 4 random sites. The samples were sampled at UNIMAS and Ulu Lubai, Limbang. The samples at Ulu Lubai, as shown in the Figure 3.2.1 was sampled after flooded in January 2015 except at riverbank (before flood). The Table 3.2.1 below shows the list of targeted sites and random sites. A targeted area was described using the following parameters which indicate the probability of higher presence of *Burkholderia* spp. in soil:

a) Waterlogged and heavy clay soils (Inglis *et al.*, 2006)

b) High water containing soil - muddy, moist, clay-rich soil and pooled surface water (Kaestli *et al.*, 2009)
c) Recent soil disturbances such as excavation and plowing (Cheng & Currie, 2005; Kaestli et al., 2009)

d) Presence of animals (Kaestli et al., 2009)

Table 3.2.1: List of targeted sites and random sites

<table>
<thead>
<tr>
<th>Targeted site</th>
<th>Random site</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIMAS sewage lake</td>
<td>Riverbank, Ulu Lubai</td>
</tr>
<tr>
<td>Pineapple orchard, Ulu Lubai</td>
<td>Buffer zone, Ulu Lubai</td>
</tr>
<tr>
<td>Hill, Ulu Lubai</td>
<td>Open forest, Ulu Lubai</td>
</tr>
<tr>
<td>Residence area, Ulu Lubai</td>
<td>UNIMAS (Student walkway; Cempaka college – FEB)</td>
</tr>
<tr>
<td>Kpg. Sebayor</td>
<td></td>
</tr>
</tbody>
</table>

Upon arriving at the site, five holes were dug and the depth (15cm-30cm) was depends on the soil texture by using auger called ‘sandak’. The only exception is the sampling site at UNIMAS where 7 holes were dug. A hand trowel was been used to transfer soil into labeled zip-lock bags. The bags of soil were protected from direct sunlight as ultraviolet (UV) light had been reported to kill *B. pseudomallei* and *Burkholderia* spp.

The landscape such as water run-off, water logging, distance to stream, type of vegetation and elevation, was recorded. The point location of each hole also was recorded using a handheld global positioning system (GPS) unit (GPSMAP®G2S, Garmin, Kansas, USA). In order to prevent cross-contamination of *B. pseudomallei* between holes, the ‘sandak’ and the hand trowel were cleaned with water before sterilizing with 70% ethanol between holes. Then,
all sealed bags of soil samples were transported in light-proof bag back to the laboratory for analysis.

3.2.2 Ashdown’s selective broth preparation

15 g of tryptone (Oxoid, Thermo Fisher Scientific Co., MA, USA) was mixed together with 5 ml 0.1% crystal violet (Sigma, St. Louis, MO, USA) and 1 L of UHQ water. The mixtures were autoclaved at 121 °C for 15 minutes after preparation. Then, it was allowed to cool to 55 °C before colistin (Sigma, St. Louis, MO, USA) was added aseptically to a final concentration of 50 mg/L.

3.2.3 Ashdown’s selective agar preparation

24 g of tryptone, 64 ml of glycerol, 1% aqueous neutral red (Sigma, St. Louis, MO, USA), 8 ml of 0.1% crystal violet, 24 g of agar powder (Sigma, St. Louis, MO, USA) and 1600 ml UHQ water have been mixed and autoclaved. Then it were allowed to cool to 55 °C. Gentamicin (Sigma, St. Louis, MO, USA) was added into the agar to a final concentration of 50 mg/L. Then, the agar was poured onto Petri dishes and allowed to cool before storing at 4 °C. The plastic of Petri dish were labeled accordingly indicating the concentration of the antibiotics.

3.2.4 Soil sample culture

During soil sample culture, firstly, 20 g of soil was added into 50 ml tube containing 20 ml of deionized water. Then, the mixture was incubated at 37 °C shaking at 240 rpm for up to 39 hours. After incubation, 100 μl of the supernatant were inoculated onto Ashdown’s agar and incubated at 37 °C. Another 10 ml of the supernatant also was inoculated into 30 ml of Ashdown’s broth and incubated at 37 °C. After the second and seventh day’s post-inoculation,
10 µl loopful of surface liquid culture was streaked onto Ashdown’s agar respectively. Colonies with morphologies that resemble that of *Burkholderia* spp. were subculture onto fresh Ashdown’s agar to get pure cultures. Figure 3.2.4 below illustrates the soil sample culture method.

Bacterial culture

Figure 3.2.4: Bacterial culture method.

3.2.5 Chromosomal DNA extraction

DNA extraction were done on bacterial isolates by suspending bacterial colonies with a sterile solution containing 10% Chelex 100 (Bio-Rad, CA, USA). The suspension was boiled for 10 minutes. Then, the final supernatant were recovered after centrifugation at 10 000 rpm for 10 minutes and stored at -20°C.