SUSTAINABLE MANAGEMENT OF PALM OIL MILLS WASTES IN MALAYSIA: A CASE STUDY OF SABAH AND SARAWAK

Yahaya Saidu Madaki

Doctor of Philosophy
(Environmental Management)
SUSTAINABLE MANAGEMENT OF PALM OIL MILLS WASTES IN MALAYSIA: A CASE STUDY OF SABAH AND SARAWAK

YAHAYA SAIDU MADAKI

12010020

A dissertation submitted
In fulfilment of the requirement for the degree of Doctor of Philosophy
(Environmental Management)

Institute of Biodiversity and Environmental Conservation
Universiti Malaysia Sarawak
2015
Dedication

I dedicated this study to my family, for their patience, understanding, and encouragement, and for putting up with all of the time I spent outside Nigeria for this study.
Acknowledgement

I must, most humbly acknowledge my dedicated and dynamic supervisor, Prof. Dr. Lau Seng and my co-supervisor, Prof. Ir Dr. Law Puong Ling for their tireless guidance, assistance and encouragement. Their collective and individual commitments made it possible for me to complete this study.

I wish to express my sincere gratitude to Universiti Malaysia Sarawak for the award of UNIMAS Zamalah Graduate Scholarship (ZSU), under the partial category. I am particularly grateful to Prof. Dr. Andrew Alek Tuen, former Director of Institute of Biodiversity and Environmental Conservation (IBEC), and former Director of International Affairs Division (IAD) UNIMAS, Prof. Dr. Kasing Apun, the entire staff of IBEC and Centre for Graduate Studies (CGS), and Personal Assistant to my supervisor.

I want to specially acknowledge the efforts of my colleague, Lai Mei Kin and Lab. Assistant, Ismadi for their assistance and guidance during collection of sample and laboratory analysis of palm oil mill effluent (POME). I also appreciate the cooperation of staff and management of department of environment (DOE) Malaysia, and all the palm oil mills that responded to my survey questionnaire and allowed me to carry out field survey and collection of POME samples from their premises.

My profound gratitude also goes to the following people, Hajiya Hadiza Abdul, proprietor of Himma International College Minna, Ahmed Shehu Alfa, Mohammed E. Katcha, Baba Adamu Wachiko, Alhaji Nasir J. Dauda of CIL Abuja, Hon. Mohammed K. Ndayako, Hon. Saba Mohammed, staff and management of College of Health Technology Minna, and my relatives and friends, for their individual and collective moral and financial support.
I express my indebtedness to Adam Mani Yangora for his assistance in formatting this work and my postgraduate friend Mr Boluwaji Oshodi of Adekunle Ajasin University Akungba Akoko Nigeria who made my stay in Malaysia a memorable one.

Finally, may I pay tribute to my mother, Hajiya Asmau (Gogoyaya), my wives; Ummulkhair Na’uzo and Salamata Kolo, my children; Ahmad, Niimah, Muhammad Sayyed, Aisha and Abdullahi as well as my siblings; Sani, Alhaji Saidu, Yawo, and Muhammad Danladi, who all bore, for three years, the brunt of my sojourn in Malaysia. I am grateful to Allah (SWT) for my life and for His mercies, guidance and protection.
Abstract

Palm oil mills play an important role in the economic development of all countries involved in a large scale palm oil production. Despite obvious benefits of this industrial development, it is also one of the major sources of world environmental pollution and degradation. Many researches and developments have been carried out on zero-discharge technologies that will serve as an alternative for palm oil mills to achieve zero-discharge concepts to control environmental pollution. However, till to date most of the palm oil mills in Malaysia still discharged either partially treated or raw palm oil mill effluent (POME) into nearby rivers. Excessive quantities of either partially treated or untreated POME deplete a water body of its oxygen and suffocate aquatic life. In addition, vast amounts of biogas are generated during anaerobic digestion of POME. Biogas contains about 65% of methane (CH\textsubscript{4}), 35% of carbon dioxide (CO\textsubscript{2}) and trace amount of hydrogen sulphide (H\textsubscript{2}S). Biogas is corrosive to metal and possess bad odour while both CH\textsubscript{4} and CO\textsubscript{2} are greenhouse gases. On average around 58 million tons of POME is produce in Malaysia annually, and thus has been singled out as the chief contributor to Malaysia environmental pollution. This study examined and assessed wastes generated and method(s) of POME treatment used by palm oil mills. The study also attempts to develop a practical sustainable environmental management plan for palm oil mills that incorporate zero discharged technology to achieve zero discharge concepts. This was achieved by laboratory analysis of raw and treated POME samples, using a designed participant observation, field observation, and questionnaires survey to conduct evaluation of management of palm oil mills in Malaysia, all current available technologies use in treating the wastes, and reuse or recycle all treated by-products from palm oil mills. The study shows that palm oil mills generate both solid and liquid wastes like shells and nut fibres, empty fruit bunch (EFB), fibres, and decanter cake. This study discovered that POME has been singled
out by the operators as the most difficult and most expensive waste to manage. POME treatment method or technology found commonly among palm oil mills is open ponding consisting of both aerobic and anaerobic digestion. It is not possible for palm oil mills to achieve the current discharge limit of 20 mg L$^{-1}$ and zero discharge emission proposed by Department of Environment (DOE) using open ponding POME treatment as the results of BOD of the treated POME samples analysed and monitoring data of treated POME samples from DOE were higher than 20 mg L$^{-1}$ allowed by DOE. Based on the findings of this study, a Sustainable Environmental Management Plan (SEMP) consisting of four approaches or components, zero discharge concept implementation models and zero discharge concept operational system was developed. The four approaches or components in an interconnected and overlapping relationships to a central component (Waste to energy POME treatment technology) in a continual process contained in SEMP are; waste to energy POME treatment technology, integrated waste management (waste utilization and recycling), environmental management programs, and enabling environment (Policy, legislation, institutional framework, and incentives). Although each of the components can stand alone and function to produce results, but they must operate simultaneously to achieve zero discharge concepts in palm oil mills, since if any of the component is missing during implementation, a vacuum that will make the management plan incomplete. SEMP must be an integral part of the overall corporate management structure of palm oil mills, and not a stand-alone plan or system. However, there is need for further research on short and long term economic benefits of adopting these four components contain in SEMP to achieve zero discharge concepts in palm oil mills.
Abstrak

Kilang kelapa sawit memainkan peranan penting dalam kemajuan ekonomi semua negara yang mempunyai ladang sawit yang luas. Di samping banyak kebaikkan ekonomiknya, ia adalah juga salah satu punca utama kecemasan dan penyebab kemudaratan alam sekitar. Ramai kajian dan kemajuan telah dijalankan mengenai teknologi buangan sifar supaya kilang-kilang kelapa sawit mencapai konsep sisa sifar demi mencegah pencemaran alam sekitar. Bagaimanapun, hingga sekarang kebanyakan kilang kelapa sawit di Malaysia masih mengeluarkan sisa kelapa sawit (POME) separa olah atau tanpa diolah sama sekali. Buangan POME yang berlebihan mengurangkan kandungan oksigen dalam air dan memberi kesan buruk terhadap hidupan air. Gashayat (biogas) mengandungi lebih kurang 65% methan (CH₄), 35% karbon dioksida (CO₂) dan sedikit hidrogen sulfida (H₂S). Gas ini boleh mengaratkan logam dan mengeluarkan bau hangat sementara CH₄ dan CO₂ adalah salah satu gas rumah hijau. Maka perlepasan gas tersebut ke alam sekitar bukan sahaja merbahaya (racun) terhadap kesihatan manusia tetapi juga menyebab kepanasan iklim. Secara purata, Malaysia mengeluarkan lebih kurang 58 juta ton POME setahun, maka ia telah disenaraikan sebagai penyumbang utama terhadap pencemaran alam sekitar. Projek ini mengkaji dan menilaikan sisa buangan POME yang dikeluarkan daripada kilang kelapa sawit dan cara-cara yang digunakan oleh kilang-kilang untuk mengolahnya. Kajian ini juga menghasilkan sebatang pelan pengurusan mampu bagi sisa buangan kilang kelapa sawit yang lebih praktik dengan mengambilkira sisa buangan sifar. Ini dibuat dengan menganalisa sampel POME yang belum dirawat dan telah dirawat di makmal, memerhati sisa pembuangan, kaedah rawatan pembuangan dan teknologi kumbahan yang digunakan di kilang kelapa sawit serta menggunakan soalselidik yang hantar ke beberapa kilang kelapa sawit di Malaysia. Kajian ini mendapat kilang-kilang kelapa sawit di Malaysia mengeluarkan sisa buangan cair dan pepejal terdiri
daripada tempurung, sabut, dan tangkai buah (FFB), serabut, dan kek decanter. Kajian in juga mendapat bahawa POME telah dinyatakan oleh operator kilang sebagai buangan yang amat sukar dan mahal untuk dirawat. Cara rawatan atau teknologi untuk merawat POME yang biasa didapati adalah dengan kolam mendakan terbuka terdiri daripada penshadaman aerobik dan bukau aerobik. Hasil daripada kajian, kilang kilang ini boleh menghasil 20mg L\(^{-1}\) had buangan dan sisa buangan sifar yang disyorkan oleh Jabatan Alam Sekitar (JAS) dengan menggunakan kolam mendakan terbuka. Kajian ini juga telah mencadang Pelan Pengurusan Mampan bagi Alam Sekitar (SEMP) terdiri daripada empat model/konsep implementasi dan sisa buangan sifar. Ini terdiri daripada empat kaedah/komponen yang berkaitan dengan komponen utama (buangan kepada tenaga bahanapi yang dihasil rawatan POME) dalam process berterusan dalam SEMP - buangan POME kepada teknologi tenaga bahanapi, rawatan buangan bersepadu (kegunaan buangan dan kitaran), program pengurusan alam sekitar, dan keadaan/alat yang sempurna (polisi, undang-undang, dan insentif). Walaupun setiap komponen adalah berasingan dan bertindak secara bersendirian, untuk mencapai sisa buangan sifar di kilang kelapa sawit, mereka kenalah bertindak bersama secara menyelesaikan keseluruhan. Jikalau salah satu daripada komponen tidak diambilkira, ini akan menyebabkan ruang akan dalam pelan pengurusan dan tidak sempurna. SEMP seharusnya jadi inti struktur pengurusan keseluruhan bagi setiap korporat yang mengilang kelapa sawit dan bukan sebagai dokumen berasingan. Adalah disyorkan bahawa kajian selanjutnya mengenai faedah yang berjangka pendek dan panjang harus dijalankan sebelum be menggunakan empat komponen tersebut.
Table of Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Abstrak</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Content</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xviii</td>
</tr>
<tr>
<td>List of Publications, Conference/Colloquium</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER ONE: Introduction

1.0 Introduction

1.1 Background Information

1.2 Problem Statement

1.3 Hypothesis

1.4 Aim and Objectives

1.5 Justification of the Study

1.6 Scope of Study

CHAPTER TWO: Literature Review

2.0 Literature review

2.1 Introduction

2.2 Generation of wastes from palm oil mills

 2.2.1 Palm oil mill effluent (POME)
2.2.1.1 Characteristics of POME
2.2.1.2 Pollution load and effect of POME discharge

2.3 Malaysia palm oil industry and the environmental laws
2.3.1 Malaysia and international environmental laws, treaty and conventions
2.3.2 Malaysia crude palm oil regulatory framework
2.3.2.1 Environmental Quality Act 1974 and Amendments
2.3.2.2 Licensed control as prescribed premises under Section 18 and 19 of EQA
2.3.2.3 Regulatory control of effluent discharges
2.3.3 Environmental quality regulations and standards for POME in Malaysia
2.3.4 POME treatment technologies and management
2.3.4.1 Ponding
2.3.4.2 Aerobic digestion of POME
2.3.4.3 Anaerobic digestion of POME
2.3.4.3.1 Anaerobic suspended growth treatment process of POME
2.3.4.3.2 Attached growth anaerobic treatment process of POME
2.3.4.3.3 Anaerobic sludge blanket treatment process of POME
2.3.4.3.4 Membrane separation of anaerobic treatment process of POME
CHAPTER THREE: Materials and Methods

3.0 Materials and methods

3.1 Introduction

3.2 Procedure

3.3 Observation/field survey

3.3.1 Types of by-products and wastes generated from palm oil mills

3.3.2 Methods of POME treatment in most of palm oil mills in Malaysia

3.4 Questionnaires/Oral interview

3.4.1 Questionnaires

3.4.2 Key-inform interview

3.5 Laboratory analysis of POME

3.5.1 Sample collection from palm oil mills

3.5.2 Apparatus and reagents

3.5.3 Procedure

CHAPTER FOUR: Results and Discussion

4.0 Results and discussion
4.1 Field observation and survey
 4.1.1 Types of by-products and wastes generated from palm oil mills
 4.1.2 POME treatment technologies found in most of palm oil mills

4.2 Questionnaires and oral interview responses
 4.2.1 Results and analysis of questionnaire responses
 4.2.2 Oral interview responses
 4.2.2.1 Responses from Department of Environment (DOE)
 4.2.2.2 Responses from Malaysia Palm oil Board (MPOB)

4.3 Results of laboratory analysis of POME
 4.3.1 Results of BOD₅ for sample of fresh POME
 4.3.2 Results of BOD₅ for sample of treated POME
 4.3.3 Verification of BOD data of treated POME samples from palm oil Mills

4.4 Role of environmental management system or pollution prevention plan for management of wastes in palm oil mills towards zero discharge concepts

4.5 Pollution prevention planning in palm oil mills
 4.5.1 Structure of the pollution prevention planning process
 4.5.2 Benefit of pollution prevention plan or EMS
 4.5.3 Development and implementation of EMS and SEMP by palm oil mills
 4.5.3.1 Capacity and incentives for palm oil mills
 4.5.4 Adoption of EMS and SEMP by palm oil mills

4.6 Findings on current innovations in management of POME towards zero discharge concepts
4.6.1 POMEDfree technology (zero waste technology) 123
4.6.2 POMETHANE technology (anaerobic thermophilic digestion process with aerobic polishing plant) 126
4.6.3 Up flow sludge bed reactor (USR) fermentation technology 126
4.6.4 Membrane technology (Reverse osmosis, microfiltration and ultrafiltration) 132
4.6.5 Covered lagoon bio digester technology 133
4.6.6 High efficiency methane fermentation system 136
4.6.7 AnaEG (Combination of UASB and EGSB technologies) and BioAX Technology 138
4.6.8 Continuous stirred tank reactor (CSTR) 140
4.6.9 Evaporation technology (Vacuum) 141
4.6.10 Decanter-drier system 142

4.7 Cleaner production and Biotechnological advances in POME management to achieve zero discharge concepts 146
4.7.1 Biotechnological advances for sustainable reuse of POME as resources 147

4.8 Case studies on the results of adoption of waste to energy POME treatment technology 148
4.9 Upgrading or acquiring of new waste to energy POME treatment technology by palm oil mills in Malaysia 151
4.10 Sustainable environmental management plan (SEMP) that incorporate zero discharge concept for palm oil mills 153
4.11 Adoption and implementation of zero discharge concepts by palm oil mills
using zero discharge concept implementation model and operational system 155

4.11.1 Waste to energy POME treatment technology 155

4.11.2 Integrated waste management 158

4.11.3 Enabling environment 160

4.11.4 Environmental management programs 161

CHAPTER FIVE: Conclusions and Recommendations 165

5.0 Conclusions and recommendations 165

5.1 Conclusion 165

5.2 Recommendations 170

References 172

Appendix A: Questionnaire form used to obtain data from palm oil mills 210

Appendix B: Questions used during oral interview with staff of Department of Environment (DOE) Malaysia 217

Appendix C: Questions used during oral interview with staff of Malaysian Palm Oil Board (MPOB) 219

Appendix D: Sarawak Environmental Quality Act, 1974 220

Appendix E: Department of Environment Sarawak Annual Report 2012 225

Appendix F: Proposed Sustainable Environmental Management Plan (SEMP) 228
List of Tables

Table 2.2.1.1 Characteristics of individual wastewater streams 13

Table 2.2.1.1.1 Characteristics of palm oil mill effluent (POME) 16

Table 2.3.3.1 Effluent discharge standards for crude palm oil mills 24

Table 2.3.3.2 Characteristics of raw POME and the regulatory discharge limits 25

Table 4.2.1 Maximum palm oil mills installed capacity (ton/hour) 71

Table 4.2.2 Quantity of EFB generation from palm oil mills (ton/hour) 71

Table 4.2.3 Quantity of POME generation from palm oil mills (ton/hour) 73

Table 4.2.4 Quantity of POME generation (average BOD_5 in mg/l) per day 74

Table 4.2.5 Non-compliance to BOD standard by palm oil mills per year 75

Table 4.2.6 Types of POME treatment technology used by palm oil mills 75

Table 4.2.7 Types of EFB treatment method used by palm oil mills 76

Table 4.2.8 How suitable is the POME treatment technology use in your mill 77

Table 4.2.9 Do the mill management aware of any better alternative POME treatment technology? 78

Table 4.2.10 If available is your mill willing to acquire and adopt a better technology? 78

Table 4.2.11 Do you think zero discharge concept is possible in your mill? 79

Table 4.2.12 Who is responsible for environment management and safety in your mill? 80

Table 4.2.13 Does your mill have environmental committee that handles wastes and environmental issues? 81

Table 4.2.14 Which of the following frameworks of environmental management system, does your mill used, to improve its environmental performance? 82

Table 4.2.15 Is integrated waste management system (IWMS) in use in your mill? 83

Table 4.2.16 How frequent does the DOE monitor and inspect your mill? 84
Table 4.3.1.1 Results of initial readings of dissolved oxygen (DO) at 20°C 97
Table 4.3.1.2 Results of final readings of dissolved oxygen (DO) after five days 97
Table 4.3.2.1 Results of initial readings of dissolved oxygen (DO) 98
Table 4.3.2.2 Results of final readings of dissolved oxygen (DO) after five days 98
Table 4.3.3.1 BOD data of treated POME samples from palm oil mill A 100
Table 4.3.3.2 BOD data of treated POME samples from palm oil mill B 100
Table 4.3.3.3 BOD data of treated POME samples from palm oil mill C 100
Table 4.3.3.4 BOD data of treated POME samples from palm oil mill D 101
Table 4.3.3.5 BOD data of treated POME samples from palm oil mill E 101
Table 4.5.2.1 Elements of pollution prevention efforts by 212 industries 113
Table 4.6.10.1 Quality of distillate from Decanter-drier system 143
Table 4.6.10.2 Nutrients contents of POME solid concentrate from evaporation technology 144
Table 4.11.1.1 Economic analysis of biogas and energy production from a typical 160 tonne FFB/hour palm oil mill (based on electricity sales) 158
List of Figures

Figure 2.3.4.2.1 Aerobic digestion pathway 29
Figure 2.3.4.3.1 Four stages of anaerobic complex biochemical reaction 32
Figure 2.3.4.3.2 The anaerobic contact and aeration process 37
Figure 2.3.4.3.3 A schematic diagram of an anaerobic tank and land application system 37
Figure 2.4.2.1 Typical source reduction methods 51
Figure 4.4.1 Drivers for sustainable development 104
Figure 4.5.1.1 Pollution prevention program overview 110
Figure 4.5.1.2 ISO 1400 families of standards 111
Figure 4.5.1.3 Components of an environmental management system 112
Figure 4.6.1.1 The flow chart of a POMEDfree plant attached to the mill 126
Figure 4.6.2.1 Process flow diagram of POMETHANE technology (anaerobic thermophilic digestion) 129
Figure 4.6.3.1 Process flow chart of PTT (POME continuous filtration plant) 131
Figure 4.6.5.1 Process flow diagram of biogas plant at Ulu Kanchong palm oil mill 136
Figure 4.6.6.1 Flow chart of biogas system for POME at Tee Tech oil mill 138
Figure 4.6.9.1 Evaporation process for palm oil mill effluent 145
Figure 4.7.1 The 5R policy 147
Figure 4.8.1 3D drawing of POMETHANE plant (Veolia POMETHANE technology) 151
Figure 4.10.1 Four components contain in sustainable environmental management plan (SEMP) showing interconnected and overlapping relationships 153
Figure 4.11.3.1 Actions to achieve enabling environment as component of SEMP 161
Figure 4.11.1 Zero discharge concepts implementation model for palm oil mills 163
Figure 4.11.2 Zero discharge concepts operational system for management of POME 164
List of Plates

Plate 3.3.1.1 Palm kernel 57
Plate 3.3.1.2 Shells and nut fibres 58
Plate 3.3.1.3 Heaps of empty fruit bunch (EFB) 58
Plate 3.3.1.4 Decanter cake 58
Plate 3.3.1.5 Fibres 59
Plate 3.3.1.6 Fresh hot POME in de-oiling tanks 59
Plate 3.3.1.7 Cool settled POME in de-oiling tanks 59
Plate 3.3.2.1 Open aerobic pond with POME showing mechanical surface aerators 60
Plate 3.3.2.2 Open anaerobic pond with POME 60
Plate 3.3.2.3 Treated POME before discharged 61
Plate 3.5.3.1 Diluted POME sample in BOD bottles rapped with aluminium foil 64
Plate 4.6.3.1 Samples of fresh and treated POME from PTT system 131
Plate 4.6.3.2 Wastewater from treated POME by PTT system 131
Plate 4.6.5.1 Covered lagoon technology 135
Plate 4.6.6.1 High efficient methane fermentation system at Tee Tech palm oil mill 138
Plate 4.8.1 Raw and results of treated POME from pilot project of Ronser Bio-tech’s zero discharge POME treatment technology at Labu, Negri Sembilan 149
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABR</td>
<td>Anaerobic Baffled Reactor</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanisms</td>
</tr>
<tr>
<td>CERs</td>
<td>Certified Emissions Reductions</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CPO</td>
<td>Crude Palm Oil</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>EMAS</td>
<td>Eco-Management and Audit Scheme</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty Fruit Bunch</td>
</tr>
<tr>
<td>EPPs</td>
<td>Entry Point Projects</td>
</tr>
<tr>
<td>EQA</td>
<td>Environmental Quality Act</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FMM</td>
<td>Federation of Malaysia Manufacturers</td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh Fruit Bunch</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organisation</td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gas</td>
</tr>
<tr>
<td>GTF</td>
<td>Green Technology Financing</td>
</tr>
<tr>
<td>GNI</td>
<td>Gross National Income</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic Retention Time</td>
</tr>
<tr>
<td>IWMS</td>
<td>Integrated Waste Management System</td>
</tr>
<tr>
<td>ITA</td>
<td>Investment Tax Allowance</td>
</tr>
<tr>
<td>NKEA</td>
<td>National Key Economic Areas</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NACRA</td>
<td>National Annual Corporate Report Award</td>
</tr>
<tr>
<td>OPT</td>
<td>Oil Palm Trunk</td>
</tr>
<tr>
<td>OPF</td>
<td>Oil Palm Frond</td>
</tr>
<tr>
<td>OPP</td>
<td>Oil Palm Phenolic</td>
</tr>
<tr>
<td>PKC</td>
<td>Palm Kernel Cake</td>
</tr>
<tr>
<td>POME</td>
<td>Palm Oil Mill Effluent</td>
</tr>
<tr>
<td>POMS</td>
<td>Palm Oil Mill Sludge</td>
</tr>
<tr>
<td>PMF</td>
<td>Palm mid Fraction</td>
</tr>
<tr>
<td>PPF</td>
<td>Palm Press Fibre</td>
</tr>
<tr>
<td>Mg L$^{-1}$</td>
<td>Milligram per Litre</td>
</tr>
<tr>
<td>PHA</td>
<td>Polyhydroxyalkanoates</td>
</tr>
<tr>
<td>PTT</td>
<td>POME Treatment Technology</td>
</tr>
<tr>
<td>SEPA</td>
<td>Sabah Environment Protection Association</td>
</tr>
<tr>
<td>SEMP</td>
<td>Sustainable Environmental Management plan</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>NCED</td>
<td>United Nations Conference on Environment and Development</td>
</tr>
<tr>
<td>UNFCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>UASB</td>
<td>Up-flow Anaerobic Sludge Blanket</td>
</tr>
</tbody>
</table>
List of publications, conference/colloquium

CHAPTER ONE

1.0 Introduction

1.1 Background Information

Palm oil industry plays an important role in the economic development of many countries of the world, and in enhancing the economic welfare of the population especially in Thailand, Indonesia, and Malaysia. Malaysia’s palm oil industry is one of the important industries of the nation and it is the fourth largest contributor to the national economy. It currently accounts for RM 53 billion (US$ 15.14 billion) in Gross National Income (GNI). The Palm Oil National Key Economic Areas (NKEA) is targeted to increase by RM 125 billion (US$ 35.71 billion) to reach RM 178 billion (US$ 50.86 billion) by 2020. Despite obvious benefits of this industrial development, it also significantly contributes to environmental degradation and pollution, both at the input and output sides of its activities.

It has been reported that in 2005, there was a total of 425 palm oil mills in Malaysia having production capacity of approximately 89 million tonnes of fresh fruit bunch (FFB) per year. According to 2012 statistics and data from Malaysia Palm Oil Board (MPOB), Malaysia has at least 5 million hectares of oil palm plantations, 430 mills, 46 crushers, 55 refineries, 17 oleo chemical and biodiesel plants (The Borneo post Newspaper, 23th Nov., 2012).

Waste from the oil palm mill process include palm oil effluent (POME) generated mainly from oil extraction, washing and cleaning up processes. Large quantities of water are used during the extraction of crude palm oil from the FFB and about 50% of the water results in palm oil mill effluent (Poku, 2002). It is estimated that about 5-7.5 metric tonnes of water is required to produced 1 metric tonne of crude palm oil (Ahmed et al., 2003). The raw or partially treated POME has an organic matter, which is due in part to the presence of unrecovered palm oil (Ahmed et al., 2003).
The major parameter that indicate the level of organic pollutant of POME is Biochemical Oxygen Demand (BOD). BOD is the amount of oxygen required by microorganism to completely decompose organic pollutants in POME. Raw or untreated POME have been reported to contain between 25,000 to 40,000 mg L$^{-1}$ of BOD. This highly polluting wastewater can cause pollution of waterways due to oxygen depletion and other related effects as reported by Ahmed et al. (2003). The depletion of the oxygen level in rivers leads to anaerobic conditions and the release of noxious gases, particularly hydrogen sulphide destroying the natural ecology of the affected rivers. (Khalid & Mustafa, 1992).

Palm oil industry in Malaysia is one of the potential candidates for the Clean Development Mechanisms (CDM) project because large amount of methane which contributes to global warming is emitted from lagoons and open digesting tank of the wastewater treatment system. In a research to investigate the actual greenhouse gases emission from lagoons and open digesting tanks in palm oil mills, the result indicated that methane contribution to biogas released from the open digesting tank and lagoon systems were 35% and 45% respectively. Also in a study to quantify the actual CH$_4$ emission from the open digesting tanks in Felda Serting Hilir palm oil mill Malaysia, CH$_4$ emission pattern recorded for 52 weeks from 3600 metric tonnes was between 13.5 % while 49.0 % total CH$_4$ emission per open digesting tank was 518.9kg per day (Yacob et al., 2003). In Malaysia, POME produces 25 million metric tonnes per year of chemical oxygen demand (COD), (Ma et al., 2001). POME contains cellulosic material, fat, oil and grease. While the solid wastes generated from palm oil mills (POMs) are mainly decanter cake, empty fruit bunches, seed shells and fibre from the mesocarp.

Modern processing of FFB into edible oil is practiced using various methods, which may be grouped into four categories according to their throughput and degree of complexity.