Synthesizing Neutral Facial Expressions on 3D Faces

Agianpuye Samuel Agianpuye

Master of Computer Science

2015
Author’s Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. It is original and is the result of my work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted at Universiti Malaysia Sarawak or to any other academic institution or non-academic institution for any other degree or qualification.

Name of Student: Agianpuye Samuel Agianpuye
Student ID: 11021731
Programme Degree: Masters in Computer Science
Faculty: Faculty of Computer Science and Information Technology
Thesis Title: SYNTHESIZING NEUTRAL FACIAL EXPRESSIONS ON 3D FACES

Signature of Student:

Date:
Dedication

This project is dedicated to God Almighty for his Love and Grace upon my life.

Thank you so much, Lord!
Acknowledgement

I want to thank my parents and siblings for their unconditional love and endless support in numerous ways ever since I was born and specifically through the course of my studies. Without their encouragement, moral and financial support I wouldn’t have made it this far.

I want to thank my wife Flora for being my closest companion throughout this tough season, encouraging me every time I hit the wall in my research work.

I also want to express my sincere gratitude to my supervisor, Dr. Jacey-Lynn Minoi for her supervision and support, without which I would not have been able to complete this project. Her intellectual guidance and patience with me was paramount to the successful completion of this project.

Finally I want to express my appreciation to my friends in UNIMAS, my in-laws, and Hope Church family. You all have been awesome and have been my loving family away from home.
Abstract

Facial expression synthesis is a process of generating new face shapes from a given face and still retaining the distinct facial characteristics of the initial face. The generated facial expressions can be used to improve the performance of existing face recognition systems. Earlier work on synthesizing face shapes used 2D face images. As 3D scanners become more improved and widely available, the work has moved from 2D to 3D faces. The advantage of 3D faces over 2D image data is that 3D face holds more geometric shape data and is invariant to poses and illumination.

This project presents a new approach to synthesize neutral facial expression on realistic 3D faces called Expression Proportion Distribution (EPD). EPD uses statistical approach to derive a method to neutralise facial expressions. The main challenge is to neutralise facial expressions especially those with jaw dropped and opened mouth. Jaw dropped and opened mouth facial expressions may be generated during articulations, or expressing emotional facial expressions, such as laughing or surprise. Opening of mouth moves both the facial muscles and the mandible, which causes the geometric face shape to deform. Other facial expression with mouth closed is also looked into. The experiments were carried out on two realistic 3D face datasets from Imperial College London and from the Binghamton University - 3D Facial Expression Dataset (BU-3DFED). The proposed neutral expression synthesis approach is evaluated in a face recognition domain.
Abstrak

Sintesis expresi muka merupakan satu proses penghasilan bentuk muka baru daripada muka sedia ada dengan mengekalkan ciri-ciri asas muka sebenar. Expresi muka yang dihasilkan boleh digunakan untuk meningkatkan prestasi sistem pengenalan muka yang sedia ada sekarang. Kajian yang dahulu mensintesiskan bentuk muka dengan menggunakan 2D imej muka. Setelah mesin pengimbas 3D bertambah dalam keberkesanannya dan mudah untuk diperoleh, kajian sekarang beranjak daripada muka 2D kepada muka 3D. Kelebihan menggunakan muka 3D daripada data imej 2D adalah muka 3D mempunyai lebih banyak data bentuk geometri dan tidak menunjukkan perubahan dari segi posisi dan penggemerlapan.

Table of Content

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Motivation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Objectives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Scope</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.5 Contribution</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.6 Summary of Chapters</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Literature Review</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1 Interpolation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2 Physics-Based Approach</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.3 Pseudo Muscle Models</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.4 Statistical-based Methods</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.5 Learning Base Method</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.6 Morphing</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.7 MPEG-4 Facial Animation Parameters (FAPS)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.8 Joint Sparse Learning for 3-D Facial Expression Generation</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.9 Displaced Dynamic Expression Regression for Real-Time Facial Tracking and Animation</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.10 Discussion</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.11 Conclusion</td>
<td>18</td>
</tr>
</tbody>
</table>
3 Three Dimension Face Data and Pre-processing 20

3.1 Introduction ... 20

3.2 Three Dimension Data Acquisition 20

3.2.1 Binghamton University 3D Face Expression (BU3DFE) 21

3.2.2 Imperial College 3D Face Data Set 22

3.3 Pre-processing .. 23

3.3.1 Problem in 3D Face Datasets Acquisition 23

3.3.2 Registration ... 24

3.3.2.1 Registration Transformation Types 25

3.3.2.1.1 Rigid Transformation 26

3.3.2.1.2 Affine Transformation 26

3.3.2.1.3 Non-rigid Transformation 27

3.4 Pre-processing Steps .. 27

3.4.1 Rigid Registration ... 29

3.4.2 Non-rigid Landmark Registration 30

3.4.3 Establishing Correspondences 32

3.5 Pre-processed BU3DFE and Imperial College Data Sets 34

3.6 Conclusion ... 35

4 Method 36

4.1 Statistical Model of Shape ... 36

4.1.1 Active Shape Models (ASM) 37

4.1.1.1 Principal Component Analysis 37

4.2 Neutral Expression Synthesis 39
4.2.1 Expression Proportion Distribution (EPD) Based Neutral Expression Synthesis ... 40

4.2.1.1 Eigen Vectors ... 41

4.2.1.2 Expression Proportion Distribution Process 42

4.3 Evaluating the Proposed EPD Method .. 46

4.3.1 Quantitative Analysis of Neutral Expression Synthesis Method 46

4.3.1.1 Eigen Method for Face Recognition ... 47

4.3.1.2 Fisher Method for Face Recognition .. 49

4.4 Conclusion .. 50

5 Implementation .. 52

5.1 Neutral Face Expression Synthesis Experiment 53

5.2 Expression Synthesis Method Quantitative Evaluation Experiment 56

5.2.1 Face Recognition Implementation .. 57

5.3 Conclusion .. 61

6 Results and Analysis ... 62

6.1 Qualitative Results and Analysis .. 62

6.1.1 BH3DFE Qualitative Results and Analysis 63

6.1.2 Imperial College 3D Data Qualitative Results 69

6.1.3 Effect of Expression Intensity on EPD Test Results 70

6.1.3.1 Expression Intensity Adjustment Experiment 71

6.1.4 Comparison between EPD and ASM Expression Synthesis Approach ... 72

6.1.5 Comparison between EPD and Learning Based Method 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.6 Comparison with Statistical Discriminant Analysis Method</td>
<td>74</td>
</tr>
<tr>
<td>6.2 Quantitative Results and Analysis</td>
<td>77</td>
</tr>
<tr>
<td>6.2.1 BH3DFE Quantitative Results and Analysis</td>
<td>78</td>
</tr>
<tr>
<td>6.2.1.1 Angry Faces Synthesized to Neutral Expression Faces</td>
<td>78</td>
</tr>
<tr>
<td>6.2.1.2 Disgust Faces Synthesized to Neutral Expression Faces</td>
<td>83</td>
</tr>
<tr>
<td>6.2.1.3 Fear Faces Synthesized to Neutral Expression Faces</td>
<td>89</td>
</tr>
<tr>
<td>6.2.1.4 Happy Faces Synthesized to Neutral Expression Faces</td>
<td>94</td>
</tr>
<tr>
<td>6.2.1.5 Sad Faces Synthesized to Neutral Expression Faces</td>
<td>98</td>
</tr>
<tr>
<td>6.2.1.6 Surprise Faces Synthesized to Neutral Expression</td>
<td>103</td>
</tr>
<tr>
<td>6.2.2 Imperial College 3D Face Data Quantitative Analysis</td>
<td>108</td>
</tr>
<tr>
<td>6.2.2.1 Imperial College Smile Quantitative Results and Analysis</td>
<td>109</td>
</tr>
<tr>
<td>6.2.2.2 Imperial College Frown Quantitative Results and Analysis</td>
<td>111</td>
</tr>
<tr>
<td>6.3 Discussion</td>
<td>113</td>
</tr>
<tr>
<td>6.3.1 Closed Mouth after Neutral Expression Synthesis</td>
<td>114</td>
</tr>
<tr>
<td>6.3.2 Sad Expression Qualitative and Quantitative Analysis Issues</td>
<td>115</td>
</tr>
<tr>
<td>6.4 Conclusion</td>
<td>115</td>
</tr>
</tbody>
</table>
7 Conclusion

7.1 Summary of Contributions ... 117
7.2 Limitations ... 117
7.3 Future Works .. 118
 7.3.1 Synthesizing Other Forms of Facial Expression 118
 7.3.2 More Test on Sad and Frown Faces ... 118
 7.3.3 EPD in Varying Face Surface Conditions 119
 7.3.4 Expression Recognition .. 119
List of Figures

2.1 Facial Muscles (a) Facial Muscles (b) The Human Skull (Image Source [3]) 7
2.2 (a) Action Units (b) Emotion Facial Action Coding System (c) Happiness
 Emotion Facial Action Coding (Image Source [3]) .. 8
2.3 Left: Neutral Pose, Right: ”A” Mouth Shape, Middle: Interpolated
 Shape (Image Source [25]) .. 10
2.4 Vector Muscle (a) Deformation Decreases Towards the Direction of the
 Arrow (B) Water’s Linear Muscle [13][14] (Image Source [14]) 11
2.5 Layered Spring (a) Undeformed Geometry of the Skin Layer. (B)
 Deformed Geometry (Only Epidermis is Displayed for Clarity)
 (Image Source [15]) .. 12
2.6 (a) Features Detection (B) Face Models with Synthesized Expressions.
 Image Source [44] .. 16
3.1 3DMD Range Scanner Setup (Image Source [50]) .. 21
3.2 Raw BH3DFE Face Model (Image Source [45]) .. 22
3.3 Imperial College London 3D Face Raw and Pre-Processed Data
 (Image Source [3]) .. 23
3.4 The Transformation T(A) Transforms Point A in Face A into its
 Corresponding Location in Face B (Image Source [3]) 25
3.5 An Example of a Non-Linear Transformation (Mage Source [3]) 27
3.6 The 13 Landmark Placements on a Face Surface (Image From [3]) 29
3.7 Rigid Registration Using Landmarks Information. The Top Row Shows the Two Faces Aligned to the Mean Landmarks. The Bottom Row Shows a Frontal 2D Polygon Projection of the Outer Landmarks of the Same Polygon Before and After Registration (Image Source [53]) .. 29

3.8 The Top Image Shows Point-Pairing Before Non-Rigid Registration and the Bottom Image Shows the Point-Pairing after Non-Rigid Registration (Image Source [53]) .. 30

3.9 A Free-Form Deformation and the Corresponding Mesh of Control Points (Image Source [53]) .. 31

3.10 Non-rigid Registration Using Landmarks Information. The Top Row Shows the Two Faces Aligned to the Mean Landmarks. The Bottom Row Shows a Frontal 2D Polygon Projection of the Outer Landmarks of the Same Polygon Before and After Non-Rigid Registration (Image Source [53]) 31

3.11 The Distance Colour Map after Non-Rigid Registration. Image Source [53] 32

3.12 The Difference between Landmark-based Non-rigid Registration and Non-rigid Surface Registration (Image Source [53]) .. 33

3.13 The Overall Pre-processing Steps (Image Source [53]) .. 33

3.14 Example of the Pre-processed BU3DFE Data Set .. 34

3.15 Example of the Pre-processed Imperial College Data Set 34

4.1 PCA Applied to a Distribution of Vectors .. 39

4.2 Most Discriminant Vector Classification ... 42

4.3 Discriminant Expression Feature Vector... 42
4.4 Proposed Expression Proportion Distribution Method for
 Synthesizing Neutral Expression on 3D Faces ... 44

5.1 Experiment Implementation Overview .. 52

5.2 Neutral Expression Synthesis Implementation Process on Pre-processed 3D
 Faces ... 54

5.3 Before and After Synthesis, Rendering Window for Qualitative Observation 56

5.4 Comparing Recognition Rates to Quantitatively Evaluate Neutral
 Expression Synthesis Method ... 57

5.5 Data Preparation for Input into Face Recognition Process 58

6.1 BH3DFE Happy Face Synthesized to Neutral Expression 63

6.2 BH3DFE Surprise Face Synthesized to Neutral Expression 64

6.3 BH3DFE Disgust Face Synthesized to Neutral Expression 65

6.4 BH3DFE Sad Face Synthesized to Neutral Expression 66

6.5 BH3DFE Fear Face Synthesized to Neutral Expression 67

6.6 BH3DFE Angry Face Synthesized to Neutral Expression 68

6.7 Imperial Smile Face Synthesized to Neutral Expression 69

6.8 Imperial Frown Face Synthesized to Neutral Expression 70

6.9 Adjusting Expression Intensity; Synthesis of Neutral Facial Expression on
 Combined Training Set of Happy and Neutral Facial Expression Groups 71

6.10 Reconstruction of the First Six Largest PCA Modes on the BU3DFE
 Datasets Using Original ASM Algorithm .. 73

6.11 Synthesis of Neutral Facial Expression on Different BH3DFE Test Subject
 of Same Facial Expression Group .. 73
6.12 Some Results of Expression Removal for Six Expressions. Each Row is for One Expression, in the Top-Down Order of Anger, Disgust, Fear, Happy, Sadness, and Surprise. (A) and (D): Expressional Faces of Input; (B) and (E): Neutral Faces of Ground Truth; (C) and (F): The Expression Removal Results (Image Source [8]) ... 75

6.13 Illustration of (A) Original BH3DFE Faces with Expressions (B) Exaggerated and Neutralized Examples of Those Faces (Image Source [3]) 76

6.14 Original Neutral Expression as Training and Test Sample to Evaluate the Developed Face Recognition Application .. 77

6.15 BU3DFE Angry Expression Intensity Level 1, Eigen Face Recognition Rate for Original Angry Faces, Newly Synthesized Neutral Faces and Original Neutral Faces .. 78

6.16 BU3DFE Angry Expression Intensity Level 2, Eigen Face Recognition Rate for Original Angry Faces, Newly Synthesized Neutral Faces and Original Neutral Faces .. 79

6.17 BU3DFE Angry Expression Intensity Level 3 Eigen Face Recognition Rate for Original Angry Faces, Newly Synthesized Neutral Faces and Original Neutral Faces .. 79

6.18 BU3DFE Angry Expression Intensity Level 4 Eigen Face Recognition Rate for Original Angry Faces, Newly Synthesized Neutral Faces And Original Neutral Faces .. 80

6.19 BU3DFE Angry Expression Intensity Level 1, Fisher Face Recognition Rate for Original Angry Faces, Newly Synthesized Neutral Faces and Original Neutral Faces .. 81
6.20 BU3DFE Angry Expression Intensity Level 2 Fisher Face Recognition Rate
for Original Angry Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 81

6.21 BU3DFE Angry Expression Intensity Level 3 Fisher Face Recognition Rate
for Original Angry Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 82

6.22 BU3DFE Angry Expression Intensity Level 4 Fisher Face Recognition Rate
for Original Angry Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 82

6.23 BU3DFE Disgust Expression Intensity Level 1 Eigen Face Recognition Rate
for Original Disgust Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces .. 83

6.24 BU3DFE Disgust Expression Intensity Level 2 Eigen Face Recognition Rate
for Original Disgust Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces .. 84

6.25 BU3DFE Disgust Expression Intensity Level 3 Eigen Face Recognition Rate
for Original Disgust Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 85

6.26 BU3DFE Disgust Expression Intensity Level 4 Eigen Face Recognition Rate
for Original Disgust Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 85

6.27 BU3DFE Disgust Expression Intensity Level 1 Fisher Face Recognition Rate
for Original Disgust Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces .. 86
6.28 BU3DFE Disgust Expression Intensity Level 2 Fisher Face Recognition Rate for Original Disgust Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 87

6.29 BU3DFE Disgust Expression Intensity Level 3 Fisher Face Recognition Rate for Original Disgust Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 87

6.30 BU3DFE Disgust Expression Intensity Level 4 Fisher Face Recognition Rate for Original Disgust Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 88

6.31 BU3DFE Fear Expression Intensity Level 1 Eigen Face Recognition Rate for Original Fear Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 89

6.32 BU3DFE Fear Expression Intensity Level 2 Eigen Face Recognition Rate for Original Fear Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 89

6.33 BU3DFE Fear Expression Intensity Level 3 Eigen Face Recognition Rate for Original Fear Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 90

6.34 BU3DFE Fear Expression Intensity Level 4 Eigen Face Recognition Rate for Original Fear Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 90

6.35 BU3DFE Fear Expression Intensity Level 1 Fisher Face Recognition Rate for Original Fear Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 91
6.36 BU3DFE Fear Expression Intensity Level 2 Fisher Face Recognition Rate
for Original Fear Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces .. 92

6.37 BU3DFE Fear Expression Intensity Level 3 Fisher Face Recognition Rate
for Original Fear Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces .. 92

6.38 BU3DFE Fear Expression Intensity Level 4 Fisher Face Recognition Rate
for Original Fear Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces .. 93

6.39 BU3DFE Happy Expression Intensity Level 1 Eigen Face Recognition Rate
for Original Happy Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 94

6.40 BU3DFE Happy Expression Intensity Level 2 Eigen Face Recognition Rate
for Original Happy Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 94

6.41 BU3DFE Happy Expression Intensity Level 3 Eigen Face Recognition Rate
for Original Happy Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 95

6.42 BU3DFE Happy Expression Intensity Level 4 Eigen Face Recognition Rate
for Original Happy Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 95

6.43 BU3DFE Happy Expression Intensity Level 1 Fisher Face Recognition Rate
for Original Happy Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 96
6.44 BU3DFE Happy Expression Intensity Level 2 Fisher Face Recognition Rate
for Original Happy Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 97
6.45 BU3DFE Happy Expression Intensity Level 3 Fisher Face Recognition Rate
for Original Happy Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 97
6.46 BU3DFE Happy Expression Intensity Level 4 Fisher Face Recognition Rate
for Original Happy Faces, Newly Synthesized Neutral Faces and
Original Neutral Faces .. 98
6.47 BU3DFE Sad Expression Intensity Level 1 Eigen Face Recognition Rate
for Original Sad Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces ... 99
6.48 BU3DFE Sad Expression Intensity Level 2 Eigen Face Recognition Rate
for Original Sad Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces ... 99
6.49 BU3DFE Sad Expression Intensity Level 3 Eigen Face Recognition Rate
for Original Sad Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces ... 100
6.50 BU3DFE Sad Expression Intensity Level 4 Eigen Face Recognition Rate
for Original Sad Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces ... 100
6.51 BU3DFE Sad Expression Intensity Level 1 Fisher Face Recognition Rate
for Original Sad Faces, Newly Synthesized Neutral Faces and Original
Neutral Faces ... 101
6.52 BU3DFE Sad Expression Intensity Level 2 Fisher Face Recognition Rate for Original Sad Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 102

6.53 BU3DFE Sad Expression Intensity Level 3 Fisher Face Recognition Rate for Original Sad Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 102

6.54 BU3DFE Sad Expression Intensity Level 4 Fisher Face Recognition Rate for Original Sad Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 103

6.55 BU3DFE Surprise Expression Intensity Level 1 Eigen Face Recognition Rate for Original Surprise Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 104

6.56 BU3DFE Surprise Expression Intensity Level 2 Eigen Face Recognition Rate for Original Surprise Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 104

6.57 BU3DFE Surprise Expression Intensity Level 3 Eigen Face Recognition Rate for Original Surprise Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 105

6.58 BU3DFE Surprise Expression Intensity Level 4 Eigen Face Recognition Rate for Original Surprise Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 105

6.59 BU3DFE Surprise Expression Intensity Level 1 Fisher Face Recognition Rate for Original Surprise Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 106
6.60 BU3DFE Surprise Expression Intensity Level 2 Fisher Face Recognition Rate for Original Surprise Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 107

6.61 BU3DFE Surprise Expression Intensity Level 3 Fisher Face Recognition Rate for Original Surprise Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 107

6.62 BU3DFE Surprise Expression Intensity Level 4 Fisher Face Recognition Rate for Original Surprise Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 108

6.63 Imperial College 3D Data Smile Expression Eigen Face Recognition Rate for Original Smile Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 109

6.64 Imperial College 3D Data Smile Expression Fisher Face Recognition Rate for Original Smile Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 110

6.65 Imperial College 3D Data Frown Expression Eigen Face Recognition Rate for Original Frown Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 111

6.66 Imperial College 3D Data Frown Expression Fisher Face Recognition Rate for Original Frown Faces, Newly Synthesized Neutral Faces and Original Neutral Faces ... 112
List of Tables

2.1 Summary of Methods used in Synthesizing Facial Expression on 3D faces ... 19
3.1 The 13 Anatomical Landmark Points .. 28
5.1 EPD Quantitative Evaluation Procedure 59
6.1 Eigen Face Recognition Applied on Angry Expression 80
6.2 Fisher Face Recognition Applied on Angry Expression 83
6.3 Eigen Face Recognition Applied on Disgust Expression 86
6.4 Fisher Face Recognition Applied on Disgust Expression 88
6.5 Eigen Face Recognition Applied on Fear Expression 91
6.6 Fisher Face Recognition Applied on Fear Expression 93
6.7 Eigen Face Recognition Applied on Happy Expression 96
6.8 Fisher Face Recognition Applied on Happy Expression 98
6.9 Eigen Face Recognition Applied on Sad Expression 101
6.10 Fisher Face Recognition Applied on Sad Expression 103
6.11 Eigen Face Recognition Applied on Surprise Expression 106
6.12 Fisher Face Recognition Applied on Surprise Expression 108
6.13 Eigen Face Recognition Applied on Smile Expression 109
6.14 Fisher Face Recognition Applied on Smile Expression 110
6.15 Eigen Face Recognition Applied on Frown Expression 111
6.16 Fisher Face Recognition Applied on Frown Expression .. 112
6.17 Bh3dfe Maximum Face Recognition Rate (%).. 113
6.18 Imperial College Maximum Face Recognition Rate (%)................................. 113
List of Publications

Conference Papers:
