ELECTROENCEPHALOGRAM (EEG) SIGNATURE OF AUTISM SPECTRUM DISORDER (ASD) CHILDREN

NURUL AINA BT MOHD MAHAYUDDIN

MASTER OF SCIENCE (COGNITIVE SCIENCE) 2015
This project is submitted in partial fulfillment of the requirements for Master of Science (Cognitive Sciences)

Faculty of Cognitive Sciences and Human Development
UNIVERSITI MALAYSIA SARAWAK
2014
JUDUL: ELECTROENCEPHALOGRAM (EEG) SIGNATURE OF AUTISM SPECTRUM DISORDER (ASD) CHILDREN

Sesi Pengajian: 2014/2015

Saya NURUL AINA BINTI MOHD MAHYUDDIN

mengaku membenarkan tesis ini disimpan di Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sarawak.
2. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat pendigian untuk membangunkan Pangkalan Data Kandungan Tempatan.
4. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

** sila tandakan (✓)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan seperti termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat Terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

___________________________ _________________________
(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:
Lot 3773, Kampung Labit,
33400 Lenggong, Perak

Tarih: _____________________ Tarih: _____________________

Catatan:
* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda
*Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai TERHAD.
Statement of Originality

The work described in this Final Year Project, entitled

“ELECTROENCEPHALOGRAM (EEG) SIGNATURE OF AUTISM SPECTRUM DISORDER (ASD) CHILDREN”

is to the best of the author’s knowledge that of the author except

where due reference is made.

__________________________ ____________________________
(Date submitted) (Student’s signature)

Nurul Aina Bt Mohd Mahayuddin

11021793
ACKNOWLEDGEMENT

First and foremost, I thank Allah the almighty for giving me the strength that keeps me standing and for the hope that keeps me believing that this affiliation would be both possible and interesting. I would like to express my gratitude to Allah S.W.T. for blessing me throughout the completion of this Master of Science (Cognitive Sciences) by research.

With this opportunity, I would also like to convey my sincere appreciation to the valuable contribution of several individuals who have given their heart whelming full support in making this thesis a magnificent experience.

I would like to extend my special thanks to my beloved parents Mr. Mohd Mahayuddin and Mrs. Jawahir, my lovely husband, Mr. Mohd Ezwan, all my family members, who inspired and encouraged me and gave me undivided love, endless patience, and constant support. I am sincerely grateful to have a family that supports me not just financially, but morally and spiritually.

From the bottom of my heart, I wish to extend my gratitude to my supervisor, Associate Professor Dr. Norsiah Fauzan for her continuous guidance, constructive advices, endless support, understanding and encouragement. She was a cheerful, optimistic, caring and helpful person. I learned a great deal from her throughout this course.

In Addition, I would like to thank Drs. Muhamad Sophian Nazaruddin and Associate Professor Dr. Shahren Ahmad Zaidi Adruce for providing critical comments and valuable suggestions as co-supervisors during the completion of my Master of Science. Thank you for sharing the knowledge and skills during the preparation of this research paper.

I would also like to convey my heartiest appreciation to my research partners, who have been willingly to help gather the necessary data and information needed for this research. To the president and committee members who gave permission for me to conduct this study at their association, teachers, parents/guidance and students of Kuching Autistics Association, I wholeheartedly thank you for the support, cooperation, kindness and patience that were given to me throughout this research.

Lastly, I send my regards to all my family members, students, lecturers and support staff of the Faculty of Cognitive Sciences and Human Development in UNIMAS, who have directly or indirectly supported me during the process of completing this research. I would also like thank UNIMAS for providing Zamalah Penyelidikan Naib Canselor that has helped me in many ways to fund my research project as well as tuition fees and living expenses. Once again, thank you all very much.
TABLE OF CONTENT

Acknowledgement .. ii
Table of Content ... iii-xii
List of Figure .. ix-xix
List of Tables .. xiii-xv
Abstract .. xviii-xix
Abstrak ... xx-xxi

Chapter 1 Introduction

1.0 Introduction ... 1
1.1 Background of study ... 2
 1.1.1 Sociability aspect .. 4
 1.1.2 Repetitive or rigid language ... 5
 1.1.3 Narrow interests and extraordinary abilities ... 5
 1.1.4 Uneven language development .. 5
 1.1.5 Poor nonverbal conversation skills .. 6
 1.1.6 Behaviours of ASD ... 6
1.2 Problem Statement ... 7
1.3 Objectives of the Study ... 9
 1.3.1 General Objective .. 9
 1.3.2 Specific Objectives .. 9
1.4 Conceptual and Operational definition of term/variables .. 9
 1.4.1 Autism Spectrum Disorder .. 9
 1.4.2 Qualitative Electroencephalogram (qEEG) ... 10
 1.4.3 Neurofeedback Training (NFT) .. 10
 1.4.4 Brainwave Patterns .. 11
1.5 Kuching Autistic Association (KAA) ... 13
1.6 Significance of Study ... 13
1.7 Limitation of the Study ... 14
Chapter 2 Literature Review

2.0 Introduction 15
2.1 Autism Spectrum Disorder 16
2.2 Primary Impairment in Autism 18
 2.2.1 Speech and Communication among ASD 18
 2.2.1.1 Common Language Patterns Observe in Children with Autism 19
 2.2.2 Social Impairment 20
 2.2.3 Restricted Repetitive Behaviour 21
2.3 Findings From Previous Research 23
 2.3.1 Qualitative Electroencephalogram (qEEG) for ASD 23
 2.3.2 Neurofeedback (EEG) for ASD 28
 2.3.3 Brain connectivity of Autism Spectrum Disorder’s Brain 29
2.4 10/20 Electrode Placement 31
2.5 Types of Brainwave Patterns and its Functions 32
2.6 Autism Treatment Evaluation Checklist 34
2.7 Hair Tissue Mineral Analysis 35
2.8 Kuching Autistic Association’s Students’ Progress Report 36
2.9 Summary 37
Chapter 3 Methodology

3.0 Introduction 38
3.1 Research Design 39
3.2 Participant 40
3.3 Phases of the Study 41
 3.3.1 Phase 1 41
 3.3.1.1 Research Informant 41
 3.3.2 Phase 2 41
 3.3.3 Phase 3 41
 3.3.3.1 The Neurofeedback Training 41
 3.3.4 Phase 4 42
3.4 Instrumentation 42
 3.4.1 Autism Treatment Evaluation Checklist (ATEC) 42
 3.4.1.1 Importance of ATEC 43
 3.4.2 Quantitative Electroencephalography (qEEG) 44
 3.4.3 Neurofeedback Device (EEG) 46
3.5 Procedure for Data Collection 47
 3.5.1 Quantitative Electroencephalogram, Neurofeedback Device and ATEC Form 48
 3.5.2 Procedure for QEEG’s Data Collection 48
 3.5.3 Procedure for Interview and Observation 48
 3.5.4 KAA’s Student Progress Report 50
3.6 Procedure for Data Analysis 50
 3.6.1 Data Analysis For ATEC 50
 3.6.1.1 Range of Score 50
 3.6.2 Data Analysis For QEEG 51
 3.6.3 Data Analysis For EEG 52
 3.6.4 Descriptive Data Analysis 52
3.7 Summary 53
Chapter 4 Findings and discussions

4.0 Introduction 54
4.1 Demographic Background 55
4.2 First and Second qEEG Mapping of All Participants 56
4.3 Individuals analysis of qEEG Brain Mapping 58
4.3.1 Participant A 58
4.3.1.1 First and Second qEEG Brain Mapping of Participant A 58
4.3.1.2 Delta Brainwave for Participant A of First qEEG 58
4.3.1.3 Delta Brainwave for Participant A of Second qEEG 59
4.3.1.4 Theta Brainwave for Participant A of First qEEG 59
4.3.1.5 Theta Brainwave for Participant A of Second qEEG 60
4.3.1.6 Alpha Brainwave for Participant A of First qEEG 60
4.3.1.7 Alpha Brainwave for Participant A of Second qEEG 61
4.3.1.8 Beta Brainwave for Participant A of First qEEG 61
4.3.1.9 Beta Brainwave for Participant A of Second qEEG 62
4.3.1.10 Brainwave Patterns and Correlate Behaviour(s) of Participant A 63
4.3.2 Participant B 64
4.3.2.1 First and Second qEEG Brain Mapping of Participant B 64
4.3.2.2 Delta Brainwave for Participant B of First qEEG 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2.3</td>
<td>Delta Brainwave for Participant B of Second qEEG</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>Theta Brainwave for Participant B of First qEEG</td>
</tr>
<tr>
<td>4.3.2.5</td>
<td>Theta Brainwave for Participant B of Second qEEG</td>
</tr>
<tr>
<td>4.3.2.6</td>
<td>Alpha Brainwave for Participant B of First qEEG</td>
</tr>
<tr>
<td>4.3.2.7</td>
<td>Alpha Brainwave for Participant B of Second qEEG</td>
</tr>
<tr>
<td>4.3.2.8</td>
<td>Beta Brainwave for Participant B of First qEEG</td>
</tr>
<tr>
<td>4.3.2.9</td>
<td>Beta Brainwave for Participant N of Second qEEG</td>
</tr>
<tr>
<td>4.3.2.10</td>
<td>Brainwave Patterns and Correlate Behaviour(s) of Participant B</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>First and Second qEEG Brain Mapping of Participant C</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Delta Brainwave for Participant C of First qEEG</td>
</tr>
<tr>
<td>4.3.3.3</td>
<td>Delta Brainwave for Participant C of Second qEEG</td>
</tr>
<tr>
<td>4.3.3.4</td>
<td>Theta Brainwave for Participant C of First qEEG</td>
</tr>
<tr>
<td>4.3.3.5</td>
<td>Theta Brainwave for Participant C of Second qEEG</td>
</tr>
<tr>
<td>4.3.3.6</td>
<td>Alpha Brainwave for Participant C of First qEEG</td>
</tr>
<tr>
<td>4.3.3.7</td>
<td>Alpha Brainwave for Participant C of Second qEEG</td>
</tr>
<tr>
<td>4.3.3.8</td>
<td>Beta Brainwave for Participant C of First qEEG</td>
</tr>
</tbody>
</table>
qEEG
4.3.3.9 Beta Brainwave for Participant C of Second qEEG
4.3.3.10 Brainwave Patterns and Correlate Behaviour(s) of Participant C

4.3.4 Participant D
4.3.4.1 First and Second qEEG Brain Mapping of Participant D
4.3.4.2 Delta Brainwave for Participant D of Second qEEG
4.3.4.3 Theta Brainwave for Participant D of Second qEEG
4.3.4.4 Alpha Brainwave for Participant D of Second qEEG
4.3.4.5 Beta Brainwave for Participant D of Second qEEG
4.3.4.6 Brainwave Patterns and Correlate Behaviour(s) of Participant D

4.3.5 Participant E
4.3.5.1 First and Second qEEG Brain Mapping of Participant E
4.3.5.2 Delta Brainwave for Participant E of First qEEG
4.3.5.3 Delta Brainwave for Participant E of Second qEEG
4.3.5.4 Theta Brainwave for Participant E of First qEEG
4.3.5.5 Theta Brainwave for Participant E of Second qEEG
4.3.5.6 Alpha Brainwave for Participant E of First qEEG
4.3.5.7 Alpha Brainwave for Participant E of Second qEEG

4.3.5.8 Beta Brainwave for Participant E of First qEEG

4.3.5.9 Beta Brainwave for Participant E of Second qEEG

4.3.5.10 Brainwave Patterns and Correlate Behaviour(s) of Participant E

4.3.6 Participant F

4.3.6.1 First and Second qEEG Brain Mapping of Participant F

4.3.6.2 Delta Brainwave for Participant F of First qEEG

4.3.6.3 Delta Brainwave for Participant F of Second qEEG

4.3.6.4 Theta Brainwave for Participant F of First qEEG

4.3.6.5 Theta Brainwave for Participant F of Second qEEG

4.3.6.6 Alpha Brainwave for Participant F of First qEEG

4.3.6.7 Alpha Brainwave for Participant F of Second qEEG

4.3.6.8 Beta Brainwave for Participant F of First qEEG

4.3.6.9 Beta Brainwave for Participant F of Second qEEG

4.3.6.10 Brainwave Patterns and Correlate Behaviour(s) of Participant F

4.3.7 Participant G

4.3.7.1 First and Second qEEG Brain Mapping of Participant G
4.3.7.2 Delta Brainwave for Participant G of First qEEG
4.3.7.3 Delta Brainwave for Participant G of Second qEEG
4.3.7.4 Theta, Alpha and Beta Brainwave for Participant G of First qEEG
4.3.7.5 Theta Brainwave for Participant G of Second qEEG
4.3.7.6 Alpha Brainwave for Participant G of Second qEEG
4.3.7.7 Beta Brainwave for Participant G of Second qEEG
4.3.7.8 Brainwave Patterns and Correlate Behaviour(s) of Participant G

4.3.8 Participant G

4.3.8.1 First and Second qEEG Brain Mapping of Participant G
4.3.8.2 Delta Brainwave for Participant G of First qEEG
4.3.8.3 Delta Brainwave for Participant G of Second qEEG
4.3.8.4 Theta, Alpha and Beta Brainwave for Participant G of First qEEG
4.3.8.5 Theta Brainwave for Participant G of Second qEEG
4.3.8.6 Alpha Brainwave for Participant G of Second qEEG
4.3.8.7 Beta Brainwave for Participant G of Second qEEG
4.3.8.8 Brainwave Patterns and Correlate
Behaviour(s) of Participant G

4.3.9 Participant 1
 4.3.9.1 First and Second qEEG Brain Mapping of Participant 1 98
 4.3.9.2 Delta Brainwave for Participant I of First qEEG 98
 4.3.9.3 Delta Brainwave for Participant I of Second qEEG 98
 4.3.9.4 Theta Brainwave for Participant I of First qEEG 99
 4.3.9.5 Theta Brainwave for Participant I of Second qEEG 99
 4.3.9.6 Alpha Brainwave for Participant I of First qEEG 99
 4.3.9.7 Alpha Brainwave for Participant I of Second qEEG 100
 4.3.9.8 Beta Brainwave for Participant I of First qEEG 100
 4.3.9.9 Beta Brainwave for Participant I of Second qEEG 100
 4.3.9.10 Brainwave Patterns and Correlate Behaviour(s) of Participant I 101

4.3.10 Discussions on qEEG brainwave patterns of ASD 102
4.3.11 Mean of Delta, Theta, Alpha and Beta Brainwaves 103
4.3.12 Summary of First and Second qEEG Brain Mapping 106

4.4 Neurofeedback Training Protocol 107
 4.4.1 Brainwave Pattern during the Neurofeedback Training Sessions 110
 4.4.1.1 Beta Training Protocol 110
 4.4.1.2 Delta Training Protocol 112
 4.4.1.3 Alpha Training Protocol 114
4.4.1.4 SMR Training Protocol 115
4.4.2 Summary of Neurofeedback Training Session 116
4.5 Behavioural analysis of ASD children before and After NFT for all participants 117

Chapter 5 Summary, Recommendation and Conclusion

5.0 Introduction 120
5.1 Summary 121
5.2 Brainwave Patterns of ASD Children of First and Second qEEG Mapping
 5.2.1 Delta Brainwave 122
 5.2.2 Alpha Brainwave 122
 5.2.3 Theta Brainwave 123
 5.2.4 Beta and Hi Beta Brainwave 124
 5.2.5 Summary on qEEG Brain Mapping Results 124
5.3 Recommendations 125
 5.3.1 Larger Participant of ASD Children 125
 5.3.2 More Support Data from Normal Children 126
 5.3.3 QEEG Checklist Before Session 126
 5.3.4 Implementation of Suggested Protocol at Certain Brain Area 127
 5.3.5 Report the intensively observed behaviour change 127
 5.3.6 Fill Support from family and teachers 127
5.4 Conclusion 128
LIST OF FIGURE

Figure 1
Types of brainwaves

Figure 2
Brain Topography of ASD Children

Figure 3
Comparison of qEEG spectra with database (significant different marked below spectra)

Figure 4
Topography comparison of normal (left) and children with ASD (right) for absolute and relative power of delta, theta, alpha, low beta and high beta

Figure 5
The ten-twenty electrode placement system

Figure 6
Connectivity between one areas of brain to another

Figure 7
Autism Treatment Evaluation Checklist’s (ATEC) Score Benchmark

Figure 8
Indicator to read the topography map

Figure 9
Frequency indicator

Figure 10
First and second Quantitative Electroencephalography brain topography of Delta, Theta, Alpha and Beta brainwave for each participant

Figure 11
Spectra Analysis of First (left) and Second (right) qEEG session of participant A

Figure 12
Spectra Analysis of First (left) and Second (right) qEEG session of participant B
Figure 13
Spectra Analysis of First (left) and Second (right) qEEG session of participant C

Figure 14
Spectra Analysis of First (left) and Second (right) qEEG session of participant D

Figure 15
Spectra Analysis of First (left) and Second (right) qEEG session of participant E

Figure 16
Spectra Analysis of First (left) and Second (right) qEEG session of participant F

Figure 17
Spectra Analysis of First (left) and Second (right) qEEG session of participant G

Figure 18
Spectra Analysis of First (left) and Second (right) qEEG session of participant H

Figure 19
Spectra Analysis of First (left) and Second (right) qEEG session of participant I

Figure 20
Mean of Delta Brainwave at Frontal-Posterior Region

Figure 21
Mean of Delta Brainwave at Left Hemisphere and Right Hemisphere

Figure 22
Mean of Theta Brainwave at Frontal-Posterior Region

Figure 23
Mean of Theta Brainwave at Left Hemisphere and Right Hemisphere

Figure 24
Mean of Alpha Brainwave at Frontal-Posterior Region
Figure 25 105
Mean of Alpha Brainwave at Left Hemisphere and Right Hemisphere

Figure 26 105
Mean of Beta Brainwave at Frontal-Posterior Region

Figure 27 106
Mean of Beta Brainwave at Left Hemisphere and Right Hemisphere

Figure 28 109
Summary of NFT Average Graph

Figure 29 118
Behaviour of ASD Children Before and After NFT (Below 15 years Old)

Figure 30 119
Behaviour of ASD Children Before and After NFT (Below 15 years Old)

Figure 31 117
Indicator Behaviour Modification’s Figure
LIST OF TABLE

Table 1 49
Procedure of Data Collection for qEEG

Table 2 55
Demographic Data

Table 3 63
Brainwave Pattern and Correlate Behaviour(s) of Participant A

Table 4 68
Number of Neurofeedback Training Sessions of Each Participant

Table 5 73
QEEG summary of all participants

Table 6 76
Neurofeedback average graph summary of all participants

Table 7 80
Summary of behaviour of ASD children Before and After the Training

Table 8 85
Summary of behaviour of ASD children Before and After the Training

Table 9 91
Before and After Neurofeedback Training of Participant A

Table 10 95
Brainwave Pattern and Correlate Behaviour(s) Delta Brainwave Frequency (Less than 4 Hz)

Table 11 101
Brainwave Pattern and Correlate Behaviour(s) Theta Brainwave Frequency (4-8 Hz)

Table 12 110
Summary of Beta Training Protocol

Table 13 112
Summary of Delta Training Protocol

Table 14 114
Summary of Alpha Training Protocol
Table 15
Summary of SMR Training Protocol
The purpose of this research was to explore, analyse and describe the brainwave pattern of Autism Spectrum Disorder (ASD) children using Quantitative Electroencephalogram (qEEG) and suggesting the right neurofeedback training (NFT) protocol. Quantitative Electroencephalogram primarily measures the electric potential field at the scalp surface. Quantitative Electroencephalogram mapping helped to provide an accurate assessment for placement of protocol as compared to behavioural checklist. Then, the researcher discussed all improvements in terms of behaviour modification in correlation with the changes of brainwave patterns. One of every 150 children born today in Malaysia has Autism (Malaysian Psychiatric Association, 2010). Their numbers are increasing; therefore, it is vital to do research on this disorder to improve the quality of life and reduce stress among parents and caregivers. Although there is no cure, appropriate management such as combination of neurofeedback and traditional method may foster normal development and reduce undesirable behaviours of ASD children. This study involved nine participants who were purposely selected from Kuching Autistic Association (KAA) with a diagnosis of having ASD symptoms by medical specialist. Their brain topography was obtained using qEEG brain mapping. Quantitative Electroencephalogram brain mapping followed by an average of 46 NFT sessions to monitor their brainwave. A neurofeedback protocol was designed to suppress the ratio of Theta and Alpha (4-10 Hz) to Beta (16-20) as well as to train the individual to normalize abnormal EEG frequencies. Neurofeedback protocols changed over time depending on participants’ mood, health condition and behaviour during training. Secondary qEEG recordings were made to see any brainwave alteration after neurofeedback training. There were series of observations for all participants before NFT as well as a series of observations after the NFT. Findings from qEEG mapping of this research were categorized under the third sub group - high Delta/Theta waves - as discovered by Michael Linden (2004) in his research on the four subtypes of autism. Quantitative Electroencephalogram discovers a pattern of high delta brainwave at prefrontal and frontal area, insufficient theta, alpha and beta brainwave in most of the brain region of ASD children. With regards to connectivity, main findings showed frontal lobe hyperconnectivity as well as hypoconnectivity of frontal region to other regions of the brain and diminished connectivity in language areas. The second qEEG session shows generally decreased Delta activity in frontal region of the brain, increased of theta, alpha and beta activity at most of the brain regions. The results have shown remarkable improvements in the participant’s speech, language, communication, sociability, cognitive and behaviour after five months. This research described that the brain lateralizations of ASD children were different from the brainwave pattern of the normal children and demonstrates the efficacy of NFT to help regulate the abnormal brainwaves and
behaviour and improve the neuronal regulation of the brain as indicated by the normal features of the brainwaves.
ABSTRAK

SIGNATUR “ELECTROENCEPHALOGRAM (EEG)” KANAK-KANAK YANG MENGALAMI GANGGUAN SPEKTRUM AUTISMA

komunikasi, kebolehan sosial, kognitif dan tingkah laku sepanjang lima bulan. Kajian ini menerangkan bahawa corak gelombang otak kanak-kanak autisma berbeza daripada corak gelombang otak kanak-kanak normal serta melihat kebolehan NFT untuk mengubah gelombang otak dan tingkah laku serta memperbaiki pengawalan neuro seperti yang ditunjukkan oleh ciri gelombang otak yang normal.