Preparation and Characterization of Electrically Conductive Polymer-Polyethylene Terephthalate (PET) Film

CHONG KAH CHUN (35749)

Bachelor of Science with Honours
(Chemistry Resource)
2015
Preparation and Characterization of Electrically Conductive Polymer- Polyethylene Terephthalate (PET) Film

CHONG KAH CHUN

(35749)

A project proposal submitted in partial fulfilment of the Final Year Project (STF 3013) Course

Supervisor: Prof Dr Pang Suh Cem

BSc (Hons) Resource Chemistry
Chemistry Department
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
Name of Candidate : Chong Kah Chun

Title of dissertation : Preparation and Characterization of Electrically Conductive Polymer-Polyethylene Terephthalate (PET) Film

(Professor Dr. Pang Suh Cem)

Final Year Project Supervisor

(Dr. Sim Siong Fong)

Coordinator of Resource Chemistry

Faculty of Resource Science and Technology
Acknowledgement

First of all, I would like to thank to the Department of Chemistry, Universiti Malaysia Sarawak for giving me an opportunity to fulfil my Final Year Project.

I wish to express my sincere gratitude to my supervisor Professor Pang Suh Cem for their enthusiastic supervision and encouragement throughout this project. He has been patiently giving me ideas and information on my project and report writing.

Besides that, I also deeply appreciate helpful assistance from master or PhD students in Physical Chemistry Laboratory. They have eased my burden and helped me to solve problem that arise in my project.

Lastly, I would like to express my appreciation to all my friend and staff which have guided and supported me in completing my Final Year Project.
Declaration

I hereby declare that no portion of the work referred to in this dissertation has been submitted in support of an application for another degree or qualification to this university or any other institution of higher learning.

Chong Kah Chun

Department of Chemistry

Faculty of Resource Science and Technology

Universiti Malaysia Sarawak
Table of Content

Acknowledgement .. I
Declaration... II
Table of Content ... III
List of Abbreviations ... IV
List of Tables and Figures ... V
Abstract.. 1

1.0 Introduction .. 2
 1.1 Problem Statement .. 4
 1.2 Objectives of Study ... 4

2.0 Literature Review ... 5
 2.1 Polyethylene terephthalate/Polyethylene terephthalate film .. 5
 2.1.1 Molecular structure and morphology of PET ... 5
 2.1.2 Application of PET ... 6
 2.1.3 Application of PET ... 7
 2.2 Conducting Polymers ... 7
 2.2.1 Polythiophene .. 7
 2.3 Method of Preparation and Characterization ... 9
 2.3.1 Modification of PET film surface ... 9
 2.3.2 Preparation of electrically conductive polymer films .. 12
 2.3.4 Characterization of electrical conductive polymer films ... 18
 2.4 Application of electrical conductive polymer films .. 20

3.0 Materials and Methods ... 23
 3.1 Preparation and treatment of PET films .. 23
 3.2 Preparation of electrically conductive polythiophene/PET-based films 24
 3.3 Characterization of Electrically Conductive PET-based Film .. 25
 3.3.1 Physical Characterization .. 25
 3.3.2 Chemical Characterization .. 25

4.0 Results and Discussion ... 26
 4.1 Surface modification of Polyethylene Terephthalate (PET) film .. 26
 4.1.1 SEM Characterization ... 27
 4.2 Electrically conductive polythiophene/PET-based films ... 28
List of Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>Ammonium Persulfate</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium Bromide</td>
</tr>
<tr>
<td>DBSNa</td>
<td>Sodium Dodecylbenzenesulfonate</td>
</tr>
<tr>
<td>DMMP</td>
<td>Dimethyl Methylphosphonate</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-Ray</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Microscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infra-Red</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
</tr>
<tr>
<td>PEN</td>
<td>Polyethylene Naphthalate</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene Terephthalate</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PT</td>
<td>Polythiophene</td>
</tr>
<tr>
<td>PTC</td>
<td>Phase Transfer Catalyst</td>
</tr>
<tr>
<td>PTSA</td>
<td>p-Toluene Sulfonic Acid</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Squared</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SILAR method</td>
<td>Successive Ionic Layer Adsorption and Reaction Method</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethanolamine</td>
</tr>
<tr>
<td>TEAp-TS</td>
<td>Tetraethylammonium p-Toluene Sulfonate</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TTAB</td>
<td>Tetradecyltrimethylammonium Tromide</td>
</tr>
</tbody>
</table>
List of Tables and Figures

Figure 1 Molecular structure of PET
Figure 2 Molecular structure of thiophene
Figure 3 Overall of methodology used for the preparation and characterization of electrically conductive PET-based films
Figure 4 Illustration of SILAR method for deposition of polythiophene on PET film.
Figure 5 Images of untreated PET film (a) and KOH treated PET film (b).
Figure 6 Images of polythiophene thin film deposited onto (a) untreated PT/PET film, and (b) KOH treated PT/PET film.
Figure 7 SEM micrograph of (a) untreated and (b) treated PET films (4 M KOH, 4 hours).
Figure 8 Image of polythiophene/PET-based film synthesized via SILAR method
Figure 9 SEM micrographs of PT film on PET deposited by the SILAR method, (a) KOH treated PET surface, and monomer/oxidant of (b) 1:2, (c) 1:3, (d) 1:4, and (e) 1:5 at 10000x magnifications.
Figure 10 SEM micrographs of PT film on PET deposited by the SILAR method. (a) one coating, (b) two coating, (c) three coating, (d) four coating, and (e) five coating at 10000x magnifications.
Figure 11 FTIR spectrum of polythiophene film
Figure 12 EDX result of PT/PET elemental analysis
Figure 13 Effect of the oxidant (FeCl₃) concentration on the conductivity of PT/PET films
Figure 14 Effect of relative thickness on conductivity of PT/PET films.
Figure 15 Aging time of electrical conductivity of polythiophene/polyethylene terephthalate in different monomer/oxidant ratios 1:2, 1:3, 1:4 and 1:5 respectively.

Table 1 Element composition table of PT/PET

Table 2 Effect of the oxidant (FeCl₃) concentration on the resistivity of PT/PET films

Table 3 Effect of PT thickness on the resistivity of PT/PET films.
Preparation and Characterization of Electrically Conductive Plasticized Polymer-Polyethylene Terephthalate (PET) Film

Chong Kah Chun
Resource Chemistry
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak

Abstract
In this study, commercially available polyethylene terephthalate (PET) was used to produce electrically conductive PET-based film. A thin layer of polythiophene (PT) film was successfully deposited on polyethylene terephthalate (PET) substrate by using simple successive ionic layer adsorption and reaction (SILAR) method. The polythiophene film deposited on PET was optimized by adjusting the monomer/oxidant molar ratio and relative thickness. The surface morphology and chemical composition of deposited polythiophene film was characterized by SEM, FTIR and EDX. The highest conductivity, $17.905 \times 10^{-6} \text{S/cm}$ of polythiophene film achieved at monomer/oxidant of 1:3 and $23.871 \times 10^{-6} \text{S/cm}$ during fourth coating.

Key words: polythiophene/polyethylene terephthalate, SILAR, electrical conductivity

Abstrak
Dalam kajian ini, polyethylene terephthalate komersial yang mudah didapati telah digunakan bagi menghasilkan polythiophene yang berasaskan polyethylene terephthalate film yang dapat mengalirkan arus elektrik. Polythiophene berasaskan polyethylene terephthalate film telah berjaya dihasilkan melalui cara simple successive ionic layer adsorption and reaction (SILAR). Polythiophene berasaskan polyethylene terephthalate telah dioptimumkan dengan menyesuaikan monomer/oksida molar ratio dan ketebalan. Morfologi permukaan dan komposisi kimia polythiophene filem dicirikan dengan SEM, FTIR dan EDX. Polythiophene filem mempunyai kekonduksian tertinggi, $17.905 \times 10^{-6} \text{S/cm}$ apabila monomer/oksida adalah 1:3 dan $23.871 \times 10^{-6} \text{S/cm}$ semasa salutan kali ke-empat.

Kata kunci: polythiophene/polyethylene terephthalate, SILAR, arus elektrik
1.0 Introduction

Over the past few decades, conducting polymer such as polypyrrole, polyaniline, polythiophene (PTh), poly(p-phenylene-vinylene) and poly(p-phenylene) have attracted great attention in many areas of modern technology due to their superior functionalities. Among this conducting polymer, polythiophene is the most promising electro-conductive polymers due to its excellent environmental stability, superior conductivity, unique photovoltaic, optical, magnetic and electronic properties (Li et al., 2009; Foroutani et al., 2014; Mohammadizadeh et al., 2014). In addition, polythiophene in thin film form play a substantial function in several applications such as corrosion protection, sensors, super capacitors and solar cells (Tallman et al., 2002; Lange and Mirsky 2011; Gnanakan et al., 2009; Mohammadizadeh et al., 2014). Basically, polythiophene are low in density, simplicity of fabrication, distinctive electrochemical, optical and magnetic properties. Compared to metal, implementation of electrical conductive polymers in electronic device capable to minimize the various harmful effects to human health and electronic devices due to its high electromagnetic interference shielding efficiency based on surface reflection and absorption (Wang et al., 2010). However, polythiophene suffer from low conversion, low monomer reactivity, insolubility in common solvents and infusibility (Mohammadizadeh et al., 2014). All these characteristics lead polythiophene to weak processability and troubles in application.

The purpose of using PET to develop electrically conductive film is because it is renewable sources and inexpensive materials which easily obtain in market. Recently, PET is widely used in various industrial applications such as packaging, medicine, automobile part and textile. Moreover, manufacturing of electronic and optical device such as LCD, electrophoretic displays, solar cell also uses PET as polymer substrate due to its light weight and flexibility (MacDonald, 2004; Mohammadizadeh et al., 2014). Besides that,
there are several reports available on conducting polymer depositions on polyethylene terephthalate substrate that carried out by using in situ polymerization method. For example, polythiophene/polyethylene terephthalate conductive films, polypyrrole/polyester composite textile, polypyrrole/polyethylene terephthalate are prepared based on this approach (Erdogan et al., 2012; Macasaquit & Binag., 2010; Varesano et al., 2005).

Before deposition conducting polymer to polymeric substrate, surface modification is necessary to carry out. This modification will enhance adhesion of the coating and uniformity. Basically, surface modification techniques can be parted into two primary categories: chemical and physical methods. Physical methods usually use plasma, UV radiation, corona, laser, and flame. These methods modify the surface by introduce a variety of polar groups on the surface. Besides that, for chemical methods, the surface of the substrate is modified by direct chemical reaction of the reagent such as potassium hydroxide or KMnO₄/HCl (Mohammadizadeh et al., 2014; Favaro et al., 2007). Generally, chemical methods are non-specific as physical methods. There have various ways to transform non-conductive polymer into conductive polymers such as spin coating, dip coating, DC-magnetron sputtering, in situ polymerization, electrochemical polymerization and vapor polymerization (Ali et al., 2010; Wang et al., 2010; Acqua et al., 2006). Different synthesis condition and dopant anion used resulted different morphology, chemical and physical properties of the film. However, some of the techniques mention above is not suitable for deposition polythiophene film, due to insolvibility in the typical solution process and smooth surface morphology of PET.

In this study, the electrically conductive polyethylene terephthalate (PET) film was prepared by depositing polythiophene thin films on the PET film by simple successive ionic layer adsorption and reaction (SILAR) method. The polythiophene is chosen to coat on PET film due to its environment and thermal stability, ease polymerization process,
superior conductivity, photovoltaic and electronic properties. To accomplish this goal, the surface of PET was undergoes modification by 4M of potassium hydroxide (KOH) solution followed by SILAR method. SILAR method able overcomes the formation of unnecessary precipitates which usually resulted in chemical deposition. Thus, avoid wastage of chemical materials. The SEM, FTIR, and EDX were used for characterization and examine the surface morphology. The two probe technique was employed to evaluate the electrical conductivity of the PET film by using a digital multi-meter.

1.1 Problem Statement

- How conductive polyethylene terephthalate (PET) film can be prepared?
- How the optimizing/enhance the level of conductivity of polythiophene/polyethylene terephthalate film?

1.2 Objectives of Study

- To synthesis polythiophene (PT) film from thiophene monomer.
- To deposit polythiophene film on polyethylene terephthalate (PET) film by simple successive ionic layer adsorption reaction (SILAR) method.
- To characterize and optimize electrical conductive PT/PET film by using SEM, FTIR, EDX and multi-meter.
2.0 Literature Review

2.1 Polyethylene terephthalate/Polyethylene terephthalate film

2.1.1 Molecular structure and morphology of PET

According to Reddish (1950), polyethylene terephthalate (PET) or sometime call as polyester is the first attracted attention as a possible synthetic polymer. In the year 2008, approximate 30.3 million metric tons has been produced which including both staple fibres and filament yarns (Donelli et al., 2010). In general, PET is semi-aromatic and semi-crystalline thermoplastic polyester. Furthermore, PET can be prepared by condensing the polymer resulted from alcoholysis between terephthalic acid ester and ethylene glycol or esterification reaction between ethylene glycol and terephthalic acid. PET is composed of repeating units as indicated in Figure 1.

![Figure 1: Molecular structure of PET](image)

The physical length of each repeating unit is about 1.09 nm and molecular weight is 200. Furthermore, due to its non-polar molecular structure, PET fibres only can absorb little water (Lechat et al., 2006). Basically, there are two types of PET film, one is amorphous transparent material and one is a crystalline material (Amborski and Flierl, 1953). Amorphous PET film has white, opaque and brittle physical properties which crystallized by reagent (acetone) or high temperature. On the other hand, crystalline film exhibited better physical properties which are tough, tensile and flexible to temperature up to 200°C (Amborski and Flierl, 1953). Moreover, the structural factor and orientation factor might affect the intensity of an absorption band. For examples, when PET film undergoes some crystallization process, absorption band intensity of amorphous regions will be lower
compared to the absorption band intensity of crystalline regions (Schimidt, 1963). Besides that, the proportions of crystalline and amorphous regions are depends on the way of preparation (Reddish, 1950). According to Mohammadizadeh et al. (2014), the surface morphology of PET film was smooth and homogenous thoroughly surfaces when observed by field emission scanning electron microscopy (FESEM). In addition, topology and the roughness of a normal PET film had a smooth surface (Favaro et al., 2007).

2.1.2 Application of PET

Polyethylene terephthalate (PET) has unique characteristics such as transparent, safety and lightweight, toughness, thermal resistance up to 175 °C, as well as good chemical, hydrolytic resistance (Mohammadizadeh et al., 2014; Venkatachalam et al., 2012). Besides that, PET fibers also exhibit superior mechanical strength, relatively high resistance to shrinkage and wear. However, undesirable properties also found in PET fibres such as hydrophobic character, static charge deposition, non-conductive and inert nature of the constituent polymer (Erdogan et al., 2012; Donelli et al., 2010). However, the composite PET film with conductive polymer capable to remove such undesirable properties (Erdogan et al., 2012). According to Amborski and Flierl (1953), PET film has high resistance toward acid than the base. Even, at boiling point, the weak acid also does not give any effect to PET. Moreover, PET film was less affected by solvent such as glacial acetic acid, trichloroethylene, xylene, dioxane, acetone, and ethyl acetate even at room temperature or near to its boiling point. (Amborski and Flierl, 1953).
2.1.3 Application of PET

As PET has outstanding barrier properties, they usually used to make molded bottles for spirits, soft drinks, beers, pharmaceuticals and other food products. Besides that, PET films also have capability involve in various applications such as X-ray films or tapes, photographic, magnetic, metalized film and electrical insulation. Moreover, PET also have potentials to substitute aluminium, steel and other metals in manufacture of precision molding for electrical and electronic devices, automobile parts, domestic and office appliances (Venkatachalam et al., 2012). The PET in fibre forms also finds uses in various applications such as thread, curtain, tire cord filaments, upholstery, wearing apparel, industrial fibres and fabric for industrial filtration. Recently, due to its unique properties, PET film involved in electronic device application and solar cell due to its flexible, light weight, and transparent properties (Mohammadizadeh et al., 2014). Nevertheless, the PET also been used in the biomedical field such as Dacron (Cowie and Arrighi, 2007).

2.2 Conducting Polymers

2.2.1 Polythiophene

The first organic metal or conductive polymer which flexible like plastic but post-conductivity characteristics was discovered in 1977 by three scientists Shirakawa, Heeger and MacDiarmid which come from different fields (Chiang et al., 1977). Conducting polymers is a chain of conjugated molecules which consists strong sigma bonding to maintain the conductive form of polymer structure. Once the oxidation of polymer was occur, the negative charged counter ion from electrolyte or oxidant would inserted and neutralized the charge balance of the bulk polymer. Electric current would be produced as the electrons are moving along the polymer chains. Examples of conducting polymer are polypyrrole, polythiophene, polyacetylene and polyaniline (Ramakrishnan, 2011).
In general, polythiophene are made up from repeating units of thiophene monomer. Polythiophene is π-conjugated chains with heterocyclic organic compound which generally not soluble in organic solvent due to it rigid-bone. The molecular formula for thiophene is C_4H_4S and the molecular structure is show in Figure 2:

![Figure 2: Molecular structure of thiophene](image)

Polythiophene extended π-conjugation perfectly in 2, 5-linked repeating unit. However, 2, 3- and 2, 4-linked repeating unit also can be found in the polythiophene. Insulator polymer is non-conductive, mainly due to their electron are localized. Polythiophene had double bond which including sigma and pi bond. The conjugated double bond and overlapping of orbital with neighbouring molecules allow the electrons delocalise along the polymer chain in giving conducting properties. Although the polythiophene was conductive, but when polythiophene doped with ClO_4^-, AsF_6^- and BF_4^-, there shown the loss of conductivity under certain condition such as ambient atmosphere and extremely dry conditions (Nalwa, 2001). In contrast, Chiang et al. (1977) reported that, the polythiophene was stable in moisture and atmospheric condition.

Several advantages of polythiophene, which are ease in fabrication, low density and had distinctive electrochemical, optical, and magnetic properties. Furthermore, polythiophene was recognized as most promising materials in practical application due to their chemical stability, excellent conductivity, good thermal, tunability of their electronic and distinctive electrochemical, magnetic properties (Cheylan et al., 2006). However, polythiophene also
suffer from low conversion, low monomer reactivity, insolubility in common solvents and infusibility (Mohammadizadeh et al., 2014). Furthermore, the inert sulphur atom in thiophene makes the preparation of polythiophene more difficult due to increase in oxidation potential (Kamat et al., 2010). So, polythiophene face difficulty in processability and troubles in application. Nonetheless, polythiophene still can play an important role in various application such as corrosion protection, sensors, supercapacitors and solar cells (Tallman et al., 2002; Lange and Mirsky 2011; Gnanakan et al., 2009; Mohammadizadeh et al., 2014). Besides that, polythiophene also can use in fabricating electro-optical display devices. The colour changing from red to blue when voltage was applied, and this shown the possibility of polythiophene to act as optical memory element (Kumar and Sharma, 1998). In additional, conductive polymer such as polythiophene also had potential used in biochemical application (Kumar and Sharma, 1998).

2.3 Method of Preparation and Characterization

2.3.1 Modification of PET film surface

Surface modification technique is very important to plastics industries. As surface modification techniques had the ability to turn inexpensive synthetic polymers into highly valuable end product (Favaro et al., 2007). Furthermore, substrate surface modification also can enhance the deposition process and affect conductivity of the materials. In general, surface modification techniques can be parted into two primary categories: chemical and physical methods. Physical methods were included laser, UV radiation, plasma, flame, and corona. The techniques which under physical categories often modify the surface by introduce a variety of polar groups on the substrate surface. For chemical methods, chemical reagent such as potassium hydroxide and KMnO$_4$/HCl was used to change the chemical nature on the substrate surface (Mohammadizadeh et al., 2014; Favaro et al.,
2007). Nevertheless, the chemical nature on the substrate surface also can alter by covalent bonding. Generally, chemical methods are not as specific as physical methods.

Mohammadizadeh et al. (2014) reported that the PET film is very sensitive to alkaline; potassium hydroxide solution. Hence, the surface of the films can be modified by the alkaline modifying agent such as potassium hydroxide (KOH). After modification, the films wash several times with deionized water and dried with N₂. Besides, stirring the KOH solution without contact with the PET film by using magnetic stirrer can ensure the PET film are evenly modified. Thus, increase the surface hydrophilicity and evaluated by water contact angle measurement. Aqueous KOH solution can causes etching, increase the porosities of substrate, and introducing polar group on the PET surface, so that suitable for mechanical locking and physical bonding with the polythiophene nanoparticles on PET (Mohammadizadeh et al., 2014).

Besides that 4M of the KOH, four different surfaces modify agent such as 12M KOH, Piranha solution, UV, combination of Piranha solution and UV had use to modify the surface morphology of polyethylene naphthalate (PEN) (Foroutani et al., 2014). According to Foroutani et al. (2014), piranha solution is an oxidizing mixture which made up by different ratio of sulphuric acid and hydrogen peroxide. The substrate was modified at room temperature and elevated temperature (at 65°C) by dipped in 20 ml concentrated sulphuric acid (95-98%) and 10 ml hydrogen peroxide (30%) for different periods of immersion time (5, 15, 30 min and 1 h). Foroutani et al. (2014) reported that, the alkaline KOH treatment leads to loss in optical transparency up to 84% and not significant increase in surface hydrophilicity of polyethylene naphthalate (PEN). However, Piranha solution significantly affects the surface morphology of PEN and gives less effect on PET film. Among several different methods that used in surface modification, irradiation by UV are the preferred modification method and made up conductivity 0.019 S/cm. Whereas, KOH
surface treatment for PEN film only contribute conductivity with 0.004 S/cm (Foroutani et al., 2014).

According to Gao et al., (2005), PET film undergoes surface modification via hydrolysis reaction. The PET is hydrolysis by concentrate alkaline solution, and follow by layer-by-layer assembly of chitosan and chondroitin sulfate on PET film. The surface modified PET film produce carboxyl group by cleavage of the ester groups. As the hydrolysis process will cause weight loss in molecular level, so the hydrolysis process was stopped once sufficient hydrophilicity achieved (Gao et al., 2005). Besides that, the change surface morphology determined by atomic force microscopy (AFM) imaging. The surface morphology PET film became very rough (RMS=37.9nm) after hydrolyzed for 35 min compared to untreated PET film (RMS=11.9nm) (Gao et al., 2005).

Besides alkaline solution, surface modification also can accomplish by using the oxidative acid solution. According to Favaro et al. (2007), KMnO$_4$/HCl solution was employed to change the surface morphology of poly (ethylene terephthalate) (PET), polypropylene (PP), high-density-polyethylene (HDPE) and films by varying the time, oxidative solution, and temperature. Favaro et al. (2007) had reported that, two competitive reactions occur in PET films, oxidative and hydrolysis reactions which affect the hydrophilicity result that expected from PET films. However, the surface morphology of PET films did not change significantly after treating with KMnO$_4$/HCl solution. This was due to hydrolysis only occur after removed the changed polymer or clean the PET film surface (Favaro et al., 2007).

Besides KOH, NaOH also used increase the roughness of PET surface (Tho and Ibrahim, 2012). Tho and Ibrahim (2012) reported that, the surface roughness was due to alkaline hydrolysis and resulted carboxylate-functionalized PET surface that cause imperfections on
the surface. Besides that, the longer the treatment time, higher concentration of NaOH and higher temperature of the reaction, the better the PET surface modification. In high temperature, the hydrolysis reaction is easier to perform due to hydrogen bonding interaction in the polymer are weakened. Moreover, high concentration NaOH increases the chance of collision, thus increasing the rate of reaction. According to the Tho and Ibrahim (2012), among the factor, the concentration was significantly influence the roughness of the PET which increase from 6.025nm to 16.700nm by using 0.25M and 1M NaOH. On the other hand, once the PET was chemically treated, the PET surface change from uniform, small hills and deep cavities, larger hill and deep cavities respectively (Tho and Ibrahim, 2012).

2.3.2 Preparation of electrically conductive polymer films

A ‘film’ can be defined as a layer of material on a supporting substrate. If there is no supporting substrate, it is known as a foil. Moreover, compare to bulk materials, film has its special properties certain conditions. In general, there are a lot of techniques to synthesis conductive polymer such as chemical polymerisation, electrochemical polymerisation, photochemical polymerisation, concentrated polymerisation, solid-state polymerisation, plasma polymerisation, soluble precursor polymer preparation, inclusion polymerisation, and metathesis polymerisation. However, among all the techniques, chemical polymerizations are the most useful in preparing large quantities of conductive polymers (Kumar and Sharma, 1998). In chemical polymerization, the monomers were oxidized into cation radical and their coupling to form di-cations radical and this process was repeated and generates a polymer (Kumar and Sharma, 1998).

On the other hand, there are various studies from different approach in the synthesis of polythiophene particles or films. Polythiophene film was prepared in glass substrate by
simple successive ionic layer adsorption and reaction (SILAR) method (Patil et al., 2012). The iron(III) chloride acts as oxidant in this oxidative polymerization. The FeCl$_3$ in ultrapure water act as anionic precursor, whereas the thiophene in acetonitrile acts as cationic precursor. This reaction was carry under acidic medium (pH 1). Firstly, the glass substrate was immersed in the thiophene solution for 20 second to allow thiophene adsorbed on the glass. After that, immersed in FeCl$_3$ solution for 10 second to allow the polymerization occurs in the surface of the glass. The polymerization would yield a polythiophene thin film in the surface of glass and capable applies in super-capacitor applications. The mechanism involve during SILAR method initial with the oxidation of thiophene to form cationic radical (Reyman et al., 2007). The resulted cationic radical was coupling each other to form dihydrodimeric dication and undergoes deprotonation to form dimer. As dimer is more easily undergoes oxidation compared to thiophene. Thus, the dimer being keep repeating the oxidation, coupling and deprotonation reaction and eventually polymerize into polythiophene (Patil et al., 2012). Besides that, Can et al., (1998) reported that the purpose of providing acidic condition when electro-polymerization of polythiophene is to stabilize the formation of cation radicals. In contrast, if the electro-polymerization process carries under neutral and base condition, the resulted film would significantly reduce due to the de-protonation reactions of the cation radicals of thiophene monomer and polymers (Can et al., 1998).

According to Pecher and Mecking (2010), oxidation of FeCl$_3$ with catalytic amount of H$_2$O$_2$ have a better result than iron(III) salts as the sole oxidant. This is because the iron in the salt can deteriorate the photoluminescence properties (Ryu et al., 2014). Furthermore, Wadatkar and Waghuley (2012) reported oxidation of FeCl$_3$ in the presence of H$_2$O$_2$ capable speed up the reaction and increase the yield. Pecher and Mecking (2010) also found out that, surfactant such as sodium dodecyl sulfate (SDS) are the most efficient in
monomers conversion which as high as 99% if the FeCl₃ as oxidant. This is because electrostatic interactions between SDS and Fe³⁺ which allow Fe³⁺ come near to the swollen droplets or micelles during polymerization. So, irregular shape of polythiophene particles approximate 30nm were obtains. Furthermore, the presence of surfactant will decrease the agglomeration of the polythiophene (Senthilkumar et al., 2011). Thus, polythiophene particles were stabilized. On the other hand, different morphology of polythiophene will exhibit when samples prepared with surfactant compared with surfactant free samples.

Other than that, polythiophene was synthesized by chemical oxidative polymerization in the presence of oxidant (FeCl₃) and three different surfactants (non-ionic, anionic, and cationic) in an anhydrous medium (Gok et al., 2007). The presence of anionic surfactant (DBSNa) favours the formation of thiophene radical-cation and subsequent polymerization to occur. Whereas, the cationic surfactant (TTAB) shown not efficiency in the production of thiophene radical-cations and slows down polymerization process (Gok et al., 2007).

Based on Liu and Liu (2009) study, polythiophene was prepared in the presence of phase transfer catalyst such as cetyltrimethylammonium bromide (CTAB) in aqueous medium by chemical oxidative polymerization. Desire morphologies of polythiophene which include ribbons, fibre and spherical form were obtained by simply manipulation on the concentration of oxidant, reductant, and phase transfer catalysts. The conductivity increase as the concentration of triethanolamine increased, and the morphology of polythiophene was changed from spherical shape to submicroribbons (Liu and Liu, 2009). Besides that, shown that polythiophene prepared by chemical oxidative polymerization was the most stable method compared to previous work.

Unsubstituted polythiophene was synthesized in binary organic solvents of acetonitrile and dichloromethane through facile and rapid chemical oxidative polymerization method (Jeon
et al., 2010). Same method implemented by Mohammadizadeh et al. (2014) but addition of surfactant (CTAB) was added to obtain specific nanoparticles morphology. In order to make comparison, unsubstituted polythiophene was synthesized in two other mediums: acetonenitrile and aqueous mediums. The unsubstituted polythiophene synthesis in binary organic solvent under FeCl₃/thiophene monomer molar ratio 5:1 and reaction time are 0.2 h at 0°C condition, exhibited the highest electrical conductivity (20.1 Scm⁻¹). Whereas, the unsubstituted polythiophene synthesized in acetonitrile mediums exhibit low electrical conductivity (1×10⁻⁴Scm⁻¹). Furthermore, the full amorphous structure of brown polythiophene was synthesized through aqueous medium and exhibit neutral non-conducting property (Jeon et al., 2010). This is due to the thiophene ring attacked by nucleophilic water molecules.

According to Li et al. (2009), fine polythiophene microparticles were synthesized by a novel interfacial polymerization which contains oxidant and thiophene at binary solvent such as acetonitrile and n-hexane. Li et al. (2009) had reported that, oxidant concentration significantly affects electrical conductivity. As the FeCl₃/thiophene molar ratio change from 2:1 to 6:1, the conductivity increase from 5.2×10⁻⁹ to 1.7×10⁻⁷ Scm⁻¹.

Mohammadizadeh et al. (2014) had carried out a research to study the deposition of polythiophene (PT) nanoparticles on transparent polyethylene terephthalate (PET) and how the electrical and morphological properties were influenced. The surface PET film was modified by modifying agent (KOH) and immerse in thiophene monomer solution to undergo polymerization. According to Mohammadizadeh et al. (2014), polythiphene nanoparticles successfully deposited on polyethylene terephathalate film by a oxidative deposition method using the binary organic solvent system in the presence of N-cetyl-N,N,N-trimethylammonium bromide (CTAB) as cationic surfactant. In addition, water are not suitable in oxidative polymerization of thiophene, due to possible incorporation of
carbonyl groups into the structure of the polymer (Li et al., 2009). The PET film undergoes alkaline (KOH) surface treatment, then followed by polymerization and deposition of conducting polythiophene on PET surface. When PET was treated with KOH solution, the PET film undergoes chemical alternation, which leads to formation of polar groups on its surface and complements the physical bonding and become porosities. The polymerization allows proceed for 12 min and deposition of polythiophene on PET surface would occur. In this polymerization process, the CTAB must vigorously stir to ensure the yield of polythiophene. This is because stirring makes the nanoparticles that trapped in CTAB become well dispersed in solution (Li et al., 2009). Besides that, a similar method of deposition was adopted on PEN films (Foroutani et al., 2014). Besides polythiophene nanoparticles film mention before, polythiophene film with size between 2-3µm also can prepared through electrochemical polymerization onto a carbon paper substrate by galvanostatic method in an oil-in-ionic liquids micro-emulsion electrolyte (Zhang et al., 2014).

The effect of different synthesis conditions on the electrical conductivity of polypyrrole coated polyethylene terephthalate fabrics also been study by Kaynak and Beltran (2003). Parameters such as the time, temperature and molar concentration of the reactant of the reactants had a substantial influence on the resultant conductivity, and the rate or the ratio of volume to surface polymerization. Besides, in order to get a higher conductivity, conductive film of greater resistance to abrasion were required, and synthesis needs to be conducted in low temperature (Kaynak and Beltran, 2003). Mohammadizadeh et al. (2014) also reported that several factors affect the deposition of PT nanoparticles and conductivity such as polymerization media influence, the presence of water in the solution, oxidant/monomer molar ratio. The conductivity can be increased by reducing the time of the polymerization process (<5min). This is because, when the polymerization process was
increased, the side reaction also increased. Besides that, the PET films were immersed in FeCl₃ solution or thiophene monomer solution for several hours up to 24 hours. This step will increase the amount of polythiophene that adhered on the PET film. In additional, uniformity of deposit polythiophene with dense packing of the particles is one of the factors that ensure high conductivity (Foroutani et al., 2014). According to Kelkar & Choursia (2011), polythiophene had been synthesized chemically. Kelkar & Choursia (2011) also reported that the content of sulphur (S) in polythiophene decrease as the doping duration of iron (III) chloride increases. This phenomenon is subject to the formation of complex between iron (III) chloride and S in polythiophene, and replacement of S by Fe⁺ after doping. Besides that, the conductivity of polythiophene film increase as the amount of dopant increase. However, the reduction product of FeCl₂ remains in the film lead to ‘dedoping’ of film and increase effect on stability of polythiophene film (Fichou, 1999). Furthermore, the thickness of polythiophene film must thinner than 10µm in order to achieve high strength, stiffness and quality (Feng, 2002).

According to Kumat et al. (2010), the polythiophene thin film was prepared by vacuum evaporation technique. The surface morphologic, electrical, optical and structural properties were strongly affected by post heating deposition. At high temperature, the electrical conductivity of post heated polythiophene increase exponentially due to modification of structural characteristics of the polythiophene film (Kumat et al., 2010). Although various solvent capable to dissolve the thiophene monomer in order for polymerization to occur. But, the presence of dangerous solvent in the film will bring many unfavourable conditions to being use in certain fields. So, another polythiophene synthesis method (plasma polymerization) had been introduced by Wen et al. (2014). The polythiophene-like thin films was prepared by manipulating the pressure, power as well as doping with iodine vapour in order to get high conductivity film (Wen et al., 2014).
2.3.4 Characterization of electrical conductive polymer films

According to Seyam et al. (2015), electrical resistance can be defined as the ability of a material to resist the flow of electrons when voltage was applied between two contact points on the materials. Whereas, the electrical conductivity is inversely proportional to the electrical resistance as equation shown below:

\[
\text{Conductivity} = \frac{1}{\text{Resistivity}}
\]

The conductivity of polythiophene significantly affected in the presence of surfactant (Gok et al., 2007). Among three different surfactant, poly(ethylene oxide)(20), tetradecyltrimethylammonium bromide (TTAB), and sodium dodecylbenzenesulfonate (DBSNa), polythiophene prepared by poly(ethylene oxide)(20) exhibit the highest conductivity, \(4.6 \times 10^{-4} \text{S/cm}^{-1}\) (Gok et al., 2007). The high conductivity might be due to the poly(ethylene oxide)(20) surfactant interacted with polythiophene chains. Whereas, the polythiophene thin film prepared through SILAR method exhibit electrical resistivity as high as 484 \(\Omega\)-cm at room temperature (Patil et al., 2012). Apart from that, Kamat et al., (2010) also shown the effect of temperature on the electrical conductivity of polythiophene thin films. As the temperature increase the electrical conductivity decrease and again increase at 400K. This might due to the removal of impurities such as solvent molecules or absorbed gases. According to Kattimani et al. (2014), polythiophene was synthesized at three different temperatures by chemical oxidative technique with ferric chloride as an oxidizing agent. The conductivity of polythiophene (3 replicate) obtained at room temperature are \(2.43 \times 10^{-5} \text{ (\Omega m)}^{-1}\), \(0.95 \times 10^{-5} \text{ (\Omega m)}^{-1}\) and \(1.65 \times 10^{-5} \text{ (\Omega m)}^{-1}\) respectively (Kattimani et al., 2014). Moreover, Mohammadizadeh et al. (2014) report shown PT nanoparticles are deposited as globular aggregates with an average size of about 50nm on PET and conductivity is \(1.18 \times 10^{-2} \text{ S/cm}\).
Scanning electron microscopy (SEM) or field emission microscopy (FESEM) was used to investigate the surface morphology of sample. Before proceeding to SEM, the appropriate disk was prepared to place the fabric and the fabric was copper-sputtered prior to observation (Wiener et al. 2013). According to Li et al. (2009), the morphology of polythiophene nanoparticles were almost spherical or ellipsoidal particles with similar size when observed by field-emission SEM. The reason for not all the nanoparticles in spherical shape was because during polymerization, CTAB was unable to form stable micelles in the two-phase system (Li et al., 2009). In contrast, the polythiophene film prepared by oxidative polymerization shown a uniform and smooth surface morphology with randomly distributed coalesced grains in SEM micrograph (Patil et al., 2012; Kamat et al., 2010). Furthermore, almost spherical polythiophene nanoparticle was aggregated to produce globular morphology on PET surface when observed by using FESEM (Mohammadizadeh et al., 2014).

Jeon et al. (2010) also reported, different polymerization medium strongly affect the morphology of polythiophene. In binary organic solvent medium, the aggregated ellipsoidal unsubstituted polythiophene nanoparticles (50-200 nm) was observed by using SEM and TEM. A bulky shapeless unsubstituted polythiophene nanoparticles microstructure are observed in acetonitrile medium and globular morphology with particles size range of 30-70nm was observe in aqueous medium (Jeon et al., 2010). Moreover, the temperature of polymerization will induce more and more site of reactions. Thus, yields the formation of unsubstituted polythiophene nanoparticles with low conductivity (Jeon et al., 2010). Besides that, the surface morphology of polythiophene prepare in the presence of tetradecyltrimethylammonium bromide surfactant are in layered structure (Gok et al., 2007). If the particle produces were small enough, TEM analysis was carried out to confirm the particles sizes and agrees the size particles and distribution from capillary
hydrodynamic fractionation (Pecher and Mecking, 2010). Apart from that, different morphology of polythiophene particle or film can be observed according to different approaches such as time of polymerization, temperature, solvent, presence of surfactant and other influences (Senthilkumar et al., 2011).

FTIR was used in the examination of the chemical composition of the polythiophene/PET film (Mohammadizadeh et al., 2014). The sample was ground into powder and turns into a pellet by mixing with KBr before FTIR analysis. By referring to FTIR spectrum polythiophene nanoparticles deposited on the PET substrate in binary solvent. The peak shown at 727 and 793 cm\(^{-1}\) is due to C-S stretching vibration mode of the thiophene ring (Mohammadizadeh et al., 2014). Besides that, the absorption band at 683 cm\(^{-1}\) represents the C-S-C planar deformation of the thiophene ring (Kamat et al., 2012). The C=C asymmetric vibration mode of the thiophene ring will lead to appearing of peak at 1622 cm\(^{-1}\) (Kamat et al., 2012). The strong peak exhibit at 1734 cm\(^{-1}\) is due to steric group (-CO-O-) of PET substrate (Mohammadizadeh et al., 2014). Moreover, the bands at 2930.87 cm\(^{-1}\) and 3399.46 cm\(^{-1}\) are due to the aliphatic C-H stretching vibration and O-H stretching of water (Patil, et al. 2012). Besides that, the absorption peak about 3429 and 2864 cm\(^{-1}\) are represent the O-H stretching vibration of water in KBr and aliphatic C-H stretching vibration respectively (Zhang et al., 2014).

2.4 Application of electrical conductive polymer films

Collins and Buckley (1996) reported that, the conductive polymers such as polypyrrole or polyaniline has been coated onto PET or nylon threads woven into a fabric mesh by spraying or dip-coating. The chemical sensing properties of conductive polymers coated onto woven fabric materials capable to act as the detector of toxic gases such as dimethyl methylphosphonate (DMMP), nitrogen dioxide, chemical warface simulant, and ammonia.
According to Wang et al. (2010), electrical conductive polymer films can act as electromagnetic interference shielding materials. As the metal or metal coated surface, usually has a high EMI shielding efficiency based on surface reflection, which gives harmful effect to human body and prevent some sensitive electronic device to operate. So, metal is not ideally used in some application (Wang et al., 2010). Textiles coated with conductive polymers not only reflect but also able to absorb the electromagnetic waves. It has wide potential application in the military (camouflage material), industry (shielding EMI), and blocking electromagnetic wave from daily life (Kuhn, 1997). Besides that, conducting electro-active polymers also involved in various application fields such as antistatic coatings, batteries, metallization of dielectrics, shielding of electromagnetic interferences, sensor and sensor arrays (Wang et al., 2010). Other than that, the polythiophene also bring advantages in application of field effect transistors (FET) compared germanium and silicon due to its low cost and ease of processing (Ates et al., 2012).

On the other hand, transparent electrodes based on conducting polymers also play an important role in display application (Chu et al., 2013). According to Youssef et al. (2012), conductive paper composites based on natural cellulosic fibres have potential use as antibacterial paper or anti-static packaging material for packaging application. This new composite is made up via in situ emulsion polymerization from unbleached bagasse or rice straw fibres and polyaniline (Youssef et al., 2012). Besides that, conductive PET film also play important role in antistatic application. New antistatic film had been developed by coating conductive polymer, sulphonated polyaniline and water dispersible polymer (Konagaya et al., 2002). The antistatic PET film offer a lot of advantages such as good transparency, superior antistatic properties, resistance to heat, water and ammonia (Konagaya et al., 2002).
According to Onoda et al. (2009), conductive polymer/insulating polymer composite films were used to evaluate biocompatibility in neuron cultures. Onoda et al. (2009) reported that, polypyrrole and poly(3,4-ethylenedioxythiophene) film can be used to support secretory functions of the cells which cultured on its surface. If biocompatibility was excellent in this application, then, to realize bioelectronics would be possible (Onoda et al., 2009). Besides that, graphene nanoribbon/polyaniline composite film, which was prepare via electro-polymerization method and play significant role in electrochemical detection dobutamine (Asadian et al., 2014). The graphene nanoribbon/polyaniline composite film was used as an electrode modifier to constructing a sensing platform to investigate dobutamine. This composites film was useful, especially in pharmaceutical and clinical preparations (Asadian et al., 2014).
3.0 Materials and Methods

3.1 Preparation and treatment of PET films

Figure 3: Overall of methodology used for the preparation and characterization of electrically conductive PET-based films.

Figure 3 show a flow chart of an overview of methodology used in this study. The PET film was provided by UNIMAS physical chemistry laboratory. The PET film was cut into 1 cm × 4 cm pieces and ultrasonicate with acetone. After sonication, the cleaned PET films was immersed in 4M aqueous KOH for 4 hours at 80ºC by using thermostatic water bath for surface modification. After the modification, the substrate was rinsed with plenty of distilled water several times and blown dry by using nitrogen gas (Mohammadizadeh et al., 2014).
3.2 Preparation of electrically conductive polythiophene/PET-based films

In the first beaker, 0.3 M thiophene was dissolve in 10 ml of acetonitrile which acts as cationic precursor with pH 1. The second beaker, 0.9 M FeCl₃ was dissolve in 10 ml of ultrapure water and acts as anionic precursor. The cleaned PET film was dipped into the cationic thiophene for 20 second which allows the thiophene adsorbs on the PET surface and follows by 10 second in FeCl₃ solution. The thickness of polythiophene film was increased by repeated SILAR cycle and the resistivity value was measured. (Patil et al., 2012). Different monomer and oxidant ratio; monomer:oxidant =1:2; 1:3; 1:4; 1:5 respectively were manipulated in order to optimized the conductivity. A simple illustration of SILAR method procedure was shown in Figure 4.

![Figure 4: Illustration of SILAR method for deposition of polythiophene on PET film (Patil et al., 2012)](image-url)
3.3 Characterization of Electrically Conductive PET-based Film

3.3.1 Physical Characterization

a.) Surface morphology (Scanning electron microscopy)

The surface morphology of the original PET film, treated PET film, polythiophene (PT), and PT/PET based film was observed by using scanning electron microscopy (SEM) (JEOL JSM-6390LA) with magnification of 5000x and 10000x. Before proceeding to SEM examination, the sample surface was placed on an appropriate plate and coated by Auto Fine Coater JEOL JFC-1600.

b.) Conductivity measurement (Digital multi-meter)

The surface resistivity of sample film was measured by using the two probe technique with a digital multi-meter. The average of measurements was randomly takes from five different regions with fixed distance (1 cm) in the sample film. Then, the average surface resistivity was converted into the conductivity by equation below:

\[
\text{Conductivity} = 1/\text{Resistivity}
\]

3.3.2 Chemical Characterization

a.) Chemical composition (Fourier transform infra-red spectroscopy)

The chemical structure and composition of electrically conductive PT/PET films were determined by using Fourier Transform Infra-red Spectroscopy (FTIR) (Thermo Scientific/Nicolet iS10) within the range of 400cm\(^{-1}\) to 4000cm\(^{-1}\). The polythiophene film that deposited on the PET film was scratched and mixed with KBr to form pellet for infrared measurements

b.) Elemental analysis (Energy dispersive X-Ray spectroscopy)

The presence of polythiophene on PET film was determined by using EDX. The presence of element such as carbon (C), and sulfur (S) confirm the presence of polythiophene.
4.0 Results and Discussion

4.1 Surface modification of Polyethylene Terephthalate (PET) film

The PET films were ultrasonicated with acetone to physically remove and dissolve any impurities on the PET surface. The potassium hydroxide (KOH) surface treatment changes the hydrophilic and roughness of PET films surface. In order to evidence the observed decrease in transparency, images of untreated PET film and KOH treated PET film are shown in Figure 5. Obviously, the transparency of KOH treated PET film was decreased.

![Figure 5: Images of untreated PET film (a) and KOH treated PET film (b).](image-url)

The ultimate purpose of surface modification was to increase the adhesion of polythiophene thin film on PET film. As shown in Figure 6, the polythiophene thin film resulted from the polymerization process was observed to adhere well onto KOH treated PET compared with the untreated PET. Besides that, the increase PET roughness was observed in the SEM micrographs as shown in Figure 7.
Figure 6: Images of polythiophene thin film deposited onto (a) untreated PT/PET film, and (b) KOH treated PT/PET film.

4.1.1 SEM Characterization

Figure 7 shows the SEM micrograph of (a) untreated and (b) treated PET films (4 M KOH, 4 hours).

Figure 7 shows the SEM micrograph of untreated PET film and KOH treated PET film at 5000x magnification. The surface morphology of untreated PET film was observed to be smooth and uniform. In contrast, KOH treated PET film showed substantially large and deep cavities. The surface roughness of PET (Figure 7 (b)) was due to surface degradation of PET film. The aqueous KOH solution creates porosities that favour the mechanical
locking of the PT on PET film. Moreover, the aqueous KOH also cause chemical alternation of the PET surface by introduction of polar group which resulted van der Waals forces become the main forces for physical bonding and interactions (Mohammadizadeh et al., 2015).

4.2 Electrically conductive polythiophene/PET-based films

4.2.1 Polythiophene/PET-based film

Figure 8 shown the image of the polythiophene/PET-based film which synthesized via SILAR method in room temperature. As shown in Figure 8, a layer of brownish polythiophene which completely adhered on the PET film.

![Figure 8: Image of polythiophene/PET-based film synthesized via SILAR method.](image)

4.2.2 Formation of polythiophene/PET-based films

The polythiophene films were obtained using successive ionic layer adsorption and reaction (SILAR) method at room temperature (Patil et al., 2012). The polymerization occurred when the monomer with the radical cation was oxidized by iron(III) chloride, FeCl₃. When a cleaned PET film was dipped into the thiophene solution, the thiophene was
adsorbed onto the PET surface. Once the adsorbed thiophene was further dipped on the the FeCl₃ solution, the thiophene underreact oxidation to form cationic radical (Reyman et al., 2007). The resulted cationic radicals were coupling with each other to form dihydrodimeric dication and underreact deprotonation to form dimer. As dimer is more easily undergoes oxidation compared to thiophene, the dimer continually repeating the oxidation, coupling and deprotonation reaction, and eventually polymerized into polythiophene. Besides that, cationic precursor was maintained at pH 1 to providing acidic medium which act to stabilized the formation of radical cation. The reaction mechanism for the formation of polythiophene from thiophene is shown in the Scheme 1:

Scheme 1: Reaction mechanism for the formation of polythiophene from thiophene
4.2.3 Scanning Electron Microscope (SEM)

Figure 9: SEM micrographs of PT film on PET deposited by the SILAR method, (a) KOH treated PET surface, and monomer/oxidant of (b) 1:2, (c) 1:3, (d) 1:4, and (e) 1:5 at 10000x magnifications.
Figure 10: SEM micrographs of PT film on PET deposited by the SILAR method. (a) one coating, (b) two coating, (c) three coating, (d) four coating, and (e) five coating at 10000x magnifications.
Figure 9 show the effect of oxidant concentration on the morphology of PT film deposited on PET. The surface morphology of KOH treated PET film showed substantially large and deep. In contrast, PT/PET film shows the presence of tiny coalesced grains randomly distributed over the substrate. Furthermore, as seen in SEM micrographs, the concentration of oxidant significantly affected the surface morphology of PT film deposited on the PET film. A smooth aggregate of PT layer which contained larger empty space was observed when monomer/oxidant molar ratio is 1:2 (Figure 9(b)). At the monomer/oxidant molar ratio of 1:3, smoother aggregates of PT layer which contained lesser empty spaces was observed (Figure 9(c)). This smoother and more uniform layer led to the highest conductivity of PT film deposited with a monomer/oxidant molar ratio of 1:3. At the monomer/oxidant of 1:4, the PT particles grew into denser aggregates and more coalesced grains present within the layer (Figure 9(d)). At the monomer/oxidant molar ratio of 1:5, the PT layer was observed to contain large coalesced grains with randomly distributed and crack line adhere on the PET substrate (Figure 9(e)). The observed crack phenomena might be due to the high yield of polythiophene coated on PET substrate and eventually leads to high internal stress which resulted in brittle cracks in the surface morphology (Wang et al. 2009).

Figure 10 shows the effect of relative thickness on the morphology of PT film deposited on PET substrate. Increasing the number of coating would lead to different surface morphology from less dense aggregates to denser surface and more coalesced grains. In Figure 10(a), relative smooth aggregates of PT layer with empty spaces were observed. With increasing number of coating, the number of coalesced grains increased, and became a relative smoother layer (Figure 10(b) to (c)). Moreover, the needle-like PT particles as observed in Figure 10(d) became denser, distributed more evenly, lastly the needle-like PT
particles tend to agglomerate (Figure 10(e)). Based on the conductivity measurement, the surface morphology of PT film shown in Figure 10(d), exhibited the highest conductivity.

4.2.4 Fourier transforms infrared spectroscopy (FTIR)

The FTIR spectrum of PT showed an absorption band at about 3404 cm\(^{-1}\) which was associated with the O-H stretching of water in KBr (Nasrollahzadeh et al., 2013). The absorption band at around 1629 cm\(^{-1}\) was due to C=C asymmetric vibration modes of thiophene ring (Kamat et al., 2012). The absorption band at 1091 cm\(^{-1}\) was attributed to C=S bond in polythiophene (Acharya et al., 2010). The absorption band at 682 cm\(^{-1}\) represented the C-S-C planar deformation of the thiophene ring (Kamat et al., 2010). The absorption bands characteristics as shown in Figure 13 confirmed the formation of polythiophene.

![FTIR spectrum of polythiophene film.](image)

Figure 11: FTIR spectrum of polythiophene film.
4.2.5 Energy Dispersive X-Ray Analysis (EDX)

Figure 12 show the EDX spectrum of PT/PET and Table 1 show the element composition of polythiophene on PET. The presence of the trace of elements (sulfur and carbon) shown the film adhere was polythiophene. Table 1 revealed that most abundant element in the polythiophene was carbon with a mass percentage of 94.01%, followed by a mass percentage of 3.59% of oxygen and finally mass percentage of 2.4% of sulfur. The carbon and sulphur was attributed to polythiophene. However, the presence of O might due to the PET substrate used for the analysis (Rassie et al., 2011). Furthermore, the presence of O also might due to oxidation of the polythiophene by atmospheric air after polymerization (Olayo et al., 2010).

![Figure 12: EDX result of PT/PET elemental analysis](image)

Figure 12: EDX result of PT/PET elemental analysis
Table 1: Element composition table of PT/PET

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>94.01</td>
</tr>
<tr>
<td>O</td>
<td>3.59</td>
</tr>
<tr>
<td>S</td>
<td>2.40</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

4.2.6 Electrical Conductivity

Table 2: Effect of the oxidant (FeCl$_3$) concentration on the resistivity of PT/PET films

<table>
<thead>
<tr>
<th>Concentration of FeCl$_3$, (M)</th>
<th>Films resistivity, (kΩ.cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>105.08</td>
</tr>
<tr>
<td>0.9</td>
<td>56.14</td>
</tr>
<tr>
<td>1.2</td>
<td>82.10</td>
</tr>
<tr>
<td>1.5</td>
<td>103.23</td>
</tr>
</tbody>
</table>

Table 2 shows the effect of the FeCl$_3$ concentration on the resistivity of PT/PET films. The resistivity of PT/PET films was measured using an ordinary digital multi-meter with a two point probe at a separation of 1.0 cm.

Conductivity = 1 / Resistivity (1)

The resistivity of films is inversely proportional to conductivity (equation 1). This means that, the higher the resistivity, the lower the conductivity. As show in Table 2, the lowest resistivity (56.14 kΩ.cm) was achieved at 0.9 M of FeCl$_3$ whereas the highest resistivity (105.08 kΩ.cm) was achieved at 0.6 M of FeCl$_3$. As shown in Figure 13, the conductivity is influenced by the concentration of oxidant. As concentration of the oxidant increase
(until 0.9 M), the conductivity increase from 9.527×10^{-6} S/cm to 17.905×10^{-6} S/cm respectively. This phenomena happens because, at higher concentration of FeCl$_3$ will realize a higher doping level and longer π-conjugation length. In contrast, at very low concentration of FeCl$_3$ will show low conductivity due to low probability of interaction between oxidant and monomer and thus not favourable the formation of PT with large π-conjugation (Mohammadizadeh et al., 2014). Further increase of concentration above 0.9 M, the conductivity start to decrease to 12.182×10^{-6} S/cm and 9.401×10^{-6} S/cm at 1.2 M and 1.5 M of FeCl$_3$ respectively. This is due to over-oxidation of PT chains (Huang et al., 2009).

![Figure 13: Effect of the oxidant (FeCl$_3$) concentration on the conductivity of PT/PET films](image-url)
Table 3: Effect of PT thickness on the resistivity of PT/PET films.

<table>
<thead>
<tr>
<th>Relative thickness, (number of coating)</th>
<th>Films resistivity, (kΩ.cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56.140</td>
</tr>
<tr>
<td>2</td>
<td>50.735</td>
</tr>
<tr>
<td>3</td>
<td>48.569</td>
</tr>
<tr>
<td>4</td>
<td>42.078</td>
</tr>
<tr>
<td>5</td>
<td>127.027</td>
</tr>
</tbody>
</table>

The thickness of PT/PET is another factor which influences the resistivity of PT/PET films. As shown in Table 3, the films resistivity was observed to decrease as the number of PT coating was increased until four coating. However, high resistivity was observed with five coatings.

Figure 14: Effect of relative thickness on the conductivity of PT/PET films.
Figure 14 shows the effect of relative thickness of PT film on the conductivity of PT/PET based film. The conductivity, increase as relative thickness of PT film was increased with number of time of coating but was observed to decline with five coatings. From first time coating until fourth coating, the conductivity of PT/PET film increased from 17.905×10^{-6} S/cm to 23.871×10^{-6} S/cm respectively. The most optimum relative thickness for PT film to exhibit the highest conductivity was four coating and the conductivity as high as 23.871×10^{-6} S/cm. As the film thickness was increased, PT film was evenly distributed and denser on the PET film as compared to one layer of PT coating. Besides, five coatings of PT film on PET exhibited the lowest conductivity, 7.905×10^{-6} S/cm. Thick PT film would eventually act as an insulator and hence exhibited lower conductivity (Hasiah, et al., 2008).

![Figure 15](image)

Figure 15: Aging time of electrical conductivity of polythiophene/polyethylene terephthalate in different monomer/oxidant ratio 1:2, 1:3, 1:4 and 1:5 respectively.

The aging time of electrical conductivity of PT/PET in different monomer/oxidant ratio was shown in Figure 15. As show in Figure 15, the electrical conductivity of decreased significantly among the different monomer/oxidant ratio from the Day 1 to Day 3 and
become almost constant for Day 4 to Day 7. From day 1 to Day 2, the electrical conductivity in 1:2 monomer: oxidant ratio decreased 85.51%, 56.98% for 1:3 ratio, 57.58% for 1:4 ratio, and 84.66 for 1:5 ratio. Whereas, from Day 2 to Day 3, the electrical conductivity decrease significantly at 96.38%, 95.79%, 97.76% and 74.55% in 1:2, 1:3, 1:4; and 1:5 monomer/oxidant ratio respectively. The remaining day showed the electrical conductivity do not significantly decreased and almost became constant. In simply word, the electrical conductivity of polythiophene/polyethylene terephthalate decreased over seven day. The decreased of electrical conductivity phenomena might be due to the low environmental stability that caused by the remaining of reduction product, FeCl₂ in the polythiophene film and lead to ‘dedoping’ of the polythiophene film (Denis, 1999).
5.0 Conclusion and Recommendation

In conclusion, conductive PT films of varying thickness have been deposited on polyethylene terephthalate. From this study, the optimum conditions to achieved highest conductivity are monomer/oxidant molar ratio of 1:3 and four times of coating respectively. However, the method used in this study was not desirable for the preparation of electrically conductive PET-based thin film due to difficulties of obtaining uniform polythiophene coating on PET film surface. Furthermore, the polythiophene layer did not adhered well onto the PET films.

There are few recommendations to further this study.

- Identify a suitable surfactant for the preparation of nano-sized polythiophene in the form of stable suspension.
- Identify suitable ways of functionalizing the PET film in order to enhance the adhesion of polythiophene onto PET film.
- Identify the alternative oxidant that can be incorporated well with the PET film in order to enhance the conductivity.
- Identify the best way/techniques for depositing polythiophene film onto PET substrate and retain the electrical conductivity as long as possible.
6.0 Reference

Appendix

Appendix A: Effect of the oxidant (FeCl$_3$) concentration on the resistivity (with the three replicate raw data) of PT/PET films

<table>
<thead>
<tr>
<th>Concentration of oxidant, FeCl$_3$</th>
<th>Films resistivity, kΩ·cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replicate 1</td>
</tr>
<tr>
<td>0.6</td>
<td>109.58</td>
</tr>
<tr>
<td>0.9</td>
<td>52.928</td>
</tr>
<tr>
<td>1.2</td>
<td>83.26</td>
</tr>
<tr>
<td>1.5</td>
<td>101.244</td>
</tr>
</tbody>
</table>

Appendix B: Effect of relative thickness on conductivity (with the three replicate raw data) of PT/PET films.

<table>
<thead>
<tr>
<th>Relative thickness, number of coating</th>
<th>Films resistivity, kΩ·cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replicate 1</td>
</tr>
<tr>
<td>1</td>
<td>52.928</td>
</tr>
<tr>
<td>2</td>
<td>51.16</td>
</tr>
<tr>
<td>3</td>
<td>41.952</td>
</tr>
<tr>
<td>4</td>
<td>42.916</td>
</tr>
<tr>
<td>5</td>
<td>116.48</td>
</tr>
</tbody>
</table>
Appendix C: The electrical conductivity of different monomer/oxidant molar ratio, 1:2, 1:3, 1:4, and 1:5 respectively within the seven day

<table>
<thead>
<tr>
<th>Day</th>
<th>Conductivity x10^-6 S/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:2</td>
</tr>
<tr>
<td>1</td>
<td>9.5270</td>
</tr>
<tr>
<td>2</td>
<td>1.3803</td>
</tr>
<tr>
<td>3</td>
<td>0.0498</td>
</tr>
<tr>
<td>4</td>
<td>0.0393</td>
</tr>
<tr>
<td>5</td>
<td>0.0537</td>
</tr>
<tr>
<td>6</td>
<td>0.0721</td>
</tr>
<tr>
<td>7</td>
<td>0.0494</td>
</tr>
</tbody>
</table>