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Abstract—This paper proposes an hybrid Artificial Neural 
Network (ANN) with Self-Organizing Map (SOM) and 
modified Adaptive Coordinates (AC) for multivariate 
dimension reduction and data structures exploration.  SOM, 
being a prominent unsupervised learning algorithm, is often 
used for multivariate data visualization.  However, SOM only 
preserved input space inter-neurons distances and not in the 
output space because of SOM rigid grid.  SOM grid provides 
little information for visual exploration of the clustering 
tendency of the multivariate data.  Modified AC is therefore 
proposed to remove SOM’s map rigidity and provides better 
data topology preserved visualization.  Empirical study of the 
hybrid yielded promising topology preserved visualizations for 
synthetic and benchmarking datasets. 

Keywords- Self-Organizing Map; Adaptive Coordinates; 
multivariate data visualization; multi-dimension reduction 

I.  INTRODUCTION 
Visual information is essential for human intuitive 

decision making. However, data with dimension higher than 
three is not possible to be visualized directly. 
Dimensionality reduction is required in order to visualize 
the underlying data structure. To do this, classical method 
such as Sammon’s Non-linear Mapping (NLM) [1] and 
Multidimensional Scaling (MDS) [2] provide excellent 
ways. But due to their point-to-point mapping nature and 
calculation complexities, they are not practical for real life 
applications where databases are always expanding.  
Algorithms with data compression or vectors quantization 
and visualization abilities are more preferable in real life 
applications.  Self-Organizing Map (SOM) proposed by 
Kohonen [3] met these requirements excellently.  It since, 
became a standard analytical tool for many real world 
problems. 

SOM can be used for dimension reduction, vector 
quantization and visualization. Recent application of SOM 
in real life problems can be found in [11-14].  Although 
SOM has become a very popular analytical tool, it has one 
major drawback due to it rigid grid used in the output space.  
Only the input space data topology is preserved. SOM’s 
output space is represented by rectangular or hexagonal grid 
which obviously does not preserve the inter-neuron 
distances. The studies in [4-7] pointed out this drawback 
and proposed new algorithms that preserve the inter-neuron 
distances in the output space.  Visualization induced SOM 

(ViSOM) [4] and Probabilistic Regularized SOM (PRSOM) 
[5] are two of the popular ones. Both of these algorithms 
introduced a regularization control parameter so that the 
distances between two neighborhood neurons can be 
controlled.  By regularizing the inter-neuron distances of the 
input space with suitable control parameter, the output space 
of the projected map is able to preserve the data topology.  
However, large amount of neurons are required in order to 
produce accurate data visualization. Large number of 
neurons increases computation cost and the projected map 
becomes more vulnerable to dead neurons problem [8-9]. 

Adaptive Coordinates (AC) was proposed as an 
extension to the original SOM [6-7]. AC did not modify 
SOM, instead by using virtual adaptive units to mirror SOM 
neurons movement, AC is able to produce topology 
preserved output map.  This is an advantage as compare to 
ViSOM and PRSOM in terms of number of neurons 
utilized.  The details of AC algorithm can be found in [6-7].  
Nevertheless, AC’s projection ability is very much 
depended on a magic number or free parameter that triggers 
the starting to the adaptation process. During initial training, 
the adaptation tends to be too strong and will cause all 
adaptive units to move towards single point [7].  But if the 
adaptation starts too late, the remaining neurons weight 
vectors movements, before SOM converge, will be too little 
to produce meaningful visualization. This magic number 
can only be found heuristically. To lift this limitation, the 
original AC is modified and is hybrid with SOM to produce 
an algorithm for multivariate data dimension reduction and 
data visualization in this paper. 

Section II gives an overview of SOM, and the modified 
AC is presented in section III.  The proposed hybrid of SOM 
with modified AC is presented in section IV.  Experiment 
results and discussions are presented in section V, and 
section VI concludes the work. 

II. SELF-ORGANIZING MAP (SOM) 
Kohonen’s Self-Organizing Map (SOM) [3] has the 

desirable property of topology preservation, which captures 
an important aspect of the feature maps in the cortex of 
highly developed animas brains. It is widely used for 
projection of multivariate data, density approximation, and 
clustering. It has been successfully applied in the areas of 
speech recognition, image processing, robotics, 
telecommunication, and process control [3]. 
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SOM network architecture basically consists of a two-
dimensional array of units, each connected to all n input 
nodes with weights vector  

),...,2,1(w jdwjwjwj =  

where d is the dimension of the dataset being analysed. The 
learning process of SOM involved finding the Best 
Matching Unit (BMU), for each sample x drawn from 
dataset, using Euclidean norm  

 jx-w 
i

argmin*i =  (1) 

and updates the weights of all the connections according to 
the unsupervised “on-line” competitive learning rule 
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Where η is the learning rate and ( )th ji* is the Gaussian 
neighborhood function  
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is the neighborhood range with initial value 0^σ  which is 
initialized with the half of the SOM lattice size.   

Although SOM provides good input space topology 
preservation, but due to the rigid predefined rectangular or 
hexagonal grid it uses on the output space, the SOM map 
gives little intuitive information about the data topology.  
SOM grid does not preserve the data topology. Various 
studies [4-7] pointed out this limitation. 

III. ADAPTIVE COORDINATES (AC) 
The Adaptive Coordinates (AC) [6] was proposed to 

removes the rigidity of SOM grid map, allowing a more 
intuitive recognition of the input data cluster boundaries. 
The basic idea of AC is to mirror the movement of neurons’ 
weight vectors, in each of the SOM training iterations, into 
two dimension adaptive coordinates 〈axi,ayi〉.  For each 
iteration i, the distances between neurons weights before 
SOM’s weight vectors adaptation Disti(t) and after the 
adaptation Disti(t+1) are used to compute the relative AC 
adaptation factor.  

 ( ) ( ) ( )
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The adaptive coordinates, except the winner node, is then 
moved towards the winner neuron c according to the 
equations below: 
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As highlighted in [8] and [9], AC suffered from 
inconsistent adaptive units movements due to the use of 
relative adaptation factor as shown in (5). The initial SOM 
training tends to be too strong and causes the movements of 
the adaptive units to fall into single point.  Following that, 
after about one fifth of the predefined training epochs, when 
SOM is converging, there will be too little weight vectors 
movements to give notable mirroring movement of the 
adaptive units.  It means that the remaining training epoch, 
after the SOM converged, will not improve the visual 
projection on the AC.  It will simply waste of computational 
cost. This threshold value that triggers the starting of 
adaptation can only be found heuristically. This is not 
desirable because it reduced SOM robustness. Therefore to 
ensure a better visual projection on the AC and SOM, a few 
approaches to modify the original AC is proposed in this 
study.  They are presented in section IV. 

IV. PROPOSED HYBRIDIZATION OF SOM AND MODIFIED 
AC (SOM WITH MODIFIED AC) 

SOM’s original algorithm is extremely robust. No 
parameter is required in order for it to produce good 
topological preserved map. But as highlighted in previous 
section, SOM does not preserve the inter-neuron distance in 
the output space due to the rigid grid.  A modified AC is 
proposed in this paper to remove the rigidity so that a better 
topology preserved map can be produced. 

In order to successfully hybrid modified AC into SOM 
while retaining SOM robustness, an extra set of coordinates 
〈axi,ayi〉 are used as the adaptive units. These adaptive units 
will be used to mirror the neurons’ movement. To overcome 
the inconsistent movements of these adaptive units for every 
iteration, the input and output spaces are normalized so that 
all movements are within 0 to 1 scale.  Equation (7) shows 
the modified adaptation factor. 

 ( ) ( ) ( )tindtoutdtiDist −=+Δ 1  (7) 
where dout(t) is the Euclidean’s distance of adaptive 
coordinates in the output space and din(t) is the Euclidean’s 
distance of the respective neurons weights. Instead of 
mirroring directly the movements of neurons as proposed in 
[6] and [7], the modified adaptation factor will approximate 
the distances of neurons and their respective adaptive units.  
The polarity of the adaptation factor will determine whether 
the adaptive coordinates will be pull closer to the winner or 
push away from it through the coordinate update formula in 
(8). 
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neighborhood range as in (4).  Its value is exponentially 
decreasing between 1~0 but never reached zero or exceed 1. 
Since the proposed algorithm removed the need for 
threshold starting the adaptation, the adaptation process can 
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be started after SOM converged.  This reduces overall 
computational cost. 
 

The proposed algorithm can be summarized as follow: 
Step 1: Find BMU for each sample selected according to (1) 
Step 2: Update Codebook weights according to (2) 
Step 3: Find the adaptation factor for a neuron according to 

(7) 
Step 4: Update the adaptive units according to (8) 
Step 5: Repeat Step 1 to 4 according to a pre-defined number 

of epochs. 
 

V. EXPERIMENTS 
The performance of the hybrid SOM with modified AC 

is first demonstrated using synthetic 2D and 3D Gaussians 
dataset.  These datasets are simple and can be visualized 
directly by human observer. Then benchmarking Wine and 
Wincousin Breast Cancer (WBC) datasets [10] are used to 
test the dimension reduction and topology preserved 
projection ability for higher dimension. In all the 
experiments, the codebook vectors of SOM are initialized by 
random selection of samples from the dataset being 
evaluated while the adaptive coordinates 〈axi,ayi〉 are 
initialized based on the SOM grid but with normalized 
values. The SOM lattice is set to 10x10 and the learning rate 
is set to be linearly decreasing from 0.9 to 0.01 for all 
experiments.  The visualization results are compared with 
SOM, SOM with original AC [6-7], and ViSOM [4] for the 
benchmarking datasets. The results of ViSOM projections 
are adapted from [5]. 

A. Synthetic 2-D Gaussians 
The synthetic 2-D dataset consists of three well 

separated Gaussians with 100 samples each.  Their mean 
vectors are [2 3], [-4 2], and [0 -2] and covariance matrices 

are
1 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

.  The 2D Gaussians input dataset is shown in Fig. 

1 (a). 
Visual inspection of the projected maps depicted that the 

proposed SOM with modified AC projection is much better 
than SOM, and SOM with original AC. SOM with modified 
AC removed the SOM rigid grid (Fig. 1 (c)) and produced 
data topology preserved output map as shown in Fig. 1 (b).  
Clustering tendency of the projected map in SOM with 
modified AC is much better as compared with the original 
AC as in Fig. 1 (d). Three distinct clusters that resemble 
very closely to the original dataset’s clusters are revealed in 
the projection of SOM with modified AC.  This is very 
useful information for data clustering process. 
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Figure 1.  The visualization of three synthetic 2D Gaussians dataset.  (a) 3 
Synthetic 2D Gaussians, (b) SOM with modified AC, (c) SOM, and (d) 
SOM with original AC 

 
B. Synthetic 3-D Gaussians 

The labeled synthetic 3-D Gaussians from [5] is used. It 
consists of three Gaussians sources with 100 samples each. 
Their mean vectors are [5.0 7.0 6.0]T, [-2.0 5.0 -3.0]T, and [-
10.0 6.0 2.0]T.  Their respective covariance matrixes are 

5.0 1.0 0.3
1.0 0.3 1.0

0.3 1.5 4.0

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

,
1.0 0.1 0.5
2.0 5.0 1.0

1.3 2.0 3.0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

, and 
0.1 1.0 0.2
1.2 2.3 1.4
0.3 1.2 4.0

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

It is shown in Fig. 2 (a). It consists of two clouds of 
stretched longitudinally 3D Gaussians and one cloud of 
normal 3D Gaussian. 

The projected maps (Fig. 2(b-d)) are results of 
dimension reduction from 3D to 2D.  As in 2D synthetic 
dataset, SOM with modified AC removed SOM rigid grid 
(Fig. 2 (c)) and produced a better data topology preserved 
visualization (Fig. 2 (b)) as compare to the original AC (Fig. 
2 (d)).  Fig. 2 (b) revealed two stretched clusters and one 
normally distributed cluster.  These 2D clusters resembled 
the dataset’s 3D clusters.  It shows the SOM with modified 
AC is able to reveal the clustering tendency of the original 
dataset even after performed the dimension reduction from 
3D to 2D. 
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Figure. 2.  The visualizations of three synthetic 3D Gaussians dataset.  (a) 3 
Synthetic 3D Gaussians, (b) SOM with modified AC, (c) SOM, and (d) 
SOM with original AC 

C. Winconsin Breast Cancer Dataset 
Winconsin Breast Cancer (WBC) [10] consists of 683 

labeled samples with 9 dimension and 2 different classes.  
The samples with missing value were removed for easier 
processing.  
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Figure 3.  2D visualizations of Winconsin Breast Cancer dataset.  (a) 
SOM with modified AC, (b) SOM, (c) SOM with original AC, and (d) 
ViSOM (map size 20x20, λ=3.0) (adapted from [5]) 
 

After performing dimension reduction, SOM grid, as 
shown in Fig. 3 (b), is able to reveal some information about 

two clusters that represented the two diagnosed classes. 
Those are the benign and malignant classes.  ViSOM 
regularized visualization in Fig. 3(d) is more informative 
than SOM.  Two overlapping clusters are shown in the 
middle of the map.  By using the proposed SOM with 
modified AC, even more information about the clustering 
tendencies is revealed as shown in Fig. 3 (a). It shows that 
benign class is much denser as compare to malignant class.  
Visual judgment shows that the SOM with modified AC 
(Fig. 3 (a)) is able to produce a much better topology 
preserved map than the SOM with original AC as shown in 
Fig. 3 (c), which is based on the mirroring effect. 

D. Wine Data Set 
Wine dataset [10] consists of 178 labeled samples with 

13 dimension and 3 different classes. This dataset has higher 
dimensions as compare to previous datasets.  SOM grid, as 
shown in Fig. 4 (b) is able to reveal three different clusters 
after performed the dimension reduction from 13D to 2D.  
But no information about the clustering density is available 
from the rigid grid.   
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Figure. 4.  2D visualizations of Wine dataset.  (a) SOM with modified AC, 
(b) SOM, (c) SOM with original AC, and (d) ViSOM (map size 20x20, 
λ=0.8) (adapted from [5]) 
 

ViSOM regularized visualization as shown in Fig. 4 (d) 
is able to show three clusters in the middle of the map.  
However, it is still confined to the rigid grid and most of the 
neurons were not utilized. By removing the rigid grid 
through SOM with modified AC, visual inspection 
revealed three distinct clusters as shown in Fig. 4 (a).  SOM 
with modified AC provides better projection as compare to 
SOM with original AC as shown in Fig. 4 (c) where the 
clusters are rather indistinct. 

263257

Authorized licensed use limited to: UNIVERSITY MALAYSIA SARAWAK. Downloaded on August 23,2022 at 07:03:52 UTC from IEEE Xplore.  Restrictions apply. 



VI. CONCLUSION 
This paper proposed a new hybrid ANN by using SOM 

and modified AC for data dimension reduction and data 
visualization.  It removes the rigid grid projection of SOM 
and thus produces topological preserved map. Empirical 
results demonstrated the hybrid algorithm is able to produce 
promising data structure and inter-neuron distances 
preserved visualization.  No predefined parameter is required 
for the proposed algorithm. Therefore, the proposed hybrid 
technique shows potential for real life applications where 
topology preserved visualization and computationally 
efficient algorithm is required.  Besides, it also shows the 
potential for fully automated intelligent system where little 
or no human intervention (nonparametric) is required. Inter-
neurons distance preservation enhancement and probability 
density estimation for the projected map will be good 
candidates for future investigation. 
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