Nanostructured Multilayer Composite Films of Manganese Dioxide/Nickel/Copper Sulfide (MnO₂/Ni/CuS) Deposited on Polyethylene Terephthalate (PET) Supporting Substrate.

Awangku Nabil Syafiq Bin Awangku Metosen, Suh Cem Pang*, Suk Fun Chin

Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.

*Corresponding and Presenting Author Email: suhcem@gmail.com; scpang@frst.unimas.my

<u>Abstract</u>

Nanostructured multilayer manganese dioxide/nickel/copper sulfide (MnO₂/Ni/CuS) composite films were successfully deposited onto supporting polyethylene terephthalate (PET) substrate through the sequential deposition of CuS, Ni and MnO_2 thin films by chemical bath deposition, electrodeposition, and horizontal submersion deposition techniques, respectively. Deposition of each thin-film layer was optimized by varying deposition parameters and conditions associated with specific deposition technique. Both CuS and Ni thin films were optimized for their electrical conductivity whereas MnO₂ thin film was optimized for its microstructure and charge capacity. The electrochemical properties of nanostructured multilayer MnO₂/Ni/CuS composite films were evaluated by cyclic voltammetry as electrode materials of an electrochemical capacitor prototype in a dual planar device configuration. Cyclic voltammogram in mild Na₂SO₄ aqueous electrolyte exhibited a featureless and almost rectangular shape which was indicative of the ideal capacitive behavior and high cycling reversibility of the electrochemical capacitor prototype. Nanostructured multilayer MnO₂/Ni/CuS composite films on supporting polyethylene terephthalate (PET) substrate could potentially be utilized as electrode materials for the fabrication of high performance electrochemical capacitors.

KEY WORDS: Nanostructured; Multilayer; Composite films; Sequential deposition; Electrochemical properties