
Automatic Generation of Fill-in Clues and Answers

from Raw Texts for Crosswords

Bali Ranaivo-Malançon, Terrin Lim, Jacey-Lynn Minoi, Amelia Jati Robert Jupit

Faculty of Computer Science and Information Technology

Universiti Malaysia Sarawak

Kota Samarahan, Malaysia

{mbranaivo, terrin, jacey, rjajati} @fit.unimas.my

Abstract — This paper presents a method to generate fill-in

clues and answers for building automatically a crossword.

Answers are capitalised words present in an input sentence and

clues are segments of the dependency syntactic structure of that

sentence. The pairs (Clue, ANSWER) are extracted from a

collection of raw sentences related to the history of Sarawak. This

work is at its early stage, and thus the proposed method that

generates automatically fill-in clues, was tested on a small set of

sentences and the obtained results are promising. Near 53% of

the generated fill-in clues are considered correct. The major

contribution of this work is the innovative strategy used to read

the result of a pre-order depth-first search applied on a

dependency graph to generate the clues. The clues and answers

generator is implemented in Python.

Keywords — thematic crossword; fill-in clues generation;

Sarawak history

I. INTRODUCTION

Almost a century exists between the first known published
crossword puzzle, in short crossword, in 1913, by Arthur
Wynne and the first fully automatic crossword generator in
2008 [1].

One of the major challenges in creating a crossword, either
by human or by machine, is to find the clues that correspond to
an answer. This paper presents a method to tackle the problem.
The approach uses the syntactic dependency analysis of raw
sentences and the pre-order depth-first search on the
corresponding graph to generate clues and answers. Thus, it
falls under the sub-component “automatic clues and answers
generation” and does not touch the other components
illustrated in Fig. 1, which means that the crossword layout
generation (or grid generation) is out of the focus of this paper.

The work presented in this paper is part of a large project
that aims to generate automatically crosswords that are related
to the history of Sarawak. Therefore, the crossword is a
thematic or domain-specific crossword. As defined by the
dictionary WordWeb, a history is “a record or narrative
description of past events”. History is part of the heritage that
one country and each citizen of that country should preserve as
it conveys information over centuries. The history of one
country is unique and irreplaceable. However, history is often
narrated from different perspectives. As such, it is presented in
various ways with multiple versions on several kinds of

materials. For this paper, the elements of the history of
Sarawak that are of interest for generating automatically clues
and answers were extracted from raw texts crawled from the
Web. Then, the challenging task is to identify and extract from
those texts the segments that can be used as clues and answers.

Fig. 1. Automatic crossword building components

Thematic crosswords like the history of Sarawak
crosswords can be used as an instructional game. Users are
given a different way of learning the history. They can review,
test, and update their knowledge through a lexical game.
Teachers can use this kind of thematic crosswords to evaluate
or improve students’ knowledge about history: how to spell,
who did what, what happened at that specific date and location,
and so on. But for most users, playing crosswords is just a
hobby.

Section II recapitulates the research done so far on the
automatic generation of crosswords. Section III describes the
proposed method in generating automatically clues and
answers from raw sentences. Section IV presents the
experiment results as well as the analyses of those results.
Section V concludes the presentation with a mention to the
future works.

II. RELATED WORK

The majority of existing works solves the problem of
creating clues by looking for definitions either from existing

Automatic Crossword

Building

Automatic Crossword

Construction

Automatic Crossword

Solving

Automatic Grid

Generation

Automatic Clues &

Answers Generation

2013 8th International Conference on Information Technology in Asia (CITA)

978-1-4799-1092-2/13/$31.00 ©2013 IEEE

dictionaries or thesauri or from the analyses of sentences found
on the Web.

In 2008, [1, 2] presented the first fully automatic
crossword generator: from collecting definitions (or clues) to
the crossword solving using Constraint Satisfaction
Programming. They crawled the Web to look for definitions.
The pair (Clue, ANSWER) corresponds to (definition, subject).
A definition is recognised based on a pre-defined constituency
structure: “subject + nominal predicate + complements”. The
constraint put on the structure of a definition may limit the
space for other potential clues. Like the proposed approach in
the current paper, the Web is used to find documents related to
the theme of the crossword. However, the structures of the
definitions (or clues) are totally open as explained in section
III. The evaluation of the crossword generation system in [1]
showed that 81% of the definitions were classified as correct. It
is not surprising to get such high level of perfomance since a
definition corresponds to a pre-defined syntactic structure. As
shown in Table II, the clues generator presented in this paper
did not reach such level of correctness as the system does not
work with any pre-defined syntactic structure for the clues.

III. PROPOSED METHOD

The workflow in generating clues and answers from the
Sarawak historical raw texts is illustrated in Fig. 2. The first
step corresponds to the acquisition of a collection of texts
related to the target topic, which is the history of Sarawak.
Once the collection is acquired, it needs to be pre-processed to
extract all sentences. Then, each sentence is analyzed to
determine its dependency syntactic structure and to extract all
capitalized words that are not in a stop list. Then, the output of
the dependency parser is transformed into a graph for pre-order
depth-first search. Clues are generated for each capitalized
word based on a proposed method for reading the depth-first
result.

Fig. 2. Workflow of the proposed method

A. Thematic Corpus Building

There are two ways in building a thematic corpus: crawling
the Web or digitizing documents. The objective of the crawling
is to search and collect Web pages that relate the history of
Sarawak. Unfortunately, there are not so many documents on
the history of Sarawak on the Web. If one provides Google
search engine with the keywords, “history + Sarawak”, the
number of hits will be around 9.5 million compare to number
of hits for “history + France”, which is near 1.7 billion. Many
of these Web documents narrate the same events, the period of
the White Rajahs.

B. Sentence Extraction

Sentences are extracted from the collected texts. Titles and
sub-titles of the texts are discarded manually. Sentences are
recognized automatically by their structures. They correspond
to a sequence of characters that starts with a capital letter and
ending with one of the following separators, full-stop,
exclamation mark, and question mark.

C. Sentence Analyses

The analyses of an input sentence are the syntactic
dependency parsing and the capitalized words extraction.

a) Extracting Capitalised Words as Answers: The

extraction of capitalised words rely on a list of words (or

stoplist) that contains most of English function words. The

algorithm is described as a pseudocode in Fig. 3.

Fig. 3. Capitalised Words Extraction Algorithm

The condition for checking if the input word is either a
Roman numeral or not must be done as historical documents
contain many of these strings.

In the input sentence in Fig. 4, the capitalized words are
“Sarawak”, “Portuguese”, and “Cerava”. The word “The” is
discarded since it is in the stop list.

b) Generating Syntactic Dependency Structures: There

are many existing dependency parsers that work well on

English sentences. One of them is the Stanford dependency

parser
1
. Given an English sentence, the parser outputs a list of

triplets corresponding to the dependency relations that exist

between pairs of words. An example of such analysis is shown

in Fig 4.

1
The Stanford Parser: http://nlp.stanford.edu/software/lex-

parser.shtml (last visited 18 March 2013).

Collecting
Tests

Extracting
sentences

Analysing sentence
dependency structure
and capitalised words

extraction

Pre-order Depth-
first searching

Generating clues for
capitalised words

2013 8th International Conference on Information Technology in Asia (CITA)

