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Abstract. In this paper, a new sign distance-based ranking method for fuzzy 
numbers is proposed.  It is a synthesis of geometric centroid and sign distance.  
The use of centroid and sign distance in fuzzy ranking is not new.  Most exist-
ing methods (e.g., distance-based method [9]) adopt the Euclidean distance 
from the origin to the centroid of a fuzzy number.  In this paper, a fuzzy num-
ber is treated as a polygon, in which a new geometric centroid for the fuzzy 
number is proposed.  Since a fuzzy number can be represented in different 
shapes with different spreads, a new dispersion coefficient pertaining to a fuzzy 
number is formulated.  The dispersion coefficient is used to fine-tune the geo-
metric centroid, and subsequently sign distance from the origin to the tuned 
geometric centroid is considered.  As discussed in [5-9], an ideal fuzzy ranking 
method needs to satisfy seven reasonable fuzzy ordering properties.  As a re-
sult, the capability of the proposed method in fulfilling these properties is ana-
lyzed and discussed.  Positive experimental results are obtained. 

Keywords: Geometric centroid, sign distance, fuzzy numbers, reasonable or-
dering properties, dispersion coefficient.  

1 Introduction 

Fuzzy ranking attempts to order a set of fuzzy numbers.  The importance of fuzzy 
ranking in many application domains has been highlighted in the literature, e.g., deci-
sion-making [1], data analysis [2], risk assessment [3] and artificial intelligence [4].  
Indeed, many fuzzy ranking methods have also been developed [1][5][6].  These 
methods can be categorized into three categories [5-6]; i.e., (1) transforming  a set of 
fuzzy numbers into crisp numbers and subsequently ranking the crisp numbers; (2) 
mapping a set of fuzzy numbers to crisp numbers based on a pre-defined reference 
set(s) for comparison; (3) ranking through pairwise comparison of fuzzy numbers.   

In this paper, our focus is on the first category, which is straightforward as com-
pared with the other two categories.  Nevertheless, the challenge is to develop a me-
thod that satisfies a set of reasonable ordering properties [5-9], as detailed in Section 
2.2.  Recently, a number of methods, e.g., deviation degree-based [8][10], distance-
based [9][11], centroid-based [12], and area-based [13], have been proposed.  How-
ever, many of these methods [8][10-13] do not have analysis pertaining to fulfillment 
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2.2 Seven Reasonable Ordering Properties 

Consider three fuzzy numbers, i.e., ܣଵ ଷܣ ଶ , andܣ ,  in space ܴ .  An ideal fuzzy 
ranking method should satisfy seven reasonable ordering properties, as follows.  The 
first six reasonable ordering properties (i.e., P1-P6) are introduced in [5-6], while P7 
is introduced in recent literatures [7-9].  

P1: If ܣଵ غ ଶܣ   ଶ  andܣ غ  .ଶܣ~ଵܣ   ଵ, thenܣ
P2: If ܣଵ غ ଶܣ  ଶ andܣ غ ଵܣ   ଷ, thenܣ غ  .ଷܣ
P3: If ܣଵ ځ ଶܣ ൌ Ø  and ܣଵ  is on the right of ܣଶ, then ܣଵ غ   .ଶܣ
P4: The order of ܣଵ  and  ܣଶ  is not affected by other fuzzy numbers under  

comparison. 
P5: If ܣଵ غ ଵܣ  ଶ, thenܣ ൅ ଷܣ غ ଶܣ ൅   .ଷܣ
P6: If ܣଵ غ ଷܣଵܣ ଶ, thenܣ غ  .ଷܣଶܣ
P7: If ܣଵ غ ଶܣ غ ଵܣଷ then െܣ ع െܣଶ ع െܣଷ. 

This paper focuses on fulfillment of these seven reasonable ordering properties for 
trapezoidal fuzzy numbers.  Note that the addition and multiplication operators in P5 
and P6 are based on fuzzy arithmetic operators as follows: 

Fuzzy Addition operator [11]:   

ଵܣ               ْ ଶܣ ൌ ሺܽଵଵ, ܽଵଶ, ܽଵଷ, ܽଵସሻ ْ  ሺܽଶଵ, ܽଶଶ, ܽଶଷ, ܽଶସሻ                ൌ ሺܽଵଵ ൅ ܽଶଵ, ܽଵଶ ൅ ܽଶଶ, ܽଵଷ ൅ ܽଶଷ, ܽଵସ ൅ ܽଶସሻ       (3) 

Fuzzy Multiplication [11]: 

ଵܣ               ٔ ଶܣ ൌ ሺܽଵଵ, ܽଵଶ, ܽଵଷ, ܽଵସሻ ٔ  ሺܽଶଵ, ܽଶଶ, ܽଶଷ, ܽଶସሻ                ൌ ሺܽଵଵ ൈ ܽଶଵ, ܽଵଶ ൈ ܽଶଶ, ܽଵଷ ൈ ܽଶଷ, ܽଵସ ൈ ܽଶସሻ       (4) 

Fuzzy Image [7]-[9]: 
Fuzzy image of ܣଵ ൌ ሺܽଵଵ, ܽଵଶ, ܽଵଷ, ܽଵସሻ is െܣଵ ൌ ሺെܽଵସ, െܽଵଷ, െܽଵଶ, െܽଵଵሻ. 

3 The Proposed Methodology 

Consider ݉ fuzzy numbers, ܣ௜ , i.e., ܣଵ, ,ଶܣ … , ௠ܣ , in space ܴ א ሾെ∞, ∞ሿ, which 
have to be ranked. The proposed method is summarized into five steps as follows: 
 
Step 1: Transform each fuzzy number ܣ௜ ൌ ሺܽ௜ଵ, ܽ௜ଶ, ܽ௜ଷ, ܽ௜ସሻ  into a normalized 
fuzzy number ܣ௜כ ൌ ሺܽ௜ଵכ , ܽଶ௜כ , ܽ௜ଷכ , ܽ௜ସכ ሻ using Eq. (2). 

Step 2: Discretize the support of ܣ௜כ  into ܰ  points, i.e., ݔ௜௝כ , ݆ ൌ 1,2,3 … , ܰ , and 

obtain ߤ஺೔כ൫ݔ௜௝כ ൯, where ݔ௜௝כ א  The discretized points are expressed in a sequence  .כܴ

of ݔ௜ଵכ , כ௜ଶݔ , … , כ௜ேݔ , where ݔ௜ଵכ  and ݔ௜ேכ  are the left- and right-end points of ܣ௜כ, i.e., ܽ௜ଵכ  
and ܽ௜ସכ , respectively.  The discretized points in the horizontal component, i.e., ݔ௜௝כ  , 
are computed using Eq. (5). On the other hand, the discretized points in the vertical 
component, i.e., ߤ஺೔כሺݔ௜௝כ ሻ, are computed using Eq. (1).  The discretized points for ܣ௜כ 

are expressed in Eqs. (6) and (7) as follows. 
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כ௜௝ݔ ൌ כ௜ଵݔ ൅ ሺ݆ െ 1ሻ ቀ௫೔ಿכ ି௫೔భכேିଵ ቁ,                                   (5) 

כݔ ൌ ൥ כଵଵݔ ڮ ڭכଵேݔ ڰ כ௠ଵݔڭ ڮ כ௠ேݔ ൩,                                    (6) 

ሻכݔሺכ஺೔ߤ ൌ ቎ כଵଵݔሺכ஺೔ߤ ሻ ڮ כଵேݔሺכ஺೔ߤ ሻڭ ڰ כ௠ଵݔሺכ஺೔ߤڭ ሻ ڮ כ௠ேݔሺכ஺೔ߤ ሻ቏,                         (7) 

where ݅ ൌ 1, 2, … , ݉, ݆ ൌ 1, 2, 3, … , ܰ. 
Step 3: Compute the centroid of ܣ௜כ (i.e.,ܿܺ஺೔כ, ܻܿ஺೔כ).  In this paper, the geometric 

centroid [15] is adopted, whereby ܿܺ஺೔כ and ܻܿ஺೔כ are obtained with Eqs. (8) and (9), 

as follows. ܿܺ஺೔כ ൌ  ଵ଺௅ಲ೔כ ∑ ൫ݔ௜௝כ ൅ כ௜ሺ௝ାଵሻݔ ൯ ቀݔ௜௝כ כ௜ሺ௝ାଵሻݔ൫כ஺೔ߤ ൯ ൅ כ௜ሺ௝ାଵሻݔ כ௜௝ݔ൫כ஺೔ߤ ൯ቁே௝ୀଵ ,             (8) 

ܿ ஺ܻ೔כ ൌ ൞ ଵ଺௅ಲ೔כ ∑ ሾቀߤ஺೔כ൫ݔ௜௝כ ൯ ൅ כ௜ሺ௝ାଵሻݔ൫כ஺೔ߤ ൯ቁே௝ୀଵ ቀݔ௜௝כ כ௜ሺ௝ାଵሻݔ൫כ஺೔ߤ ൯ െ כ௜ሺ௝ାଵሻݔ כ௜௝ݔ൫כ஺೔ߤ ൯ቁሿ, כ௜ଵݔ݂݅ ് ൯ଶכ൫௫೔כఓಲ೔כ௜ேݔ , כ௜ଵݔ݂݅ ൌ כ௜ேݔ , (9) 

where כ݅ܣܮ ൌ ଵଶ ∑ ൬כ݆݅ݔ כሺ݆൅1ሻ݅ݔ൫כ݅ܣߤ ൯ െ כሺ݆൅1ሻ݅ݔ כ݆݅ݔ൫כ݅ܣߤ ൯൰ே௝ୀଵ , ݅ ൌ 1,2,3, … , ݉, ݆ ൌ 1,2,3, … , ܰ. 

Step 4: Refine the centroid (i.e., ܿܺ஺೔כ, ܻܿ஺೔כ) using Eqs. (10)-(13) to obtain the new 

centroid, i.e., ܿ ஺ܺ೔ככ , ܿ ஺ܻ೔ככ . ܺ஺೔כ ൌ ଵே ∑ ே௝ୀଵכ௜௝ݔ ,               (10) 

כ஺೔ߜ  ൌ ට ଵேିଵ ∑ ቀݔ௜௝כ െ ܺ஺೔כቁଶே௝ୀଵ , (11) ܿ ஺ܺ೔ככ ൌ ܿܺ஺೔(12) ,כ ܿ ஺ܻ೔ככ ൌ ு೔ଶ െ  (13)                                ,כ஺೔ܻܿכ஺೔ߜ

where ߜ஺೔כ denotes a dispersion coefficient of ܣ௜כ , and ܪ௜ ൌ max௝ୀଵ,ଶ,…,ேሼߤ஺೔כ൫ݔ௜௝כ ൯ሽ, ݅ ൌ 1, 2, 3, … , ݉. 
 

Step 5: Compute the ordering index, ܫ஺೔כ, using Eqs. (14)-(15) as follows. 

߮஺೔כ ൌ ቊ 1, ሺܿ݊݃݅ݏ ஺ܺ೔ככ ሻ ൒ 0െ1, ሺܿ݊݃݅ݏ ஺ܺ೔ככ ሻ ൏ 0,                            (14) 

ሻכ௜ܣሺܫ ൌ ߮஺೔ටܿ ஺ܺ೔ככ ଶ ൅ ܿ ஺ܻ೔ככ ଶ,                            (15) 
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4.2 Analysis of the Seven Reasonable Ordering Properties 

Three fuzzy numbers ܣଵ, ଷܣ ଶ, andܣ , are considered, where ܣଵכ כଶܣ , , and ܣଷכ  are  
normalized fuzzy numbers.  An ideal fuzzy ranking method should comply with the 
seven reasonable ordering properties [5-9] as follows: 

 
P1: ܫሺܣଵכ ሻ ൒ כଶܣሺܫ ሻ occurs if ܣଵ غ ଶܣ  and ܫሺܣଶכ ሻ ൒ כଵܣሺܫ ሻ  occurs if ܣଶ غ ଵܣ .  

Therefore,  ܫሺܣଵכ ሻ ൌ כଶܣሺܫ ሻ is always true, if ܣଵ~ܣଶ. 

P2: ܫሺܣଵכ ሻ ൒ כଶܣሺܫ ሻ  occurs if ܣଵ غ ଶܣ  and ܫሺܣଶכ ሻ ൒ כଷܣሺܫ ሻ  occurs if ܣଶ غ ଷܣ .  
Therefore,  ܫሺܣଵכ ሻ ൒ כଷܣሺܫ ሻ is always true, for ܣଵ غ ଶܣ غ  .ଷܣ

P3: If ܣଵ ځ ଶܣ ൌ Ø , and if ܣଵ  is on the right side of כଵܣሺܫ ଶ, thenܣ ሻ ൐ כଶܣሺܫ ሻ is 
always true. 

P4: ܫሺܣଵכ ሻ and ܫሺܣଶכ ሻ are computed separately to order ܣଵ and  ,ଶ.  Thereforeܣ
the ranking outcome is not affected by other fuzzy numbers under compari-
son. 

P5: If ܣଵ غ כଵܣሺܫ ଶ , thenܣ ሻ ൒ כଶܣሺܫ ሻ .  An addition of ܣଷ  to ܣଵ and ܣଶ changes the centroids of ܣଵ and ܣଶ correspondingly. fore,ܫሺܣଵ ൅ ሻכଷܣ ൒ ଶܣሺܫ ൅ ଵܣ ሻ, ifכଷܣ ൅ ଷܣ غ ଶܣ ൅    .ଷܣ

P6: If ܣଵ غ ଶܣ כଵܣሺܫ , ሻ ൒ כଶܣሺܫ ሻ.  Similar to P5, a multiplication of ܣଷ  to ܣଵ and ܣଶ  changes the centroids of ܣଵ and ܣଶ correspondingly. Therefore, ܫሺܣଵܣଷכሻ ൒ ଷܣଵܣ ሻ, ifכଷܣଶܣሺܫ  غ   .ଷܣଶܣ

P7: If ܣଵ غ ଶܣ غ ଷܣ , then ܫሺܣଵכ ሻ ൒ כଶܣሺܫ ሻ ൒ כଷܣሺܫ ሻ .  Consider ߮஺భכ ൌ ߮஺మכ ൌ߮஺యכ ൌ 1  for ܣଵ , ଶܣ  and ܣଷ .  For െܣଵ , െܣଶ  and െܣଷ , ߮ି஺భכ ൌ ߮ି஺మכ ൌ߮ି஺యכ ൌ െ1 .  Therefore, െܫሺെܣଵכ ሻ ൑ െܫሺെܣଶכ ሻ ൑ െܫሺെܣଷכ ሻ , for െܣଵ ଶܣെع ع െܣଷ. 

 
The proof for P1-P4 is straightforward.  Analysis of P5, P6 and P7 are more com-

plicated, and are further illustrated with an example in [8].  The details are presented 
in the following section. 

4.3 An Empirical Study 

Consider an example in [8], ܣଵ ൌ ሺ2,4,4,6ሻ; ଶܣ ൌ ሺ1,5,5,6ሻ, and ܣଷ ൌ ሺ3,5,5,6ሻ as 
shown in Fig. 4(a).  ܣଵ ൅ ଶܣ ,ଷܣ ൅  ଷ (as depicted in Fig. 4(b) andܣଶܣ ଷ, andܣଵܣ ,ଷܣ
Fig. 4(c)) are computed using  fuzzy addition and fuzzy multiplication as summa-
rized in Eqs. (3) and (4).  Fuzzy images of ܣଵ, ܣଶ, and ܣଷ are presented in Fig. 4(d).  
Fuzzy numbers in Fig. 4 are normalized and presented in Fig. 5.  
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Table 1. Ranking results of the proposed method 

כଶܣሺܫ ሻכଵܣሺܫ ሻ ܫሺܣଷכ ሻ ܫሺܣଵ ൅ ଶܣሺܫ ሻכଷܣ ൅ ሻכଷܣଶܣሺܫ ሻכଷܣଵܣሺܫ ሻכଷܣ כଶܣሺെܫ ሻכଵܣሺെܫ ሻ כଷܣሺെܫ ሻ 0.791 0.782 0.872 0.827 0.822 0.687 0.684 െ0.791 െ0.782 െ0.872 ܣଶ ع ଵܣ ع ଶܣ ଷܣ ൅ ଷܣ ع ଵܣ ൅ ଷܣଶܣ ଷܣ ع ଷܣଷ െܣଵܣ ع െܣଵ ع െܣଶ 

 
P5, P6 and P7 can be observed from Table 1.  With the proposed method, ܫሺܣଵכ ሻ ൌ 0.791 , כଶܣሺܫ ሻ ൌ 0.782, כଷܣሺܫ  ሻ ൌ 0.872 ; as such ܣଶ ع ଵܣ ع ଷܣ ; ଵܣሺܫ ൅ܣଷכሻ ൌ 0.827 , and ܫሺܣଶ ൅ ሻכଷܣ ൌ 0.822 ; therefore ܫሺܣଵ ൅ ሻכଷܣ ൐ ଶܣሺܫ ൅ ሻכଷܣ  is 

satisfied.  On the other hand, ܫሺܣଵܣଷכሻ ൌ 0.687 and ܫሺܣଶܣଷכሻ ൌ 0.684; therefore ܫሺܣଵܣଷכሻ ൐ ሻכଷܣଶܣሺܫ  is satisfied.  Lastly, ܫሺെܣଵכ ሻ ൌ െ0.791 כଶܣሺെܫ , ሻ ൌ െ0.782 
and ܫሺെܣଷכ ሻ ൌ െ0.872; therefore െܣଷ ع െܣଵ ع െܣଶ.  In short, P5, P6 and P7 are 
satisfied. 

5 Concluding Remarks 

In this paper, a new fuzzy ranking method is proposed.  It constitutes a solution for 
ranking fuzzy numbers.  The proposed method has been empirically analyzed using 
benchmark examples.  The seven reasonable ordering properties i.e., P1-P7 [5-9], 
have been satisfied empirically.  The rationale and implications of the proposed me-
thod have also been analyzed and discussed.   

For future work, the proposed method can be extended to measure similarity be-
tween fuzzy numbers.  Application of the proposed method to decision making [17] 
will also be investigated.   
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