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Abstract—This paper presents a new Fuzzy Inference System
(FIS)-based Risk Priority Number (RPN) model for the prioriti-
zation of failures in Failure Mode and Effect Analysis (FMEA).
In FMEA, the monotonicity property of the RPN scores is impor-
tant. To maintain the monotonicity property of an FIS-based RPN
model, a complete andmonotonically-ordered fuzzy rule base is nec-
essary. However, it is impractical to gather all (potentially a large
number of) fuzzy rules from FMEA users. In this paper, we in-
troduce a new two-stage approach to reduce the number of fuzzy
rules that needs to be gathered, and to satisfy the monotonicity
property. In stage-1, a Genetic Algorithm (GA) is used to search
for a small set of fuzzy rules to be gathered from FMEA users. In
stage-2, the remaining fuzzy rules are deduced approximately by a
monotonicity-preserving similarity reasoning scheme. The mono-
tonicity property is exploited as additional qualitative information
for constructing the FIS-based RPN model. To assess the effective-
ness of the proposed approach, a real case study with information
collected from a semiconductor manufacturing plant is conducted.
The outcomes indicate that the proposed approach is effective in
developing an FIS-based RPN model with only a small set of fuzzy
rules, which is able to satisfy the monotonicity property for prior-
itization of failures in FMEA.
Index Terms—Failure mode and effect analysis, fuzzy inference

system, similarity reasoning, monotonicity property, fuzzy rule re-
duction.
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AARS Approximate Analogical Reasoning Schema
Detection
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MF membership function
NLP Non-Linear Programming
RPN Risk Priority Number

Severity
- FRs Stage 1 Fuzzy Rules
- FRs Stage 2 Fuzzy Rules

SQP Sequential Quadratic Programming
SR Similarity Reasoning

NOTATIONS

A membership function for , where

A linguistic term for , where

Number of membership function for

An input for RPN model,

I. INTRODUCTION

F AILURE mode and effect analysis (FMEA) is a popular
reliability analysis tool that is used to evaluate the risks

associated with potential failure modes of a complex system
or process [1]–[3]. In FMEA, the risk of a failure mode is de-
termined by a Risk Priority Number (RPN) [1], i.e.,

whereby three risk factors, i.e., Severity , Oc-
currence , and Detection , act as the inputs, and an RPN
score is produced as the output. In this aspect, the fuzzy RPN
model has been successfully applied to a variety of domains,
which include maritime [3], fishing vessel [4], manufacturing
[5], power generation [6], product development [7], and agri-
culture [8]. The focus of this paper is on the use of the Fuzzy In-
ference System (FIS) in FMEA, i.e., the FIS-based RPN model
[9]. The advantages of using the FIS-based RPNmodel, as com-
pared with the conventional RPN model, are well-established,
viz., (i) the FIS-based model allows modeling of nonlinear re-
lationships between RPN and risk factors [9]; (ii) FIS is a so-
lution for the attribute scales, which can be qualitative, instead
of quantitative [9]; (iii) FIS is able to incorporate human knowl-
edge, whereby information can be described with vague and im-
precise linguistic statements [10]; and (iv) FIS avoids the sce-
nario whereby two or more sets of and settings with
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different risk implications produce an identical RPN score [4].
Despite the popularity of the FIS-based RPN model, a few lim-
itations pertaining to FIS have been pointed out. With a grid
partition strategy, the number of fuzzy rules required increases
in an exponential manner, i.e., the curse of dimensionality or the
combinatorial rule explosion problem. Indeed, as stated in [11],
the FIS-based RPN model requires a large number of rules, and
it is a time-consuming, tedious process to acquire the rules from
domain experts for building a fuzzy if-then rule base.
Recent research findings have shown that it is important

to maintain the monotonicity property of the FIS-based RPN
model [12]–[18]. If the monotonicity property is violated, the
RPN scores produced can be invalid, and with contradictions
[12]–[15]. Besides that, the monotonicity property acts as
useful qualitative information for building the FIS-based RPN
model [12]. In our previous investigations [12]–[15], a set of
sufficient conditions for the FIS-based RPN model to fulfill the
monotonicity property has been developed. The sufficient con-
ditions are used as a set of governing equations for building the
FIS-based RPN model. The sufficient conditions in this paper
(i.e., Theorem 1) are conditions with mathematical support
[17] to guarantee the fulfillment of the monotonicity property
pertaining to the FIS-based RPN model, i.e., a three-input FIS
model. In addition, our previous studies [12], [15] showed that
non-fulfillment of Theorem 1 led to violation of the mono-
tonicity property.
The sufficient conditions indicate that a complete and mono-

tonically-ordered fuzzy rule base is important to maintain the
monotonicity property. However, it is difficult and impractical
to establish a complete and monotonically-ordered fuzzy rule
base in practice [5], owing to a potentially large number of fuzzy
rules that need to be gathered from FMEA users. Therefore, an
effective, systematic approach to reduce the number of required
fuzzy rules is essential [5]. Nevertheless, reducing the number
of fuzzy rules is risky, because this can lead to gaps in the input
( and ) domains, resulting in invalid RPN scores, i.e., the
“tomato classification problem” [20]. As a solution, different
Similarity Reasoning (SR) schemes have been proposed to de-
duce the incomplete or missing fuzzy rules, e.g., the Approx-
imate Analogical Reasoning Schema (AARS) [21], and Fuzzy
Rule Interpolation (FRI) [20]. In our previous studies [15], [22],
[23], a monotonicity-preserving SR schemewas proposed based
on AARS. The approach manages to approximately deduce the
missing fuzzy rules for building a monotonic FIS-based RPN
model.
In this paper, we further extend our previous results [12]–[15]

to tackle the pressing issues in practical implementation of the
FIS-based RPN model, i.e., how to minimize the number of
fuzzy rules required from FMEA users, and to ensure the re-
sulting FIS-based RPN model satisfies the monotonicity prop-
erty. The proposed solution comprises two stages: 1) a Genetic
Algorithm (GA)-based fuzzy rule search procedure; and 2) a
monotonicity-preserving AARS rule deduction procedure. In
Stage 1, the minimum number of fuzzy rules that need to be
gathered from FMEA users (i.e., the Stage 1 Fuzzy Rules, or
S-1 FRs) is determined using a GA-based procedure. S-1FRs
are then collected from FMEA users. In Stage 2, the remaining
fuzzy rules (i.e., the Stage 2 Fuzzy Rules or S-2 FRs) are de-

duced, approximately, with a monotonicity-preserving AARS-
based procedure [15], [22], [23]. S-1 FRs and S-2 FRs are ag-
gregated to form a complete fuzzy rule base. A user-defined
threshold is introduced to ensure that each S-2 FR has a min-
imum level of similarity measure with at least one S-1 FR. As
such, each S-2 FR is guaranteed to be deducible with the AARS
scheme from S-1 FRs [21]. In this paper, the monotonicity prop-
erty is exploited as useful qualitative information to design the
fuzzy membership functions (MFs), and to deduce the S-2 FRs,
when the fuzzy rules solicited from experts are incomplete.
In our previous studies, we identified the importance of se-

lecting and reducing fuzzy rules in the FIS-based RPN model
[5]. The monotonicity property for tackling this task subject to
a complete fuzzy rule base was described in [12]–[14]. In [15],
[22], [23], a monotonicity-preserving SR model was devised.
The monotonicity index was suggested in [24]. However, it is
not clear how fuzzy rules from human experts can beminimized,
and how the problem associated with an incomplete rule base
can be handled so that the monotonicity property can be pre-
served for the FIS-based RPN model. As stated earlier, it is im-
practical to solicit a complete rule base from human experts [5],
[11]. As such, the main contributions of this study are a new the-
orem to construct a monotonic FIS-based RPN model (which is
motivated by the sufficient conditions), and a monotonicity-pre-
serving approach comprising fuzzy rule selection and SR to
handle the challenges associated with an incomplete rule base
in FMEA applications. Besides that, a new monotonicity test is
devised to evaluate the monotonicity property of the resulting
model using a real case study.
This study is motivated by a number of important issues in

fuzzy rule reduction and selection [25], [26], SR [20], [21], [27],
and themonotonicity property [12]–[18], which have been high-
lighted in many recent publications. However, to the best of our
knowledge, little attention has been given to the practical appli-
cation of SR. One of the focal points of this study is the use of the
FIS-based RPNmodel to prioritize failure modes, which consti-
tutes a new application of fuzzy rule reduction and selection, as
well as SR techniques. The proposed approach facilitates the
practical implementation of fuzzy FMEA, i.e., the difficulty in
fuzzy rule elicitation from human experts [5], [11], [28]. Be-
sides that, the importance of the monotonicity property in fuzzy
systems for assessment and decision making problems has been
highlighted in [12]–[18]. The monotonicity property, as useful
qualitative information for modeling, has also been stressed in
[29]. In short, this study provides a solution to two key issues
in the FIS-based RPN model, i.e., how to reduce the number of
fuzzy rules from human experts, and how to handle an incom-
plete fuzzy rule base so that it satisfies the monotonicity prop-
erty.
The organization of this paper is as follows. In Section II, the

FIS-based RPNmodel, the monotonicity property, and some es-
sential mathematical formulations are presented. In Section III,
the proposed approach is described. Details of the GA-based
search procedure are explained. The monotonicity-preserving
AARS rule deduction procedure is presented too. The experi-
mental results are analyzed and discussed in Section IV. Finally,
concluding remarks and suggestions for further work are pre-
sented in Section V.
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II. PRELIMINARIES

A. The FIS-Based RPN Model
The FIS-based RPNmodel has three inputs, i.e., , and

one output, i.e., the fuzzy RPN (FRPN) score. In general, each
input (i.e., is defined using a scale table in the
range of (usually [1], [10]). Each partition is represented
by a fuzzy MF (i.e., , and is associated with a linguistic
term (i.e., . The fuzzy MFs follow an ordered sequence,
i.e., . The relationship between and
the FRPN of a fuzzy rule is as follows.

If Severity is and Occurrence is and
Detect is , then RPN is
where is the fuzzy consequent in the RPN do-
main. To simplify the notation, a fuzzy rule is written as

, where
, and is the fuzzy singleton [10]

for . Based on the zero-order Sugeno FIS model
[10], the FRPN score is obtained using (1), shown at the
bottom of the page. The total number of fuzzy rules required
for the FIS-based RPN model with a complete rule base is

.

B. The Monotonicity Property
A sequence, , denotes a subset of with two ele-

ments, whereby is excluded, i.e., . The
monotonicity property of the FIS-based RPN model is formally
established as follows.
Definition 1: The FIS-based RPN model is said to

fulfill the monotonicity property if the score
increases or remains unchanged as increases, i.e.,

.
A theorem for the FIS-based RPN model is established as

follows.
Theorem 1: The FIS-based RPN model (1) is said to fulfill

the monotonicity property if the following two conditions are
satisfied.

a) Condition 1:
.

At the rule antecedent,
. Note that is the

ratio between the rate of change in the fuzzy MF de-
gree and the MF itself. In this paper, the Gaussian MF

, is used. The derivative of a
Gaussian MF with respect to is .
As such, for a Gaussian MF, i.e.,

, is a linear function, i.e.,
An example of the usefulness of Condition

1 is demonstrated in Figs. 2 and 3.
b) Condition 2: .

Fig. 1. The proposed approach for building a monotonicity preserving FIS-
based RPN model.

Condition 2 implies that the fuzzy rule base should be com-
plete.
An extension of Condition 1 is expressed as Corollary 1, as

follows.
Corollary 1: Let be a Gaussian MF, i.e.,

, where , and respectively
denote the centre, and width of the Gaussian MF.

1.1) The ratio of a Gaussian MF
returns a linear function, i.e.,

(2)

1.2) Condition 1 of Theorem 1 is satisfied if
and are true.

III. THE PROPOSED APPROACH

Fig. 1 depicts an overview of the proposed approach. To
clarify the proposed approach (Steps A through P), information
and data from a semiconductor manufacturing plant are used
as an example.

(1)
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TABLE I
THE SCALE TABLE FOR SEVERITY

TABLE II
THE SCALE TABLE FOR OCCURRENCE

TABLE III
THE SCALE TABLE FOR DETECTION

A. Develop the Scale Tables for S, O, and D

Tables I, II, and III show the evaluation criteria used in the
semiconductor manufacturing plant for and , respec-
tively. In this implementation,
, and .

Fig. 2. Fuzzy MFs for Severity.

Fig. 3. Projection of fuzzy MFs for Severity using Condition 1.

B. Design the Fuzzy MFs for S, O, and D
Condition 1 of Theorem 1 is adopted as the governing equa-

tion to design the fuzzy MFs of and . As an example,
Fig. 2 illustrates the Gaussian MFs of . These MFs are de-
signed in such a way that Corollary 1.2 is satisfied. Fig. 3 shows
the projection of the GaussianMFs with (2). It can be easily ver-
ified that Corollary 1.2 is satisfied, i.e.,
and are always true, for .

C. Initiate the GA-Based Fuzzy Rule Search Procedure
Given a complete rule base with rules, a

set of S-1 FRs is searched in such a way that the S-2 FRs can be
approximated with the AARS-based rule deduction procedure.
Consider S-1 FRs, i.e., ,
where , and S-2 FRs, i.e.,

, where

is always true. Note that need to be gathered from
FMEA users, while are unknown and need to be
approximated. The minimum degree of similarity measure (i.e.,
supreme) between the union of the antecedents of S-1 FRs and
the antecedent of each S-2 FR is as shown in (3) at the bottom
of the next page.
In this study, the GA is used to search for a minimum set of

S-1 FRs in such a way that each S-2 FR has a minimal level
of similarity measure (indicated by a user-defined threshold)
with at least one S-1 FR. Each fuzzy rule is represented as a
binary chromosome, , where 0 represents S-2 FR, and
1 represents S-1 FR, where . The
proposed S-1 FRs selection procedure is generalized as a con-
strained optimization problem as shown in (4) at the bottom of
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Fig. 4. The proposed GA-based procedure for fuzzy rule selection.

the page, where is the user-defined threshold.
The GA objective function is formulated as shown in (5) at
the bottom of the page, where is the weight,

. Such setting ensures that the GA-generated S-1
FRs always satisfy inequality (4). If inequality (4) is not sat-
isfied, the GA-generated S-1 FRs are not sufficient to allow S-2
FRs to be deduced, pertaining to a minimal level of similarity
with at least one S-1 FR. A summary of the GA-based proce-
dure is shown in Fig. 4. It comprises several user-defined pa-
rameters, i.e., the number of iteration , number of indi-
viduals , crossover rate , mutation rate

, and . The output is the best individual with the
lowest objective value, i.e., .

D. Obtain S-1 FRs From FMEA Users
The output of the FIS-based RPN model varies from 1 to

1000. It is represented by MFs. In this study, a dis-
cussion with the engineers from the manufacturing plant led to
the setting of , with linguistic terms of Low, Low

Medium,Medium, High Medium, and High. This approach was
deemed sufficient as more linguistic terms would result in more
effort in judging all the failure modes and determining their rela-
tive importance. Note that for these linguistic terms comprises
1, 250.75, 500.5, 750.25, and 1000, respectively. Based on the
output of the GA-based procedure, S-1 FRs are gathered from
FMEA users, with Condition 2 of Theorem 1 imposed.

E. Conduct Approximation of S-2 FRs
In accordance with [20], [21], [27], SR is useful for deducing

the conclusion of an observation. In this study, the AARS [21]
procedure is adopted to deduce . See (6) at the bottom
of the next page.
Specifically, an optimization-based AARS procedure [15],

[22], [23] is used. The deduced fuzzy rules from (6) are op-
timized to ensure that Condition 2 of Theorem 1 is satisfied.
The proposed procedure serves as an initiative to re-label the
non-monotonically-ordered conclusions [30]. Equation (7) is in-
troduced to indicate the difference between the deduced (i.e.,

) and optimized conclusions, i.e.,

(7)

One of the Non-Linear Programming (NLP) methods, i.e.,
Sequential Quadratic Programming (SQP) [31], is adopted,
which is an effective technique to solve constrained non-linear
optimization problems. Note that the GA is not used in this
stage because the presence of too many constraints reduces the
feasible region, and complicates the search process [32]. The
optimization problem is formulated as follows.

(3)

(4)

(5)
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Fig. 5. Correlation analysis of FRPN values obtained while .

subject to , i.e., Condition 2 of Theorem 1.

F. Study the Process or Product, and Divide the Process or
Product Into Sub-Processes or Sub-Components

The intention, purpose, goal, and objective of a product or
process are studied. These can be achieved by scrutinizing the
interaction among the components or processes, which is fol-
lowed by a careful task analysis by FMEA users.

G. Determine All Potential Failure Modes of Each Component
or Process

All potential failures of the component or process which in-
clude problems, concerns, and opportunities for improvement
are identified by FMEA users.

H. Determine the Effects of Each Failure Mode

Immediate consequences for each potential failure are iden-
tified by FMEA users.

I. Determine the Root Causes of Each Failure Mode

The potential root cause of each failure mode is identified by
FMEA users.

J. List the Current Control or Prevention Action of Each Cause

The first level method or procedure to detect or prevent fail-
ures of the product or process is conducted by FMEA users.

K. Evaluate the Impact of Each Effect (Severity Ranking)

The severity score is executed and evaluated by FMEA users.

L. Evaluate the Probability of Occurrence of Each Cause
(Occurrence Ranking)
The occurrence score is executed and evaluated by FMEA

users.

M. Evaluate the Efficiency of the Control or Prevention
Actions (Detection Ranking)
The detection score is executed and evaluated by FMEA

users.

N. Construct the FIS-Based RPN Model
S-1 FRs and S-2 FRs are aggregated to form a complete fuzzy

rule base. With the designed MFs for , and , and the ag-
gregated fuzzy rule base, the final FIS-based RPN model (1) is
constructed.

O. Correct Any Errors
Return to Step F if there is any correction or refinement to be

made.

P. End

IV. A CASE STUDY
To evaluate the effectiveness of the proposed FIS-based RPN

model, we conducted a series of experiments with real data and
information collected from Flip Chip Ball Grid Array (FCBGA)
products in a semiconductor manufacturing plant. Specifically,
we examined the wafer mounting process with the proposed ap-
proach. We used computer equipped with Intel (R) Core (TM)
i5-2300 CPU@2.80 GHz 2.79 GHz., and 3.35 GB of RAM.We
analyzed several aspects of the proposed approach. The details
follow.

A. Design of the Fuzzy MFs
Formulating an appropriate and systematic methodology for

designing the fuzzy MFs has been highlighted as a challenging
problem [19]. It is difficult to design the fuzzy MFs that ensure
the resulting FIS-based RPN model satisfies the monotonicity
property. Our proposed approach reduces the trial and error ef-
fort in obtaining a set of fuzzy MFs and fuzzy rules that satisfy
the monotonicity property. It is a relatively simple, practical so-
lution for designing the fuzzy MFs with fulfilment of the mono-
tonicity property. As an example, for the fuzzy MFs (as de-
picted in Fig. 2), they are able to fulfil the monotonicity property
once Condition 2 is satisfied.

B. Selection of Fuzzy Rules
1) Fuzzy Rule Reduction: We conducted a series of exper-

iments with the GA-based fuzzy rule selection procedure with

, and . We analyzed the computation
complexity (i.e., in seconds), and the number of S-1 FRs, ,

(6)
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TABLE IV
THE EXPERIMENTAL RESULTS FOR VARIOUS SETTINGS OF

for a variety of settings. Equation (8) at the bottom of the page
shows the percentage of fuzzy rule reduction.
Table IV shows a summary of the experimental results. Note

that a conventional fuzzy FMEA model [4] would require
180 fuzzy rules, and it was time-consuming and impractical
to gather such information. With the proposed approach, the
number of fuzzy rules reduced drastically, ranging from 78.33%
to 83.33%. As an example, with , only 30 fuzzy
rules were required, and the remaining 150 fuzzy rules were
approximated by using the AARS-based procedure.
2) Variation of : The GA-based fuzzy rule selection proce-

dure ensured that each S-2 FR has a minimum degree of simi-
larity measure (indicated by ) with at least one S-1 FR. With
a higher setting, more S-1 FRs were required. As shown in
Table IV, increased with an increasing value of . With dif-
ferent settings, different minimal sets of S-1 FRs that could
meet the pre-determined minimum degree of similarity mea-
sure were obtained. Note that the number and location of S-1
FRs were not pre-determined, but were encapsulated in the GA
objective function. Instead of determining the important fuzzy
rules [5], the proposed approach focused on determining a min-
imal set of S-1 FRs in such a way that S-2 FRs could be approx-
imated by the AARS-based procedure.
3) Computation Complexity: An important issue in the prac-

tical implementation of the GA is its computational complexity.
The computational durations were between 2.37 and 3.28 hours,
with a low-cost consumer-oriented computer. We deemed this
duration to be an acceptable interval as FMEA initiatives nor-
mally require days or even weeks [33]. Besides that, it is a
time-consuming, tedious process [5], [11], [28] to acquire fuzzy
rules from domain experts in building a complete fuzzy rule
base. As the GA was used as an approximate optimization tool,
a near optimal solution was obtained. It was expected that, with
a higher , a better set of S-1FRs (i.e., fewer number of fuzzy
rules) could be obtained.

C. Analysis of the Risk Evaluation Results
1) Ranking Results: Table V summarizes the experimental

results for the wafer mounting process with two settings (i.e.,
0.05, and 0.15). A total of 18 failure modes are listed in the
column labelled Failure Mode. Columns , and show the

TABLE V
FAILURE RISK EVALUATION, RANKING AND PRIORITIZATION

FOR THE WAFER MOUNTING PROCESS

three risk factors associated with each failure mode. The failure
risk evaluation outcomes with (i) a complete rule base (180
rules) provided by FMEA users (domain experts), (ii) with S-1
FRs only, and (iii) with aggregated S-1 FRs and S-2 FRs, are
listed in the columns labelled Complete rule base, S-1 FRs, and
S-1 FRs and S-2 FRs, respectively.
As an example, Failure Mode 1 (broken wafer), which led to

yield loss, was given an score of 3. This failure could happen
because of the drawing out arm failure. As it rarely happened, it
was given an score of 1. To eliminate the problem, software
enhancement was suggested as the corrective action. Owing to
the effectiveness of the action to eliminate the root cause, a
score of 1 was given. With the complete fuzzy rules, an FRPN
score of 15 was obtained. With , the FRPN scores of
2, and 14 were obtained using S-1 FRs only, and S-1 FRs and
S-2 FRs, respectively.
As expected, good results were obtained using the complete

rule base. But, it was difficult to ensure a complete set of fuzzy
rules to be gathered in the first place. With S-1 FRs only, the
tomato classification problem occurred, as some of the FRPN
scores were almost zero. As an example, the FRPN score of 2
was obtained for failure mode 1 with , owing to the
phenomenon of gaps, where some fuzzy rules were missing.
Therefore, the inferred results were invalid.With the aggregated
S-1 FRs and S-2 FRs, the tomato classification problem could be
solved.
2) Correlation Analysis of the FRPN Scores: A correlation

analysis [3] for the FRPN scores deduced from the FIS-based
RPN models is summarized in Fig. 5. The FRPN scores for all

% (8)
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(9)

(10)

18 failure modes are compared. The FIS-based RPNmodel with
aggregated S-1 FRs and S-2 FRs was able to produce a set of
FRPN scores that closely matched those from the complete rule
base, as compared with S-1 FRs only. Without S-2 FRs, most
of the deduced FRPN scores from S-1 FRs were close to zero.
The correlation analysis ascertained the usefulness of the AARS
procedure in producing S-2 FRs as a solution to the tomato clas-
sification problem.
3) Monotonicity Test: The monotonicity test [24] was

adopted to evaluate the degree of fulfilment of the monotonicity
property for . Note that denotes a subset of

where is excluded. The proposed test attempts to
give an indication whether the FIS-based RPN model can be
practically implemented. Equation (9) is devised to compare
two comparable sets of risk factors with respect to the mono-
tonicity property of the FIS-based RPN model. If the test result
is unity, the monotonicity property is satisfied; otherwise, a
score of 0 is returned. Equation (10) produces a Monotonicity
Index (MI), where , for by aggregating all the
possible combinations of and . The higher the MI is, the
better the degree of fulfilment of the monotonicity property. If

is said to satisfy the monotonicity property. See (9)
and (10) at the top of the page.
Table VI summarizes the monotonicity test results for

. Columns and indicate the risk factor with dif-
ferent settings. Columns show MI for
with (i) the complete rule base, (ii) S-1 FRs only, and (iii)

aggregated S-1 FRs and S-2 FRs. It can be observed that, with
the complete fuzzy rule base, , therefore satisfying
the monotonicity property. With S-1 FRs only, all MI values
are far lower than 900, indicating an inability to satisfy the
monotonicity property. However, with S-1 FRs and S-2 FRs,

for all settings, therefore satisfying the mono-
tonicity property again.

V. SUMMARY

In this paper, we proposed a new approach comprising a
GA-based fuzzy rule selection procedure and an AARS-based
rule deduction procedure for the FIS-based RPN model. We
addressed two important limitations of the FIS-based RPN
model: obtaining a complete rule base, and satisfying the
monotonicity property. We conducted a case study using data
and information obtained from a semiconductor manufacturing
plant. The results positively demonstrate the effectiveness
of the proposed approach in constructing an FIS-based RPN
model that aggregates the required fuzzy rules to preserve the
monotonicity property.
For future work, we intend to develop a suitable technique

to re-label non-monotonic S-1 FRs [23]. Instead of imposing a

TABLE VI
THE MONOTONICITY TEST

monotonicity constraint for S-1 FRs, the non-monotonic fuzzy
rules can be identified and re-labeled by using the re-labeling
technique. Other approaches such as evidential reasoning [34],
[35] for re-labeling fuzzy rules and ensuring a monotonic fuzzy
rule base can be examined. In this regards, evidential informa-
tion in terms of a belief function associated with the fuzzy rule
base, as used in [36], needs to be established. In addition, prac-
tical implementation of the proposed approach to other FMEA
applications can be conducted. All these ideas constitute the di-
rection for further work.
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