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ABSTRACT 

 

This study proposes the application of Artificial Neural Network (ANN) in the 

prediction of water level under tidal influence for Sungai Limbang. ANN is 

undoubtedly a robust tool for forecasting various non-linear hydrologic processes, 

including the water level prediction. It is a flexible mathematical structure which is 

capable to generalize patterns in imprecise or noisy and ambiguous input and output 

data sets. In this study, the ANN is developed specifically to forecast the daily water 

level for Limbang Station. Distinctive networks were trained and tested using daily data 

obtained from the Department of Irrigation and Drainage (DID), Samarahan. Various 

training parameters are considered in order to gain the best prediction possible. The 

performances of the ANN is evaluated based on the coefficient of efficiency, E
2
 and the 

coefficient of correlation, R. Multilayer Perceptron (MLP) and Radial Basis Function 

(RBF) were adopted in this study. MLP is trained with conjugate gradient algorithms, 

trainscg and RBF with newrb. The optimal model found in this study is the MLP which 

is using four days of antecedent data with combination of learning rate and number of 

neurons in the hidden layer of 0.6 and 60. This model generated the highest E
2
 and R 

Testing of 0.950 compared to RBF which gives the highest value of 0.276 for E
2
 and for 

R Test is 0.390. It is found that the ANN has the potential to solve the problems of 

water level prediction. After appropriate simulations, ANN generates satisfactory results 

for MLP during both of the training and testing phases but not for RBF. Further, 

strength and limitations of the ANN are discussed, based on the results attained in this 

study. 
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ABSTRAK 

 

Kajian ini mengcadangkan aplikasi Rangkaian Neural Buatan dalam meramal 

paras air akibat kesan paras pasang surut untuk Sungai Limbang. Rangkaian Neural 

Buatan merupakan satu alternatif yang efektif dalam meramalkan pelbagai proses 

hidrologi tidak linear, termasuk ramalan paras air di sungai-sungai. Ia merupakan 

struktur matematik yang fleksibel yang berupaya membuat kesimpulan secara 

menyeluruh terhadap sesuatu bentuk keadaan yang kurang jelas, dengan set data input 

dan output yang kurang tepat. Dalam kajian ini, Rangkaian Neural Buatan dibangunkan 

secara spesifik untuk meramal paras air setiap hari untuk Stesen Limbang. Rangkaian 

yang berbeza dilatih dan diuji menggunakan  data setiap hari yang diperolehi daripada 

Jabatan Pengairan dan Saliran, Samarahan. Pelbagai parameter latihan diambil kira 

untuk mencapai keputusan ramalan terbaik. Prestasi Rangkain Neural Buatan dinilai 

berdasarkan Pekali Kecekapan, E
2
 dan Pekali Perkaitan, R. Algoritma ‘Multilayer 

Perceptron (MLP)’ dan ‘Radial Basis Function (RBF)’ telah diaplikasikan dalam kajian 

ini. Rangkaian MLP telah dilatih dengan ‘conjugate gradient algorithms’, trainscg dan 

RBF, newrb. MLP adalah model optimum dengan menggunakan ‘learning rate’ 0.6 dan 

bilangan neuron 60 dan mengecapi nilai tertinggi E
2 

dan R untuk fasa ujian dengan nilai 

0.950 jika dibandingkan dengan RBF yang hanya mencapai nilai sebanyak 0.276 untuk 

E
2
 manakala 0.390 untuk R. Oleh yang sedemikian, Rangkaian Neural Buatan 

berpotensi untuk menyelesaikan masalah meramal paras air. Setelah melaksanakan 

latihan yang sesuai, keputusan yang optimum ditunjukkan oleh MLP manakala 

keputusan yang tidak memuaskan untuk RBF. Selain itu, kekuatan dan kelemahan 

rangkaian ini turut dibincangkan, berdasarkan keputusan yang telah diperolehi dalam 

kajian ini.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION TO THE STUDY 

 

Sarawak, situated at north of the Equator between latitude 0° 50' and 5°N and 

longitude 109° 36' and 115° 40' E is located in the western region of the Borneo 

island. Covering an area of 124, 449.51 km
2
, Sarawak is the largest country in 

Malaysia. Sarawak stretches 800 km along north-west coast of the island of Borneo 

and is separated from Peninsular Malaysia by a distance of 600 km by the South 

China Sea. Sarawak shares its boundaries with Sabah in the north, Brunei and 

Kalimantan (Indonesia) in the south. 
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Sarawak is divided into three zones, consist of coastal lowlands comprising of 

peat swamps and narrow deltaic and alluvial plains, a large region of undulating hills 

ranging to about 300 m and mountain highlands extending to Kalimantan border.  

 

Located near the equator with a tropical climate, Sarawak is warm and sunny 

all year round. Daily temperature ranges from 33ºC in the afternoon to 22ºC during 

the night. Its mean annual rainfall is very high, about 3800 mm yearly which makes 

it effortless to flood (Bustami et al. 2007). 

 

Some of the local communities are still depending on river for food, water 

and as a way of transportation from villages to town. Rivers also provide recreational 

interaction and numerous agricultural activities. Hence, an accurate forecasting of 

water level is important to warn local of potential increasing in water level and take 

necessary safety measures. 

 

There are some available methods in forecasting water level. One of it is 

conventional method.  Via conventional method, an accurate estimation of water 

level needs accurate estimation of runoff from the past rainfall event and accurate 

hydraulic model for a given discharge. Runoff depends on catchment topography, 

river network, soil characteristic, antecedent moisture and for hydraulic model, 

accurate cross sections at a particular river are needed. These parameters are hard to 

obtain and not available at all time, which makes it complicated to estimate the water 

level (Bustami et al. 2007). 
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Artificial Neural Network (ANN) is becoming acceptable for its ability to 

solve complex, mathematically or stochastic problems by using a simple 

computational operations. These properties are suitable to forecast water level and 

which the relationship are not recognized (Graupe, 1997). 

 

1.2  SELECTION OF ARTIFICIAL NEURAL NETWORK 

 

According to Professor Dr. Eduardo Gasca A. (n.d.), ANN is an abstract 

simulation of real nervous system and its study corresponds to a growing 

interdisciplinary field which considers the system as adaptive, distributed and mostly 

nonlinear.  

 

ANN is composed of large number of highly interconnected processing 

elements analogous to neurons and tied together with weighted connections 

analogous to synapses. This will enable it to solve complex and nonlinear problems 

(Saad, 2004). ANN has been proven to provide better solution when applied to 

complex system. ANN was chosen based on its ability to generalized patterns and 

overcome difficulties due to the selection of a model form such as linear, power and 

polynomial. Within the last decade, ANNs has been successfully applied in 

hydrology related areas such as water level predictions, rainfall-runoff modeling, 

stream flow forecasting, groundwater modeling, precipitation forecasting and 

reservoir operation (ASCE, 2000). 
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On the other hands, conventional method requires numerous of detailed data. 

Topographical maps, river networks and characteristic, soil characteristic, accurate 

rainfall and runoff data is needed if using this method. The parameters are hardly to 

obtain as it is not available at all time. This will makes it complicated to forecast the 

water level. Additionally, a sufficient time is needed for forecasting to take the flood 

measures. 

 

 By referring to hydrology field, problems are usually not clear understood 

and are too complex for analysis by conventional method. Even such model are 

available, they have to rely on assumptions that make ANN more attractive. The 

presents of noise in the inputs and outputs is handled by an ANN without severe loss 

of accuracy because of the distributed processing within the network. Along the 

nonlinear nature of activation function, generalizing capabilities of ANN makes them 

desirable for a large class of problems in hydrology. Thus, application of ANN in 

hydrology for predicting water level is great alternative in order to achieve the best 

solution. 

 

1.3  PROBLEM STATEMENT 

 

Over the last 50 years, there have been a number of significant hydrologic 

events, all of which caused extensive flooding throughout Limbang River. In 

December 1956, flood occurred at Limbang Division which affects the shop houses 

where the water level is about 4 feet. In January 1965, Limbang was severely flooded 
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and the flood level even passed the 1963 marks of water level. Major flood occurred 

in Limbang in December 1993. Flood levels are estimated to be as high as 8 feet.  

 

Knowing that Sarawak economic development takes place by the river, 

accurate forecasting of water level is therefore essential to warn public of potential 

rise in water level and call for necessary precautions. 

 

1.4  OBJECTIVE OF THE STUDY 

 

The objective of the study is to estimate water level for Limbang basin by 

using Multilayer Perceptron (MLP) and Radial Basis Function (RBF). Besides 

estimating water level, this study can compare the accuracy of MLP and RBF. 

 

1.5  OUTLINE OF THE FOLLOWING CHAPTER 

 

This Final Year Project’s Report was organized into 5 chapters. The brief 

information of each chapter is described as the following: 
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 Chapter 1 provides introduction to the project and a brief description of ANN. 

This chapter also contains problem statement and project objective. 

 

 Chapter 2 elaborates on literature review regarding ANN and the previous 

study on ANN and its application in hydrology. 

 

 Chapter 3 presents the research methodology and approach used for this study 

consisting of model development, network training, transfer function, evaluation of 

network performance and software used. 

 

 Chapter 4 evaluates the performance, result and analysis based on the project. 

The results are based on the model that has been done using the selected algorithm. 

Discussion for this project based on analysis and result also included. 

 

 Lastly, chapter 5 contains conclusion based on the analysis, results and 

discussions from the previous chapters. In addition, further research and 

recommendation for this project is also being discussed in this chapter. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1  INTRODUCTION 

 

 ANN has been found to have the ability to learn and generalized knowledge 

form sufficient data pairs which makes it possible to solve large scale complex 

problems such as pattern recognition, non linear modeling, classification, association, 

control, and others, all which find application in hydrology today (ASCE, 2000). 

 

Various studies all around the world have been done on the application of 

ANN in this field. This literature review is written by summarizing and reviewing the 
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related information and sources, generally collected from books, journals and related 

websites in hydrology. The earlier part of this chapter defines the ANN, while the 

latter part of this chapter reviews the previous, including precipitation estimations, 

rainfall-runoff modeling, stream flows and runoff prediction. 

 

2.2  ARTIFICIAL NEURAL NETWORK 

 

ANN is based on the understanding of the problem solving process of the 

human brain. The structure of an ANN works like the human brain, which applies 

knowledge gained from experience to solve new problems (Kurtulus and Razack, 

2007). 

 

A network consist of a few number of nodes, called neurons which are the 

processing element of a network. A layer is a group of neurons with the same pattern 

of connections. A MLP consists of an input layer, one or more hidden layers and an 

output layer as illustrated in Figure 2.1. Input neuron in the input layer receives an 

external input data and relays the elements to neurons of the next layer. Each hidden 

neurons receives input data then transform the input into a single output which will 

be transferred to output neurons. All the output of this layer constitutes the response 

of the network to the external inputs. 


