

ENERGY EFFICIENT ELECTRONIC BLIND SYSTEM FOR HOME WINDOWS

Liew Hon Choi

Bachelor of Engineering with Honors (Electronics & Telecommunications Engineering) 2009/2010

UNIVERSITI MALAYSIA SARAWAK

		R13a	
	BORANG PEN	NGESAHAN STATUS TESIS	
Judul:	ENERGY EFFICIENT ELECTI	RONIC BLIND SYSTEM FOR HOME WINDOW	
Judui.			
	SESI PE	ENGAJIAN: <u>2009/2010</u>	
Saya	1	LIEW HON CHOI	
		(HURUF BESAR)	
	aku membenarkan tesis * ini disimpan wak dengan syarat-syarat kegunaan seperti b	di Pusat Khidmat Maklumat Akademik, Universiti Malaysia perikut:	
1. 2.		a Sarawak. niversiti Malaysia Sarawak dibenarkan membuat salinan untuk	
3.	tujuan pengajian sahaja. Membuat pendigitan untuk membangunk	an Pangkalan Data Kandungan Tempatan.	
4. 5.	Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. ** Sila tandakan () di kotak yang berkenaan		
	SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972).		
		gi maklumat TERHAD yang telah ditentukan oleh organisasi/ 1a penyelidikan dijalankan).	
	✓ TIDAK TERHAD		
		Disahkan oleh	
-	(TANDATANGAN PENULIS)	(TANDATANGAN PENYELIA)	
Alamat tetap: SELALANG TONDONG,			
	94000 BAU, KUCHING.	DR. WAN AZLAN WAN ZAINAL ABIDIN	
-		Nama Penyelia	
Tarikh:		Tarikh:	

CATATAN

* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

APPROVAL SHEET

Final Year Project below:

Title : Energy Efficient Electronic Blind System for Home Windows

Author : Liew Hon Choi

Matric No. : 16534

Has been read and certified by:

Dr. Wan Azlan Wan Zainal Abidin

Date

(Supervisor)

ENERGY EFFICIENT ELECTRONIC BLIND SYSTEM FOR HOME WINDOW

LIEW HON CHOI

Thesis is submitted to Faculty of Engineering, Universiti Malaysia Sarawak in partial fulfilment of the requirements for the degree of Bachelor of Engineering with Honours (Electronics and Telecommunications Engineering) 2010 Dedicated to My Beloved Family and Friends

ACKNOWLEDGEMENT

During the time of doing this project, I have received the assistance and opinions from many people to whom I am very grateful.

First and foremost, I would like to thank my FYP supervisor, Dr. Wan Azlan Wan Zainal Abidin, for giving me his support, advice and opinions throughout this project. His patience and guidance throughout my thesis is greatly appreciated. I am greatly thankful with him and this thesis is an acknowledgement of his tenacity and confidence in me. Thank you very much.

On the other hand, a word of thanks to my beloved family for their love, care and supports during my four years study in UNIMAS. Thank also to my entire lovely course mate for their supports, helps, and care in everything, especially my FYP.

In addition, I would also like to thanks lecturers of the Faculty of Engineering who have offered their advice during the course of my project and also helped me directly or indirectly in my thesis project. Their advice and help was very helpful in improving my thesis.

Last but not least, I would like to thanks all technicians and staffs from the Faculty of Engineering who have given me technical advice and support. Finally, gratefulness also dedicated to anyone who directly or indirectly helps in making this project success.

Abstract

Energy efficient electronic blind system (EEEBS) for home windows is the version for home suitable for today's needs. The basic idea of this blind system is to equip the home window with an automatic function of this system by depending on energy efficiency factor such as heat and light intensity in order to ensure suitable room temperature and thermal comfort.

Although EEEBS is not yet been used but it will be very useful in terms of improving our quality of living. Therefore, an innovative EEEBS for home window has been implemented based on thermal comfort management and occupant satisfaction. The thermal comfort level has been kept at a high level and the visual comfort has even been improved by the EEEBS.

In this thesis, the development of an EEEBS that able to perform monitoring and controlling applications is described. The systems and technologies of EEEBS has been carried out and investigated for a better understanding. A suitable solution for real time monitoring is proposed. By the development of the proposed EEEBS, any changing on the current room temperature and light intensity should be able to be controlled instantly by the system and also monitor by occupants.

EEEBS for home windows is a system that requires the combination of both hardware and software. It is a system that provides very useful and suitable functions for every home window in order to improving quality of life.

Abstrak

Energy Efficient Electronic Blind System (EEEBS) untuk tingkap rumah adalah versi rumah sesuai untuk keperluan hari ini. Dasar sistem ini adalah untuk melengkapkan tingkap rumah dengan fungsi automatik, justeru sistem ini akan bergantung kepada faktor seperti kepanasan dan keamatan cahaya untuk memastikan suhu bilik yang sesuai dan keselesaan terma.

Walaupun EEEBS belum digunakan lagi, tetapi ia akan sangat berguna dalam meningkatkan kualiti kehidupan kita. Oleh itu, EEEBS yang inovatif telah dicipta mengikut keselesaan terma. Keselesaan terma telah dipastikan pada tahap yang tinggi dan keselesaan keamatan cahaya juga telah ditingkatkan oleh EEEBS.

Dalam tesis ini, penciptaan EEEBS yang mampu melakukan pengawalan telah dijelaskan. Sistem dan teknologi EEEBS telah dilakukan dan diselidiki untuk pemahaman yang lebih mendalam. Satu perancangan yang terbaik telah dicadangkan. Dengan penciptaan yang dicadangkan, EEEBS boleh mengawal secara langsung sebarang perubahan suhu bilik dan keamatan cahaya.

EEEBS untuk rumah tetingkap adalah sebuah sistem kombinasi 'hardware' and perisian komputer. Ini adalah sistem yang menyediakan fungsi-fungsi berguna dan sesuai untuk setiap tetingkap ruamh bagi meningkatkan quality kehidupan.

TABLE OF CONTENTS

Cont	ents	Pages Number
Table	e of Contents	i
List c	of Tables	vi
List c	of Figures	vii
Abbro	Abbreviations	
Chap	oter 1 Introduction	
1.1	Overview	1
1.2	Statement of Problems	1
1.3	Objectives	2
1.4	Benefits and Expected Outcomes	3
1.5	Project Report Outline	4
Chap	oter 2 Literature Review	
2.1	Overview	6
2.2	General Definitions	
	2.2.1 Energy	7
	2.2.2 Renewable Energy	7
	2.2.3 Energy Efficiency	10
	2.2.4 Comfort Conditions	13
2.3	Window Blinds	14

2.4 Automated	Window	Blinds System
---------------	--------	---------------

	2.4.1	Self-adaptive Integrated Controller System	17
		2.4.1.1 Experimental Set-up	18
	2.4.2	A Fuzzy Venetian Blind Controller	19
		2.4.2.1 Overview of the System	19
		2.4.2.2 Composition of Blind Slat Angle Controlling Software	20
		2.4.2.3 Inference and Tuning Algorithm	23
	2.4.3	Advanced Control System for Energy and Comfort Management	25
		2.4.3.1 Optimal, Predictive and Adaptive Control	25
		2.4.3.2 Computational Intelligence in Buildings	26
		2.4.3.3 Fuzzy System and Evolutionary Computation	27
		2.4.3.4 Synergistic Neuro-fuzzy Techniques	28
		2.4.3.5 Design of Fuzzy Logic and Neural Network Controllers	29
		2.4.3.5.1 Fuzzy P Controller	29
		2.4.3.5.2 PI-Like Fuzzy Logic Controller	30
		2.4.3.5.3 Combination of FLC, Neural and PID Controllers	32
		2.4.3.5.4 Neural Network Controllers	32
		2.4.3.6 User Interfaces	33
2.5	Electro	onic Components	34
	2.5.1	PIC Microcontroller	35
	2.5.2	LUX Sensor	36
	2.5.3	Temperature Sensor (LM35)	37
	2.5.4	Servo Motor	39
2.6	Softwa	are Development	40

2.7	Desig	n of Buildings	40
	2.7.1	80/50 Rule of Window Designing	41
	2.7.2	Computerized Lighting Control	42
2.8	Occuj	pant Behaviors	43
2.9	Sumn	nary	44

Chapter 3 Methodology

3.1	Overview	45
3.2	General Methodology	45
	3.2.1 Planning	47
	3.2.2 Analysis	47
	3.2.3 System Design	47
	3.2.4 Implementation	48
	3.2.5 Maintenance and Support	48
3.3	Methodology for EEEBS	49
3.4	Experimental Methods	50
3.5	Equipments	52
	3.5.1 LUX Meter	52
	3.5.2 Digital Thermometer	53
	3.5.3 Universal PIC Programmer	54
3.6	Summary	55

Chapter 4 Conclusion

4.1	Overview	56
4.2	Comfort Level Selection	56

4.3	EEEBS Software	62
	4.3.1 GUI of EEEBS	63
	4.3.2 MPLAB IDE v8.30	70
4.4	Hardware	72
4.5	Prototype of EEEBS	77
4.6	Summary	79

Chapter 5 Conclusion and Recommendation

5.1	Concl	usion	80
5.2	Recor	nmendation of project improvement	81
	5.2.1	GUI Software recommendations	81
	5.2.2	Hardware recommendations	82
	5.2.3	Problems Encountered	82

84

References

Appendixes

Appendix A	Main Program Algorithm	90
Appendix B	Modification Algorithm of Rule and Membership Function	90
Appendix C	Block Diagram of PIC 16F877	91
Appendix D	PIC 16F877 Pinout Description	92
Appendix E	Microcontroller Core Features	95
Appendix F	Peripheral Features	96
Appendix G	Natural Light	97
Appendix H	Artificial Light	97

Appendix I	Features of LM35	98
Appendix J	Advantages and Disadvantages of Stepper and Servo Motor	99
Appendix K	Graphs Temperature against Time	95
Appendix L	Graphs Indoor Light Intensity against Time	97

LIST OF TABLES

Tables	Description	Pages
1	Basic functions of some main part of venetian blind	15
2	Rule base of a fuzzy PI controller	30
3	Comfort Level References	57
4	Current Comfort Level for Energy Efficiency	66

LIST OF FIGURES

Figures	Description	
2.01	Venetian blind	15
2.02	Integrated controllers	17
2.03	Architecture diagram for a complete system	19
2.04	Fuzzy ventilation blind controller	20
2.05	Membership functions	22
2.05	Table of controller rule bases	23
2.07	Modification of membership function	24
2.08	Modification of rule base	24
2.09	Structure of fuzzy PI controller	31
2.10	Direct neural network controllers	33
2.11	Pins diagram of PIC 16F877 microcontroller	36
2.12	LM35 and its symbol	38
2.13	Incidence angle of 80° for inclined glazed façade to	
	achieve 50% reflection	42
3.01	Methodology flow chart of SDLC and PLC	46
3.02	Flow charts for EEEBS development	49
3.03	Experimental set-ups for EEEBS	51
3.04	LUX meter	53
3.05	Digital thermometer	54
3.06	Universal PIC programmer	55

4.01	GUI of EEEBS	65
4.02	Flow chart of GUI software	67
4.03	GUI of EEEBS with real time weather monitoring in east	
	Malaysia	69
4.04	GUI of EEEBS with real time weather monitoring in west	
	Malaysia	70
4.05	MPLAB IDE v8.30 interface	71
4.06	Flow in program the PIC	72
4.07	Circuit connection of EEEBS	73
4.08	Circuit connection of LM7805	75
4.09	Basic concept of servo motor	76
4.10	Prototype of EEEBS	78

ABBREVIATION

Α

	ADO	ActiveX Data Objects
	AH	Affordable Housing
	ANFIS	Adaptive Neuro-Fuzzy Inference System
	ANN	Artificial Neural Network
	ASHRAE	American Society of Heating Refrigerating and Air
		Conditioning Engineers
	AW	All Weather
B		
	BACnet	Building Automation Systems and Control Networks
	BIEMS	Building Intelligent Energy Management System
С		
	CI	Computational Intelligence
	CO ₂	Carbon Dioxide
D		
	DAO	Data Access Objects
	DDE	Dynamic Data Exchange
	Df	Defuzzy Value
	DIL	Dual-in-Line
	DGI	Daylight Glare Index

	EDIFICIO	Efficient Design Incorporating Fundamental Improvements for
		Control and Integrated
	EEEBS	Energy Efficient Electronic Blind System
	EPBD	Energy Performance of Buildings
	EU	European Union
F		
	FFES	Fossil Free Energy Scenario
	FLCs	Fuzzy Logic Controllers
	FYP	Final Year Project
G		
	GUI	Graphical User Interface
Н		
	HVAC	Heating Ventilation and Air Controlling
Ι		
	IAQ	Indoor Air Quality
	IDE	Integrated Development Environment
	IEEE	Institute of Electrical and Electronics Engineers
	IEEE-USA	Institute of Electrical and Electronics Engineers of United
		State
	ILL	Illuminance
	ISO	International Organization for Standardization
L		
	LA	Large
	LED	Light Emitting Diode

	LESO-PB	Solar Energy and Building Physics Laboratory
	LUX	SI Unit for Illuminance
Μ		
	ME	Medium
	MISO	Multi-Input and Single-Output
0		
	ОТ	Outdoor Temperature
Р		
	PCM	Pulse Coded Modulation
	PIC	Programmable Integrated Circuit
	PLC	Project Life Cycle
	PMV	Predictive Mean Vote
	PVC 3.4.5	Polyvinyl Chloride
R		
	RAD	Rapid Application Development
	RBF	Radial Basis Function
	RDO	Remote Data Objects
S		
	SA	Slat Angle
	SDLC	System Development Life Cycle
	SI	Solar Insolation
	SM	Small
	SOIC	Small Outline IC
Т		

Tamb Ambient Temperature

VB	Visual Basic
VL	Very Large
VS	Very Small

 \mathbf{V}

CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter will cover the statement of problems for this project. Problems encountered based on the use of home blind system will be briefly discussed. Then, the clear objectives of this project will be stated in order to overcome the problems. The benefits and expected outcomes at the end of this Energy Efficient Electronic Blind System (EEEBS) project will be briefly explained. In addition, the expected outcomes are discussed based on the objectives of this project. The brief explanation of the contents for each chapter for this FYP will be covered in the project report outline.

1.2 Statement of Problems

Energy efficiency becomes a main issue not only for a home but also in this world due to the factor of global warming. A lot of ways are come out by related organizations to overcome this issue but it is not effective enough. The major problems encountered for most of the home are stated as below:

• No systematic monitoring system

Nowadays, most of the homes are equipped with blind system for home windows, air-conditioning and lights. However, almost all of these equipments are lack of energy efficiency due to the fact of no systematic monitoring system because occupants of the home can only control and monitor the equipments manually.

Uncomfortable home environment

Weather are change everyday, so as a result, sudden extreme change of temperature and intensity of light are frequently occurred especially in our country which is located at the tropical climate. Hence, occupants will feel uncomfortable with the home environment. Beside that, some of the homes are installed with timer to control the blind system and air-conditioning, but it is still insufficient in terms of energy efficiency. The timer monitoring systems are still not effective due to recent environmental factors such as heat and light intensity to ensure suitable room temperature.

1.3 Objectives

The purpose of this project is to design an EEEBS system for home windows that will be able to open and close electronically depending on factors such as heat or light intensity in order to ensure suitable room temperature. To achieve this purpose, several objectives must be reached:

- i. To study and investigate the current technology of environmental sensors for monitoring application
- ii. To design an energy efficient electronic blind system for home windows
- iii. To develop a software Graphical User Interface (GUI) for monitoring and controlling.

1.4 Benefits and Expected Outcomes

The development of EEEBS for home window contributes a lot of benefits. The most important benefit is to save energy in more efficient way by automatic monitoring and controlling system to perform suitable room temperature and light intensity at home. Hence, occupants of the home will feel more comfortable and satisfaction.

The expected outcomes of this project are as follows:

- i. An energy efficient electronic blind system for home windows which consists of hardware and software that monitor and control the room temperature.
- ii. A software for configuring the hardware and then to monitor as well as to control room temperature.

1.5 Project Report Outline

This project report is divided into 5 chapters. Chapter 1 provides introduction and overview of this project. Besides, this chapter also covers the statement of problems which describes the real time problems faced, objectives of the project, benefits and expected outcomes from this project.

Chapter 2 is the literature review, which discusses and detailing the concept of EEEBS for home windows. The environmental factors will be briefly discussed in terms of monitoring the system. Furthermore, research on the design of this system is discussed by applying the various types of possible monitoring technologies.

Chapter 3 explains the design methodology used to construct the blind system. All the procedures involved in the design and development of hardware and software will be discussed. Some of the electronic components and type of software chosen for GUI will be discussed in this chapter. The basic configuration and operation of the EEEBS will be briefly described.

Chapter 4 explains about the results and discussions for this EEEBS project. Beside that, how to determine the range of light intensity and temperature for each comfort level are also detailing in this chapter. The recorded daily light intensity and temperature at Kuching, Sarawak also will be briefly explained. The hardware and software parts will be explained in specific also.