

Performance of Real Time Traffic In The Ethernet And WLAN Using TCP And UDP Protocols.

Punitha Subbramaniam

Bachelor of Engineering with Honors (Electronics & Telecommunications Engineering) 2009/2010

UNIVERSITI MALAYSIA SARAWAK	
-----------------------------	--

Judul:		TRAFFIC IN THE ETHERNET AND WLAN USING ND UDP PROTOCOLS.
	SESI PEN	NGAJIAN: <u>2009/2010</u>
Saya		THA SUBBRAMANIAM
	(H	URUF BESAR)
	ku membenarkan tesis * ini disimpan di Pu n syarat-syarat kegunaan seperti berikut:	ısat Khidmat Maklumat Akademik, Universiti Malaysia Sarawa
1.	Tesis adalah hakmilik Universiti Malaysi	a Sarawak.
2.	Pusat Khidmat Maklumat Akademik, U	niversiti Malaysia Sarawak dibenarkan membuat salinan untu
3.	tujuan pengajian sahaja. Membuat pendigitan untuk membangunk	an Pangkalan Data Kandungan Tempatan.
<i>4</i> .		niversiti Malaysia Sarawak dibenarkan membuat salinan tesis in
_	sebagai bahan pertukaran antara institusi	
5.	** Sila tandakan (✓) di kotak yang ber	kenaan
		gi maklumat yang berdarjah keselamatan atau kepentingan erti yang termaktub di dalam AKTA RAHSIA RASMI 1972).
		gi maklumat TERHAD yang telah ditentukan oleh organisasi/ a penyelidikan dijalankan).
	✓ TIDAK TERHAD	
		Disahkan oleh
-	(TANDATANGAN PENULIS)	(TANDATANGAN PENYELIA)
Al	lamat tetap: 21A-1 JLN THAME _ABDULLAH SATU, OFF JL	
	TUN SAMBANTHAN,50470,K.L	Dr Hushairi Hj Zen
-	· · ·	Nama Penyelia
		-

CATATAN

* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

Performance of Real Time Traffic in the Ethernet and WLAN Using TCP and UDP protocols.

PUNITHA SUBBRAMANIAM

This project is submitted in partial fulfilment of the requirements for the degree of Bachelor of Engineering with Honours (Electronics and Telecommunications Engineering)

> Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2009/2010

This Final Year Project attached here:

Title	: Performance of Real-Time traffic in the Ethernet and WLAN
	Using TCP and UDP protocols.
Student Name	: Punitha Subbramaniam
Matric No	: 17115

_

has been read and approved by:

Dr Hushairi Hj Zen

Date:

(Supervisor)

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Engineering (Electronics & Telecommunication)"

Signature :

Name of Supervisor : Dr Hushairi Zen

Date : 17th May 2010

"I declare that this thesis entitled **PERFORMANCE OF REAL TIME TRAFFIC IN THE ETHERNET AND WLAN USING TCP AND UDP PROTOCOLS** is the results of my own research except as cited in references. This thesis has not been accepted for any degree and is not concurrently submitted in candidature of any degree."

Signature :

Name of Candidate : Punitha Subbramaniam

Date : 18th May 2010

Specially dedicated to my family, mum and dad for their support and eternal love. My warmest gratitude and dedication to my supervisor Dr Hushairi Hj Zen. To all my friends especially Yu Ka Chai, Chan Chen Hoong and Lee Liang Wei. Thanks a lot for helping.

ACKNOWLEDGEMENTS

Praise to the Almighty God, the Most Gracious and Most Merciful, Who has created the mankind with knowledge, wisdom and power. First of all, the author would like to express her deepest gratitude to Dr Hushairi Hj Zen for his continuous support, supervision and encouragement during the course of this project. The author would not have completed this project successfully without his assistance. The author is thankful to all friends for their advice and helpful cooperation during the period of this research. Appreciation is also acknowledged to those who have contributed directly or indirectly in the completion of this project. The author would also like to extend her appreciation to his family members, for their support, patience and endless love.

LIST OF CONTENTS

CONTENTS	PAGE
DECLARATION	ii-iii
DEDICATION	iv
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
LIST OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVATIONS	xvi
LIST OF APPENDICES	xviii

CHAPTER 1 INTRODUCTION

1.1	Background	1-3
1.2	Problem Statement	3-4
1.3	Project Objectives	4
1.4	Project Scope	5

2.0	Introdu	uction	8
2.1	The IE	EEE 802.11 Standards	9-10
2.2	Basic S	Service Set (BSS)	10-12
2.3	Overv	view of TCP/IP	13-14
2.4	The T	ransport Layer	14
2.5	Basic I	Definition Of TCP And UDP	15
	2.5.1	ТСР	15-17
	2.5.2	Port Numbers	18
	2.5.3	TCP Segment Format	19-20
	2.5.4	Flow Control	20-21
	2.5.5	Sliding Window Protocol	21
2.6	The W	indow Principle	22
	2.6.1	The Window Principle Applied To TCP	22-24
	2.6.2	Acknowledgments And Retransmissions	24-25
	2.6.3	Variable Time Out Intervals	25
2.7	TCP C	Congestion Control Algorithms	26
	2.7.1	Slow Start	26-28
	2.7.2	Congestion Avoidance	28
	2.7.3	Fast Retransmit	29
	2.7.4	Fast Recovery	30

6-7

2.8	UDP Protocol	30-32
2.9	Real Time Protocol	32-33
2.10	Simulation Tool	33-34
2.11	Past Researches/Study	34-36
CHAP	TER 3 METHODOLOGY	
3.1	Overview	37
3.2	NS-2	37-38
3.3	Basic Scenario of the Project	39
3.4	Methodology Flow	40
3.5	Simulation Process	41-42
3.6	Awk's Script	42-43
3.7	Operation of Process	43-44
	3.7.1 Trace File and Nam Trace File	44
	3.7.2 Perl or Awk Program	45
	3.7.3 Plotting Graph	45
3.8	Problem Encountered	46
CHAP	FER 4 RESULTS, ANALYSIS AND DISCUSSIONS	
4.1	Introduction	47
4.2	Class Hierarchy (Partial)	48
4.3	Results	49
	4.3.1 Trace Files for TCP voice and video.	49
	4.3.2 Trace Files for UDP voice and video.	50
4.4	Graphs for TCP and UDP (voice and video).	56

	4.4.1 TCP Voice for node 7 and node 8	56	
	4.4.2 UDP Voice for node 7 and node 8	57	
	4.4.3 TCP Video for node 9 and node 10	58	
	4.4.4 UDP Video for node 9 and node 10	59	
	4.4.5 TCP Voice for node 7 and node 8	61	
	4.4.6 UDP Voice for node 7 and node 8	62-63	
	4.4.7 TCP Video for node 9 and node 10	63-64	
	4.4.8 UDP Video for node 9 and node 10	64-66	
4.5	Summary	66-67	
СНАР	TER 5 CONCLUSION AND RECOMMENDATIONS		
5.1	Conclusion	68-69	
5.2	Future Work	70	
5.3	Recommendations	70	
REFE	RENCE	71-74	
APPENDIX			
	Appendix A	75-112	
	Appendix B	113-119	

LIST OF FIGURES

Figure		Pages
Figure 1.1	IEEE 802.11 And OSI model.	3
Figure 2.1	IBSS (Independent Basic Service Set)	11
Figure 2.2	ESS (Extended Service Set)	12
Figure 2.3	TCP Communication.	16
Figure 2.4	Typical TCP Over Wireless Experimental Setup.	17
Figure 2.5	TCP Connection Between Processes.	18
Figure 2.6	TCP Segment Format.	19
Figure 2.7	Message Packets.	22
Figure 2.8	TCP: Window Principle.	23
Figure 2.9	TCP Message Packets.	24
Figure 2.10	Acknowledgment and Retransmission Process.	25
Figure 2.11	TCP: Slow Start In Action.	28
Figure 2.12	TCP Fast Retransmit In Action.	29
Figure 2.13	UDP Demultiplexing Based On Ports.	31

Figure 2.14	Datagram Format	31
Figure 2.15	Real Time Protocol.	33
Figure 3.1	Network Topology.	38
Figure 3.2	Basic Scenario.	39
Figure 3.3	Flow Chart	41
Figure 3.3	Process Block Diagram	43
Figure 4.1	Hierarchy of Tcl Object.	48
Figure 4.2	Trace File (TCP)	49
Figure 4.3	Trace File (UDP)	50
Figure 4.4	UDP Throughput Video	51
Figure 4.5	Throughput graph for video.	52
Figure 4.6	UDP Delay Video	53
Figure 4.7	Graph for the delay packet	54
Figure 4.8	The delay graph for video	55
Figure 4.9	TCP stream of voice frames at node 7 and 8	56
Figure 4.10	UDP stream of voice frames at node 7 and 8	57
Figure 4.11	TCP stream of video frames at nodes 9 and 10	58
Figure 4.12	UDP stream of video frames at node 9	59
Figure 4.13	UDP stream of video frames at node 10	60

Figure 4.14	TCP stream of voice frames at node 7	
1 iguie 4.14	and 8	61
Figure 4.15	UDP stream of voice frames at node 7	63
Figure 4.15	and 8	05
Figure 4.16	TCP stream of video frames at node 9	64
Figure 4.10	and 10	04
Figure 4.17	UDP streams of video frames at node 9	65
E'	UDP streams of video frames at node	
Figure 4.18	10	66

LIST OF TABLES

Tables		Pages
Table 2.1	The layers of the TCP/IP Protocol Suite	13
Table 2.2	The Conceptual Organization of TCP/IP Protocol.	14
Table 2.3	Characteristics of TCP and WLAN	17
Table 2.4	Time Line for Important Types of TCP.	17
Table 2.5	Explanation of Parameters in TCP Segment Format	20
Table 2.6	The parameters in UDP ports.	32
Table 3.1	Example of an Awk's Script.	46

LIST OF ABBREVIATIONS

WLAN	Wireless Local Area Network
IEEE	International Standard Association
OSI	Open System Interconnection.
ТСР	Transmission Control Protocol.
UDP	User Datagram Protocol.
NS-2	Network Simulator 2
FHSS	Frequency-Hopping Spread Spectrum
DSSS	Direct Sequence Spread Spectrum
BSS	Basic Service Set
IBSS	Independent Basic Service Set
AP	Access Point
DS	Distribution System
ESS	Extended Service Set
DCF	Distributed Coordination Function
CSMA/CA	Carrier Sense Multiple Access with Collision Avoidance
PCF	Point Coordination Function
FTP	File Transfer Protocol.
SMTP	Mail Transfer

NFS	Network File System
ACK	Acknowledgment
CWND	Congestion Window
SSTHRESH	Start Threshold Size
RTP	Real Time Protocol
TULIP	Transport Unaware Link Improvement
RWND	Receiver Window
NAM	Network Animator
*.TR	Trace File
QOS	Quality of Service

ABSTRACT

The WLAN industry has emerged as one of the fastest-growing segments of the communication trade. This project is aimed towards evaluating the real-time traffic performance in Wireless LAN (WLAN) and Ethernet using TCP and UDP protocol. Analysis is done to acknowledge the advantages and disadvantages of both protocols. Two different types of traffic are considered namely, voice and video. The evaluation was done using ns-2 simulator (version 2.34) running on Ubuntu. The metrics used in the evaluation are throughput (byte), delay (sec) and packet loss (%). Depending on graphs of these three metrics, the performance of TCP and UDP are evaluated, requirements are determined. Through this simulation study, a summary is made saying that the UDP protocol performs better and be accessed at a faster speed for different traffic types. Simulation results show that UDP performs better performance than legacy TCP. Depending on ITU-T requirements especially for delay and packet loss, the acceptable number of streams both for traffic type individually and with comparison with the TCP voice and video metrics of traffics can be determined under UDP protocol.

ABSTRAK

Industri rangkaian kawasan tempatan tanpa wayar (WLAN) merupakan industri yang pantas tersebar dalam pasaran komunikasi. Projek ini menilai perbezaan antara mekanisma capaian medium secara bertanding dan untuk menganalisis perlaksanaan trafik seperti video dan suara dalam rangkaian tempatan tanpa wayar dalam protokol TCP dan UDP. Analisis dijalankan untuk mengetahui kebaikan dan keburukan keduadua protokol. Suara dan video merupakan salah satu daripada trafik yang digunakan untuk projek ini. Projek berbentuk simulasi 2.34 yang beroperasi dalam sistem Ubuntu. Metrik-metrik yang digunakan dalam penafsiran ini adalah jumlah hasil proses (bait), masa lengah (saat) and jumlah kehilangan paket (%). Berdasarkan pada graf ketiga-tiga metrik ini, prestasi TCP dan UDP ditafsirkan, dan juga bilangan aliran ditentukan. Menerusi kajian simulasi ini, dapat disimpulkan bahawa UDP boleh menyediakan capaian medium yang berbeza untuk setiap jenis trafik. Hasil simulasi menunjukkan prestasi UDP adalah lebih baik berbanding dengan TCP. Berdasarkan keperluan ITU-T (International Telecommunication Union- Telecommunication) terutama untuk masa lengah dan jumlah kehilangan paket, bilangan aliran yang boleh diterima untuk jenisjenis trafik secara individu dan juga kombinasi semua jenis trafik boleh ditentukan bagi model TCP dan UDP.

CHAPTER 1

INTRODUCTION

1.1 Background.

Telecommunication plays an important role in business, education, security and entertainment. The world without telecommunication is unbelievable. Wireless communication system is widely used today. It is defined in terms of standards and specifications. With the rapid growth of the wireless system, the market is becoming more and more competitive. There are wide ranges of wireless devices used for communications purposes. Wireless communication is becoming a popular method to connect mobile computers to the Internet and other networks.

Wireless communication could be classified as a cellular and a non-cellular system. It is known as an unbounded network which operates as an unguided system. The radio frequency band is a basic source of Wireless Communications [1]. Wireless

Local Area Network (WLAN) system is designed for data transmission and communications. It will be able to support voice and video services as well.

The WLAN industry has emerged as one of the fastest-growing segments of the communication trade. Due to this growth, WLANs are widely deployed as they are lower in cost, faster and simpler to set up and use in comparison with the previous generation products. In order to satisfy user's demand to access the Internet anywhere and anytime, WLAN in the infrastructure mode can provide network access in public areas, such as convention centers, campuses, airports and hotels.

Wireless LAN is also known as a crucial component of computer network [2]. The world of wireless LAN produced standardization and made it to be successful till now. IEEE 802.11 is the first wireless standard that defines the two major layers under the OSI (Open System Interconnection) model. This model was designed by the International Organization for Standardization (ISO) [1].

The two major layers of the IEEE 802.11 standard defined are the physical layer and the data-link layer. This chapter introduces wireless and IEEE 802.11 standard and the rest of the chapters relate more into the transport layer of an OSI model and related to the protocol network.

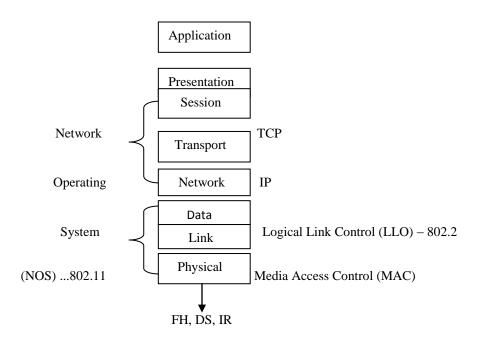


Figure 1.1: IEEE 802.11 and OSI model.

1.2 Problem Statement.

The usage of wireless communication has been increasing and growing rapidly with the introduction of more advanced technology. The IEEE 802.11 [1], MAC protocol is designed to provide an equal chance for each wireless station to access the channel. The IEEE 802.11 standard of WLAN has been further enhanced to the 802.11n standard. The WLAN technology keeps progressing and has been upgraded into a better standard. My thesis analyses the performance of real time traffic in Ethernet and WLAN using TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) under Transport Layer of an OSI model [3]. The performance of real time traffic with TCP and UDP protocol is observed and the advantages and disadvantages are analysed. In a performance there would be many problem statements on why we are developing this thesis and how to solve the problem. Furthermore, from the previous analysis the problem is still occurring and my thesis is to make a hypothesis into the problem and find a solution to resolve it. Therefore, this thesis is carried out to analyze the performance of the real time in Ethernet and WLAN using both protocols and compare it with the previous analyses done.

Besides that, it is also carried out to identify ways and new methods to reduce the delay in the protocol while transmitting and receiving a data. The problems which still occur till now compared to previous analysis is that if the data is lost while transmitting, packet sizing, delay in sending the data due to heavy traffic, pending of data which causes the data to be expired that leads to waste of energy, time, money to resend of the same data [3].

1.3 Project Objectives.

The objectives of this project are:

- i. To analyse the performance of the real-time traffic with TCP and UDP protocols.
- ii. To make comparison between the performance of real-time traffic which is the voice and video in TCP & UDP protocols.