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Enzymatic saccharification of corn stover using Phanerochaete

chrysosporium and Gloeophyllum trabeum and subsequent

fermentation of the saccharification products to ethanol

by Saccharomyces cerevisiae and Escherichia coli K011

were achieved. Prior to simultaneous saccharification and

fermentation (SSF) for ethanol production, solid-state

fermentation was performed for four days on ground

corn stover using either P. chrysosporium or G. trabeum to

induce in situ cellulase production. During SSF with S.

cerevisiae or E. coli, ethanol production was the highest on

day 4 for all samples. For corn stover treated with P.

chrysosporium, the conversion to ethanol was 2.29 g/100 g

corn stover with S. cerevisiae as the fermenting organism,

whereas for the sample inoculated with E. coli K011, the

ethanol production was 4.14 g/100 g corn stover. Corn

stover treated with G. trabeum showed a conversion 1.90

and 4.79 g/100 g corn stover with S. cerevisiae and E. coli

K011 as the fermenting organisms, respectively. Other

fermentation co-products, such as acetic acid and lactic

acid, were also monitored. Acetic acid production ranged

between 0.45 and 0.78 g/100 g corn stover, while no lactic

acid production was detected throughout the 5 days of

SSF. The results of our experiment suggest that it is

possible to perform SSF of corn stover using P. chrysosporium,

G. trabeum, S. cerevisiae and E. coli K011 for the production

of fuel ethanol.
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The ethanol presently used for transportation purposes is
conventionally produced in large quantities from corn
grain and sugarcane juice. However, this practice is only a
temporary solution as it conflicts with the food and feed
industry [7]. Thus, there is great interest in the development
of fuel ethanol from agricultural residues and other
lignocellulosic feedstocks, which are inexpensive and are
the most abundant bioresources available in the biosphere
[11]. Currently, corn stover biomass is considered to be
one of the primary lignocellulosic candidates for use in
cellulosic bioethanol production because it is an abundant
agricultural by-product in many European countries and in
the USA, and it can be collected during harvest [46, 51].
Although promising, the use of corn stover as a raw material
to produce ethanol presents many challenges; unlike starch
from corn, the polysaccharides in stovers are cellulose and
hemicellulose, which are difficult to degrade [20, 24, 33].
Thus, hydrolyzing these components into fermentable sugars
is essential to the efficient and economical production of
cellulosic ethanol [5].
Biohydrolysis of cellulose and hemicellulose is an

enzymatic process carried out by a family of cellulolytic
and hemicellulolytic enzymes that are highly specific [24].
These enzyme consortia are usually a mixture of several
enzymes that may include endoglucanases, exoglucanases or
cellobiohydrolases, glucosidases or cellobiases, endoxylanases,
xylosidases and galactosidases, among others [1, 31, 50,
54]. The conventional method for the breakdown of
lignocellulosics to fermentable sugars requires the use of
expensive commercial enzymes [12, 26, 53]. However, these
enzymes are not only substrate specific, they are largely
susceptible to inhibition from compounds usually associated
with lignin. Thus, prior to enzymatic hydrolysis, pretreatment
of ground lignocelluloses is required [21].
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Pretreatment of plant biomass is crucial for the production

of cellulosic ethanol as it greatly improves the enzymatic

accessibility of the feedstock [13, 19, 25, 41, 42]. In recent

years, several pretreatment methods have been tested on

corn stover that involve physical, chemical, or physicochemical

procedures or a combination thereof [16, 47, 56]. However,

these technologies are energy intensive, environmentally

unfriendly, and may produce many toxic by-products such

as weak acids, phenolic derivatives, and furans that inhibit

alcoholic fermentation [6, 7, 21]. Therefore, it is imperative

to develop alternative means of lignocellulosic saccharification

that can overcome these obstacles.

One potential form of pretreatment and hydrolysis of

lignocellulosic materials relies on biological means [15,

49]. This type of procedure usually involves lignocellulolytic

fungal species such as Phanerochaete chrysosporium and

Gloeophyllum trabeum [38, 40, 43-45]. P. chrysosporium

is a white-rot fungus that has been studied extensively in

the degradation of plant cell wall components including

cellulose, hemicellulose, and lignin [23, 54]. P. chrysosporium

performs lignocellulolytic processes using the various

ligninolytic peroxidases, cellulases, and hemicellulases it

is known to secrete [30, 50, 54]. G. trabeum is a brown-rot

basidiomycete. Like a typical brown rot-fungus, G. trabeum

primarily attacks the polysaccharide while leaving the

brown pigmented lignin behind [8]. These degradative

processes culminate in the rapid loss of wood strength and

darkening of the affected substrate [10]. G. trabeum is

known to secrete a family of potent cellulolytic enzymes

consisting of endoglucanases, exoglucanases, beta-glucosidases,

and other hemicellulases [8, 22]. In contrast to white-rot

fungi, G. trabeum rapidly degrades cellulose and hemicellulose

while leaving the undigested lignin to be modified mainly

through demethoxylation and demethylation mechanisms [4].

In this paper, we report the use of in situ cellulases and

hemicellulases from P. chrysosporium and G. trabeum

for the saccharification of corn stover cellulose that is

subsequently fermented to ethanol by Saccharomyces

cerevisiae and Escherichia coli K011. We performed our

work under conditions and with equipment that would

generate commercially relevant results.

MATERIALS AND METHODS

Corn Stover Analysis

Corn stover was obtained from the Department of Agronomy, Iowa

State University, USA. Field-dried corn leaf and corn stalk were ground

in a Wiley mill to pass through a 2 mm screen, and then screened using

a 20 mesh sieve and further dried in an oven at 80oC for 4 days

prior to compositional analysis. The composition of cellulose and

hemicellulose was determined by the Department of Agronomy, Iowa

State University, using the ANKOM method (ANKOM Technology

Corp., Fairport, NY, USA) as previously described [52]. The Klason

lignin content was determined using a modified Klason lignin assay

following the method of Crawford and Pometto [9] with slight

modification, whereby glass fiber filters (1.6 µm) (Fisherbrand, Fisher

Scientific, Pittsburgh, PA, USA) were used instead of Whatman

No.1 filter papers for capturing lignin residues. This assay measures

lignin as the acid-insoluble fraction of lignocellulosic material after

hydrolysis by strong acid (H2SO4) and heat. The residue on the filter

paper was thoroughly rinsed with deionized water and dried in an

oven at 105
o
C for 4 days. The Klason lignin content was determined

as the weight of dry residue collected on the filter paper.

Microorganisms

All of the cultures used in this study were obtained from the American

Type Culture Collection (ATCC; Rockville, MD, USA) and included

P. chrysosporium (ATCC 24725), G. trabeum (ATCC 11539), S.

cerevisiae (ATCC 24859), and E. coli K011 (ATCC 55124). Fungal

cultures were revived by inoculating them into potato dextrose broth

(PDB) (Difco, Becton Dickinson and Co., Sparks, MD, USA) and

the bacterial culture by inoculating into LB broth (Becton Dickinson),

followed by incubation with shaking at 24oC [43, 44]. Stock cultures

were stored in yeast malt extract (YM) broth (Becton Dickinson)

supplemented with 20% (v/v) glycerol at -80
o
C in an ultralow

temperature freezer (So-Low Environmental Equipment Co., Inc.,

Cincinnati, OH, USA) for long-term storage.

P. chrysosporium and G. trabeum Culture Preparation

P. chrysosporium and G. trabeum seed cultures were prepared from

spores in 1 l of YM broth and incubated at 30oC with agitation at

150 rpm. After 7 days of growth, fungal mycelia (approximately 2-

3 mm in diameter) were harvested via centrifugation in a sterilized

1 l polypropylene centrifuge bottle (Nalgene, Nalge Nunc, Rochester,

NY, USA), at 7,277 ×g for 20 min using a Sorvall-RC3B Plus

centrifuge (Thermo Fisher Scientific, Wilmington, DE, USA) [38].

The fungal pellets were rinsed with fungal mineral salt solution (pH

4.5-4.8; 50 mM phosphate buffer + 0.5% (NH4)2SO4 + basal medium).

Basal medium was prepared according to the formulation of Shrestha

et al. [44], consisting of 0.25 g of KH2PO4 (Fisher Scientific, Pittsburgh,

PA, USA), 0.063 g of MgSO4·7H2O (Fisher Scientific), 0.013 g of

CaCl2·2H2O (Fisher Scientific), and 1.25 ml of trace element solutions

in 1 l of deionized water [43].

Solid Substrate Fermentation for Enzyme Induction

All ground corn stover used in this study received no pretreatment

except any weathering that might have occurred in the field prior

to harvest. Prior to the addition of fungal inoculum for enzyme

induction, 2 g of ground stover and glass marbles with 5 ml of

fungal mineral salt solution were sterilized in 250 ml polypropylene

bottles (Nalgene) at 121
o
C for 1 h followed by rapid exhaust. Two ml

of fungal biomass [1.5% (w/v) P. chrysosporium and 1.0% (w/v) G.

trabeum] in mineral salt solution was then added. The bottles were

rolled on their sides and the marbles assisted in uniformly dispersing

and coating the corn stover and fungi mixture along the inner

surface [38, 44]. Solid substrate fermentation was then performed

for 4 days at 37
o
C in a humidified incubator for in situ production

of cellulases and hemicellulases prior to the addition of the ethanolic

microorganism.

Protein Assay

Total protein was analyzed using a NanoDrop 1000 Spectrophotometer

(Thermo Fisher Scientific). The NanoDrop 1000 module measures
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protein absorbance at 280 nm (A280) and calculates the concentration

(mg/ml) from a 2 µl sample. Sample aliquots of 1.5 ml were taken

from stover treated with fungal cultures and washed with minimal

salt medium on day 4. The supernatant was centrifuged using a

MiniSpin Plus centrifuge (Eppendorf, Hauppauge, NY, USA) at

1,118 ×g for 5 min and filtered through a 0.2 µm nylon syringe filter

(VWR International, Batavia, IL, USA). Portions of the filtered

solution were also used to perform the enzyme activity assay.

Enzyme Activity Assay 

A specific enzyme activity assay was performed using the protocol

described by the official National Renewable Energy Laboratory

(NREL) procedure [2]. This method is based on the International

Union of Pure and Applied Chemistry (IUPAC) guidelines to determine

cellulase activity in terms of “filter-paper units” (FPU) per milliliter

(FPU/mL) of an original enzyme preparation [18].

S. cerevisiae and E. coli K011 Culture Preparation

Culture inocula of S. cerevisiae and E. coli K011 were prepared by

growing cultures in 50 ml of sterile YM broth at 32oC with constant

agitation at 120 rpm. Cells were harvested via centrifugation in 50 ml

conical centrifuge tubes (BD Falcon, BD, Franklin Lakes, NJ, USA)

at 2,852 ×g for 10 min in a Beckman J2-21centrifuge (Beckman

Coulter, Inc., Brea, CA, USA). Prior to use in SSF, cell counts were

set at 107
-108 CFU/ml as determined turbidometrically at 600 nm

via a standard curve [33].

Simultaneous Saccharification and Fermentation (SSF)

SSF reactions were carried out in 250 ml polypropylene bottles with

batch cultures of 100 ml final volume, consisting of 25 ml of 4× yeast

extract broth [1.8 g of yeast extract (Difco), 0.07 g of CaCl2·2H2O

(Fisher Scientific), 0.45 g of KH2PO4 (Fisher Scientific), 1.2 g of

(NH4)2SO4 (Fisher Scientific), and 0.3 g of MgSO4·7H2O per liter

(Fisher Scientific)] [44] and 66 ml of basal medium (pH 4.5-4.8;

50 mM phosphate buffer + 0.5% (NH4)2SO4 + basal medium). The

bottles were then aseptically inoculated with 10
7
-10

8 
CFU/ml S.

cerevisiae and E. coli K011 suspensions. Batch culture fermentations

were incubated at 37
o
C under static conditions. These samples were

then subjected to SSF under anaerobic conditions for 5 days. The

SSF experiments were performed in triplicate (n=3).

High-Performance Liquid Chromatography (HPLC) Analyses

Sample aliquots of 1.8 ml were taken daily, centrifuged at 1,118 ×g

for 5 min, and filtered through a 0.2 µm nylon syringe filter. Glucose,

xylose, and the fermentation products (ethanol, acetic acid, and

lactic acid) were analyzed using a Waters High Performance Liquid

Chromatograph (Millipore Corp., Milford, MA, USA) equipped with a

Waters Model 401 refractive index detector, column heater,

autosampler, and computer controller. The separation and analysis of

ethanol and other fermentation constituents were done on a Bio-Rad

Aminex HPX-8711 column (300.0 × 7.8 mm; Bio-Rad Chemical

Division, Richmond, CA, USA) using 0.012 N H2SO4 as the mobile

phase at a flow rate of 0.6 ml/min, a 20 µl injection volume, and a

column temperature of 65oC [28, 37].

Total and Reducing Sugar Assays

Filtered supernatants from the fermentation broth were tested for

free reducing sugar and total reducing sugars via the Somogyi-Nelson

[3] and phenol-sulfuric [9] methods, respectively. The Somogyi-

Nelson carbohydrate assay was performed at 500 nm with a glucose

standard, whereas total sugars were determined via the phenol-sulfuric

carbohydrate test at 490 nm with a glucose standard. Absorbance

was read on a SpectraMax Plus384 spectrophotometer (Molecular

Devices, Inc., Sunnyvale, CA, USA). The absorbance readings were

then converted into equivalent sugar concentrations (g/l) based on a

standard glucose solution curve. All sugar analyses were performed

in triplicate (n=3).

Statistical Analyses

SSF results were statistically analyzed using JMP 8.0 statistical software

(SAS Institute, Inc., Cary, NC, USA). The data on ethanol production

were fitted to exponential fit models, and a significant difference of

p value of 0.05 was employed. Student’s t test analyses were also

performed on all final data sets to determine multiple comparisons

of ethanol production. A p-value of less than 0.05 was considered

significantly different.

RESULTS AND DISCUSSION

Enzyme Induction on Untreated Corn Stover

In this study, we performed SSF on ground corn stover

without pretreatment. The main components of the corn

stover were hemicellulose, cellulose, lignin, and ash (Table 1).

Interestingly, the compositional analysis revealed a high

ash content. This observation is in agreement with that of a

previous analysis [36, 48] in which the ash content of corn

leaf and corn stalk were found to be considerably higher

than that of other biomass. A flow chart of our experimental

design is shown in Fig. 1. Unlike the SSF process in

previous works, ours does not use pretreated corn stover

samples [13, 19, 25, 42] or the addition of expensive

commercial enzymes [12, 26, 53]. Instead, cellulases and

hemicellulases are produced by G. trabeum and P.

chrysosporium in situ upon corn stover enzyme induction

performed via solid substrate fermentation in a pH range of

4.5-4.8 at 37oC for 4 days, conditions that are suitable not

only for the growth of the fungi but also for production of

cellulolytic enzymes [38, 43, 44]. As seen in Table 2, our

assay using the NanoDrop 1000 spectrophotometer indicated

that protein was produced during the induction stage, and

production was higher in the stover and P. chrysosporium

combination compared with the stover and G. trabeum

combination, at 14.06 and 11.61 mg/ml, respectively.

Table 1. Composition of corn stover (as percentage based on dry
weight; n=3).

Main component
Composition based on cell mass 

(%, w/w)

Cellulose 38.08

Hemicellulose 30.72

Klason lignin 20.70

Ash 8.77

Others 0.31
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Next, quantitative enzyme activity was determined

according to the IUPAC protocol [18], which interprets the

filter paper unit activity (FPase) based on a value of 2.0 mg

of reducing sugar as glucose from 50 mg of filter paper, at

4% conversion, in 1 h (units FPU/ml) [2]. Enzyme assays

to determine the FPase showed that more cellulase was

being secreted by the brown-rot fungus, at 1.72 FPU/ml,

compared with the white-rot fungus, at 0.65 FPU/ml. This

concentration, however, is not correlated with the amount

of total protein being produced extracellularly, as mentioned

earlier. According to the literature, the white-rot fungus P.

chrysosporium produces additional extracellular enzymes

including laccases and peroxidases when grown in lignin-

impregnated biomass such as corn stover and other

lignocellulosic material [50, 54].

In Situ Enzymatic Hydrolysis 

The efficiency of cellulolytic enzyme hydrolysis of

lignocelluloses was evaluated and validated via assays for

saccharification and fermentation products. Saccharification

of the stover to its free reducing and total sugars was

measured using the Somogyi-Nelson and phenol-sulfuric

methods. After the 4-day enzyme induction period (day 0 of

SSF), between 2.42 and 2.91 g of reducing sugar per 100 g

of stover was detected in the broth of the G. trabeum-

treated stover and 0.23-0.29 g in the broth of the P.

chrysosporium-treated stover. Although there was a significant

difference in the amount of reducing sugar, the result was

quite different for total sugars. The total sugar profile was

similar for the two treatments on day 0 of SSF and ranged

from 5.57 to 5.94 g of sugar per 100 g of stover. Both of

these assays support the ability of both fungal strains to

perform in situ saccharification, and these trends were

observed throughout the 5-day SSF period (Fig. 2 and 3),

especially for total sugars.

To supplement the carbohydrate assay, the presence of

glucose and xylose were also investigated using HPLC, as

these sugars are the main monomeric end products from

cellulosic and hemicellusic polymers [20, 27]. During the

anaerobic fermentation period, no glucose was detected;

this result is a good indication that efficient conversion to

ethanol was achieved. Xylose was detected in all fungi-

treated samples that were inoculated with S. cerevisae, as

Fig. 1. Flow chart outlining the steps of solid substrate fermentation
by G. trabeum and P. chrysosporium of corn stover without
pretreatment, followed by SSF using S. cerevisiae and E. coli
K011.

Table 2. Enzyme activity and total protein (n=3).

Corn stover + P. chrysosporium Corn stover + G. trabeum

Enzyme assay (FPU/ml)a 0.65 1.72

Protein assay (mg/ml)b 14.06 11.61

a
Filter paper unit activities (FPase) based on a value of 2.0 mg of reducing sugar as glucose from 50 mg of filter paper, at 4% conversion, in 1 h (units FPU/ml).
b
Protein was determined using a NanoDrop 1000 Spectrophotometer.

Fig. 2. Time course of reducing sugar production, as determined
by the Somogyi-Nelson method. 
Data points represent the average of three independent experiments (n=3).

PC, P. chrysosporium; GT, G. trabeum. Time zero is after 4 days of solid

substrate fermentation with a specific fungus (P. chrysosporium or G.

trabeum).
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shown in Fig. 4. This observation was expected since S.

cerevisae cannot utilize pentoses such as xylose [14, 29].

Simultaneous Saccharification and Fermentation of

Corn Stover

The fermentability of the saccharification products was

evaluated using S. cerevisiae and E. coli K011 as the

fermenting organisms. Both of these microorganisms were

chosen because they are efficient ethanolic fermenters,

with the former capable of fermenting glucose from the

breakdown of cellulose, and the latter capable of fermenting

both glucose and other fermentable sugars such as xylose,

arabinose, and galactose from the enzymatic hydrolysis of

hemicelluloses [29].

From the graph in Fig. 5, it can be seen that ethanol

production started on day 1 and increased steadily in all

corn stover samples, indicating that the sugars released

during saccharification were readily converted to ethanol.

Ethanol production was highest on day 4 in all samples

inoculated with either P. chrysosporium or G. trabeum. For

stover treated with P. chrysosporium, the conversion to ethanol

was 2.29 g/100 g of stover for the sample inoculated with

S. cerevisiae, whereas for the sample inoculated with E.

coli K011, the ethanol concentration was 4.14 g/100 g

stover. For stover treated with G. trabeum, the conversion

to ethanol was 1.90 and 4.79 g/100 g stover for the samples

inoculated with S. cerevisiae and E. coli K011, respectively.

In general, fungi-treated samples inoculated with E. coli

K011 had a greater ethanol yield. This result is due to the

ability of E. coli K011 to ferment both hexoses (C6 sugars,

i.e., glucose) and pentoses (C5 sugars, i.e., xylose) [29].

The results shown in Fig. 4 further support this observation;

stover that was not inoculated with E. coli K011 still

contained xylose even after day 5 of SSF.

Fig. 3. Time course of total sugar production, as determined by
the phenol-sulfuric method. 
Data points represent the average of three independent experiments (n=3).

PC, P. chrysosporium; GT, G. trabeum. Time zero is after 4 days of solid

substrate fermentation with a specific fungus (P. chrysosporium or G.

trabeum).

Fig. 4. Time course of xylose production. 
Data points represent the average of three independent experiments (n=3).

PC, P. chrysosporium; GT, G. trabeum. Time zero is after 4 days of solid

substrate fermentation with a specific fungus (P. chrysosporium or G.

trabeum).

Fig. 5. Time course of ethanol production. 
Data points represent the average of three independent experiments (n=3).

Note: PC - P. chrysosporium, GT - G. trabeum. Time zero is after 4 days

of solid substrate fermentation with a specific fungus (P. chrysosporium or

G. trabeum).

Fig. 6. Time course of acetic acid production. 
Data points represent the average of three independent experiments (n=3).

PC, P. chrysosporium; GT, G. trabeum. Time zero is after 4 days of solid

substrate fermentation with a specific fungus (P. chrysosporium or G.

trabeum).
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One interesting observation regarding the ethanol profile

is the production of a trace amount of ethanol (1.45 g/

100 g stover on day 4) in the sample inoculated only with

E. coli K011. This, however, is not a new finding, as E.

coli has been documented to secrete cellulases and several

hemicellulases, such as xylanases, mannosidase, and galactases,

that may have liberated xylose from hemicellulose polymers

[17, 34, 35]. On day 5, no ethanol was detected in the

broth. One possible explanation is that E. coli consumed

the minute amount of ethanol present earlier in the broth.

This is a normal observation when an alternative carbon

source is needed for E. coli growth [39].

Throughout the experiment, other fermentation co-products

such as acetic acid and lactic acid were also recorded (Fig. 6).

Acetic acid production ranged between 0.45 and 0.78 g/

100 g stover in the samples subjected to different fungal

treatments, whereas no lactic acid production was detected

throughout the 5 days of SSF.

Statistical analysis via nonlinear regression using exponential

model fits, as summarized in Table 3, strongly endorses the

reliability of the ethanol production, with all p-values being

< 0.05. Further analysis performed using the Student’s t

test showed statistically significant ethanol yield (Fig. 7)

among the different treatments. This result reinforces the

interrelationship between fungal species treatments and the

fermenting organisms used.

To realize large-scale applications for cellulosic feedstocks

such as corn stovers, low conversion costs are essential.

The use of commercial enzymes makes the production of

fuel ethanol neither economically feasible nor profitable.

Furthermore, these enzymes are highly susceptible to inhibition

and are very substrate specific. An ideal lignocellulolytic

biocatalyst should degrade the three main components of

stovers; namely, cellulose, hemicellulose, and lignin. Thus,

using P. chrysosporium and G. trabeum to provide in situ

enzymes for the degradation of the lignocellulosic components

of stovers offers a promising solution. In the production of

fuel ethanol from corn stovers, the optimization of this process

can lead to reduced costs, as ethanol plants can produce their

own enzymes to supplement the use of commercial enzymes.

Another advantage in using this process is that it is an

environmentally friendlier approach that eliminates the

need to perform potentially detrimental pretreatments.
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