

DESIGN AND ANALYSIS BEAMS FOR A FOUR STOREY STEEL STRUCTURE USING CSC SOFTWARE

Dayang Lydiawati Binti Awang Jemat

Bachelor of Engineering with Honors (Civil Engineering) 2006

UNIVERSITI MALAYSIA SARAWAK

		BORANG PENGESAHAN	N STATUS TESIS
Judul:	DESIGN	AND ANALYSIS BEAMS F STRUCTURE USING C	OR A FOUR STOREY STEEL SC SOFTWARE
		SESI PENGAJIAN	: 2005/2006
Saya			BINTI AWANG JEMAT F BESAR)
		esis * ini disimpan di Pus syarat-syarat kegunaan sep	at Khidmat Maklumat Akademik, Universiti erti berikut:
1. 2. 3. 4. 5.	Tesis adalah hakmilik Universiti Malaysia Sarawak. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan untuk tujuan pengajian sahaja. Membuat pendigitan untuk membangunkan Pangkalan Data Kandungan Tempatan. Pusat Khidmat Maklumat Akademik, Universiti Malaysia Sarawak dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. ** Sila tandakan ($$) di kotak yang berkenaan		
	SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972).		
	TERHAD		at TERHAD yang telah ditentukan oleh a penyelidikan dijalankan).
	TIDAK TERHA	D	
			Disahkan oleh
	(TANDATANG	AN PENULIS)	(TANDATANGAN PENYELIA)
	JLN	.OT 1034, LORONG 1E. JAMBU UTARA, TMN SUSU IBU,96100 SARIKEI, SARAW	
	Tarikh: 11 MEI 20	006	Tarikh: 11 MEI 2006

CATATAN * Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda. ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD. This final year project report:

Title	:	DESIGN AND ANALYSIS BEAMS FOR A
		FOUR STOREY STEEL STRUCTURES
		USING CSC SOFTWARE
Prepared by	:	DAYANG LYDIAWATI BINTI AWANG
		JEMAT
Matric No.	:	8100

Is hereby read and approved by:

Pn.Azida bt Rashidi Project Supervisor

Date

Specially dedicated to my beloved family

ACKNOWLEDGEMENTS

First of all, I would like to thank Allah S.W.T for giving me enough courage and patient to face all the obstacles during completing this project and also the opportunity to successfully finish this project.

I would like to express my deepest grateful to my supervisor, Pn. Azida bt Rashidi for her guidance, ideas, support and advices throughout the development of this project.

My special thanks also go to my beloved family, for their continuous support and encouragement. Besides that, I also would like to express my sincere thank to my friends for their suggestions, advice, accompany and invaluable help for me in making this project a success.

Lastly, I would like to take this opportunity to express my deepest gratitude to all the people who had helped me out through completion of this project.

Thank you very much.

ABSTRAK

Keluli adalah salah satu daripada bahan binaan yang penting selain daripada konkrit, pertukangan batu dan kayu. Pada masa kini, struktur keluli telah berkembang pesat sejajar dengan perkembangan industri pembinaan dan menjadi semakin penting. Oleh sebab itu, penggunaan perisian kejuruteraan sivil untuk merekabentuk dan menganalisis struktur binaan telah menjadi semakin meluas. Matlamat projek ini adalah untuk merekabentuk dan menganalisis struktur keluli dengan menggunakan perisian Computer Services Consultant (CSC) iaitu S-FRAME dan S-STEEL. Untuk projek ini, S-FRAME digunakan untuk menganalisis rangka struktur, manakala S-STEEL digunakan untuk menyemak semula rekabentuk berdasarkan kod rekabentuk yang ditetapkan dan merekabentuk semula struktur tersebut sekiranya saiz keluli yang dicadangkan tidak memenuhi syarat yang dinyatakan dalam kod rekabentuk British Standard (BS5950:2000). Secara keseluruhannya, projek ini telah dapat memenuhi kesemua objektif.

ABSTRACT

Steel is one of the most important construction materials besides concrete, masonry and wood. Nowadays, steel structure has developed along with the growth of the construction industries and become more important. Therefore, the use of civil engineering software in designing and analyzing the structure has become more popular. The aim of this project is to design and analyze the steel structures using the Computer Services Consultant (CSC) Software that is S-FRAME and S-STEEL. For this project, the S-FRAME is used to analyze the frame of the structure while the S-STEEL is used to check the design based on the design code. The redesign of the structure is done if the proposed section does not fulfill the requirements stated in the British Standard design code (BS5950:2000). The verifying of the result obtained from the software is done with hand calculation. Overall, the project has achieved all the objectives.

TABLES OF CONTENTS

	Page
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRAK	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Advantages of Using Steel as Construction Materials	3
1.3	Significance of study	4
1.4	Limit of study	4
1.5	Objectives of the study	5
1.6	Conclusion	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	6	5
2.1	Introduction	Ċ)

2.2	Background	
	2.2.1 S-FRAME	7
	2.2.2 S-STEEL	8
2.3	Design Parameter Used in CSC Software	
	2.3.1 Design code	10
	2.3.2 Material	10
	2.3.3 Connection type	12
	2.3.4 Effective length	13
	2.3.5 Design constraints	14
	2.3.6 Load combinations	14
	2.3.7 Support conditions	16
	2.3.8 Types of analysis	16
2.4	Conclusion	17

CHAPTER 3 METHODOLOGY

3.1	Introd	uction	18	
3.2	Case study			
3.3	Assun	ssumption		
	3.3.1	Simple design	23	
3.4	Desig	n code	23	
3.5	Loadi	ings		
	3.5.1	General Loadings for Ground Floor	24	
	3.5.2	General Loadings for First, Second and Third Floor	25	

	3.5.3	General Loadings for Roof	25
3.6	Steel grades		
3.7	Type of connection		
3.8	Load cor	nbinations and load factor	26
3.9	Design p	rocedure using S-FRAME	27
3.9.1	Ľ	Designing a frame	
	3.9.1.1	Modeling a frame	27
	3.9.1.2	Support conditions and member release	31
	3.9.1.3	Section properties	32
	3.9.1.4	Materials properties	34
	3.9.1.5	Loadings	35
3.9.2	Analysis	of frame	38
3.10	Analysis	and design procedure using S-STEEL	40
3.11	Code che	eck	40
3.12	Re-desig	n using S-STEEL	43
3.13	Spreadsh	eet data window	45
3.14	Beam de	sign using hand calculation method	45
3.15	Section c	classification	46
	3.15.1 C	Class 1: Plastic cross section	46
	3.15.2 C	Class 2: Compact cross section	47
	3.15.3 C	Class 3: semi-compact cross section	47
	3.15.4 C	Class 4: Slender cross section	47
3.16	Shear cap	pacity	47

3.16.1 Low shear	48
3.16.2 High shear	49

CHAPTER 4 ANALYSIS AND RESULTS

4.1	Introd	ntroduction		
4.2	Analysis using S-FRAME			50
	4.2.1	Ground Beam		
		4.2.1.1 Loadings		51
		4.2.1.2 Shear Force		52
		4.2.1.3 Bending Moment		53
	4.2.2	First Floor Beam		
		4.2.2.1 Loadings		54
		4.2.2.2 Shear Force		55
		4.2.2.3 Bending Moment		55
	4.2.3	Roof Beam		
		4.2.3.1 Loadings		56
		4.2.3.2 Shear Force		56
		4.2.3.3 Bending Moment		57
4.3	Verifi	cation of results		58
4.4	Comp	parison of results		67
4.5	Analy	sis and design results using S-STEEL		74
	4.5.1	Code check results for ground beam		74
	4.5.2	Code check results for first floor beam		79

	4.5.3	Code check results for roof beam	82
4.6	Re-de	sign results of the Universal Beam (UB) using S-STEEL	84
	4.6.1	Design results for ground beam	84
	4.6.2	Design results for first floor beam	86
	4.6.3	Design results for roof beam	88

CHAPTER 5 DISCUSSION

CHAPTER 6 RECOMMENDATION AND CONCLUSION

6.1	Conclusion	92
6.2	Recommendation	93
REFERENCES		94
APPENDIX		95

LIST OF TABLES

Tables	Pages
4.1.1 Member end actions results for ground beam using S-FRAME	59
4.1.2 Member end actions results for first floor beam using	62
S-FRAME	
4.2.1 Results for ground beam from hand calculation	60
4.2.2 Results for first floor beam from hand calculation	63
4.3 Design result using hand calculation for Ground Beam 25	68
(GB25)	
4.4 Design result using S-FRAME for Ground Beam 25 (GB25)	70

LIST OF FIGURES

Figures	Pages
2.1 Design code	10
2.2 Steel grades	11
2.3 Materials properties	11
2.4 Section properties database	12
2.5 Connection type	13
2.6 Effective length	13
2.7 Design constraints	14
2.8 Load combination	15
2.9 Support condition	16
2.10 Analysis type	17
3.1 Ground floor plan	19
3.2 First floor plan	20
3.3 Roof plan	21
3.4 Whole structure in 3D model frame	22
3.5 Model type	28
3.6 Edit regular framework	28
3.7 2D frame model	29
3.8 Joint properties	30
3.9 Member number and length for ground beam frame	31
3.10 Support and member release location	32
3.11 Proposed section properties for ground beam frame	33
3.12 Section properties applied on frame	34
3.13 Materials properties	35
3.14 Save load case as dead load	36
3.15 New load case as imposed load	36

3.16 Loadings (Dead load)	37	
3.17 Load combination case 1 (dead load + imposed load)	38	
3.18 Analysis type	39	
3.19 Window option in S-STEEL	41	
3.20 Selected group in code check input	42	
3.21 Load combinations for code check	42	
3.22 Code check results	43	
3.23 Section for study	44	
3.24 Admissible/inadmissible sections	44	
3.25 Spreadsheet data window	45	
4.1 Combination of loadings applied for Ground Beam Frame	51	
4.2 Ground beam shear force diagram for load combination case 1	52	
4.3 Ground beam bending moment diagram for load combination	53	
case 1		
4.4 Combination of loadings applied for First Floor Beam Frame	54	
4.5 First floor beam shear force diagram for load combination	55	
case 1		
4.6 First floor beam bending moment diagram for load		
combination case 1		
4.7 Combination of loadings applied for Roof Beam Frame	56	
4.8 Roof beam shear force diagram for load combination case 1	56	
4.9 Roof beam bending moment diagram for load combination	57	
case 1		
4.10 Code check result for section 1 (Ground Beam)	74	
4.11 Code details check for GB14 (Member 39)	75	
4.12 Code check result for section 2 (Ground Beam)	76	
4.13 Code details check for GB20 (Member 17)	77	
4.14 Code details check for GB16 (Member 75)	77	
4.15 Code check result for section 3 (Ground Beam)	78	
4.16 Code details check for GB13 (Member 46)	78	
4.17 Code check result for section 1 (First Floor Beam)	79	

4.18 Code check result for section 2 (First Floor Beam)	80
4.19 Code check result for section 3 (First Floor Beam)	80
4.20 Code check result for section 4 (First Floor Beam)	81
4.21 Code check result for section 1 (Roof Beam)	82
4.22 Code check result for section 2 (Roof Beam)	83
4.23 Code check result for section 3 (Roof Beam)	83
4.24 Design code result for section 1 (178 x 102 x 19 UB)	84
4.25 Design code result for section 2 (305 x 102 x 33 UB)	85
4.26 Design code result for section 1 (178 x 102 x 19 UB)	86
4.27 Design code result for section 2 (356 x 127 x 33 UB)	86
4.28 Design code result for section 3 (356 x 171 x 57 UB)	87
4.29 Design code result for section 1 (178 x 102 x 19 UB)	88
4.30 Design code result for section 2 (254 x 146 x 31 UB)	88

DESIGN AND ANALYSIS BEAMS FOR A FOUR STOREY STEEL STRUCTURE USING CSC SOFTWARE

DAYANG LYDIAWATI BINTI AWANG JEMAT

This project is submitted in partial fulfillment of The requirements for degree of Bachelor of Engineering with Honors (Civil Engineering) 2006

CHAPTER 1

INTRODUCTION

1.1 Background

Currently the growth of construction industries has affected the development of steel structures. The steel structures ideally meet the construction industry's need which is to build stronger and safer buildings. In order to accomplish this in steel structure, many structural steel is used to construct the structure. Structural steel is an important construction material instead of concrete, masonry and wood. The steel used in structural engineering is a compound containing approximately 98% iron and small percentage of carbon, silicon, manganese, phosphorus, sulphur, niobium and vanadium as specified in British Standard (BS4360) [1].

Steel structures include low and high rise buildings, bridges and towers. The design of steel structure is in frame, where the dead loads, imposed loads and wind loads are transmit in a direct way to the foundation. For multi storey buildings, steel frame construction is one of the best ways to build the structures. The great strength of this building material makes it a suitable material where height of building is important. In addition, the structure must be capable to resists the sway forces. The use of bracing, rigid joints or shear wall in the structures part can prevent the sway forces from affecting the building structure.

The design of the structure must fulfill the requirements stated in the British Standard (BS5950) steel design code, to produce safe and economic structure. The nature of forces, length and cross section of the members and the magnitude of yield strength are factors that must be taken into account when designing steel structures. After the analysis is completed, the design of the structures must be done. The analysis of the structure is necessary before the structure can be constructed. Therefore, nowadays civil engineering software such as STAADPRO, CADPRO, ATLANTIC V2, MICROSTRAN and Computer Services Consultants (CSC) are some example that is widely used for designing and analyzing the structures.

1.2 Advantages of Using Steel as Construction Materials

Below are some of the advantages of using steel in construction industry:

- Strength to weight ratio: In construction, a steel structure offers feasible options with respect to the strength to weight ratio of any framing material. This ratio is high compare to other common building materials such as masonry, wood and concrete. For these common materials, their used is dictating by these ratios which offer economies for using it.
- Quality: In terms of quality, steel will not crack, shrink or swell since steel has a high stiffness and high strength. Therefore, for structures where the load applied and span are large, usually steel is used as construction materials to implement the design of the structures.
- **Non-combustible**: Steel will not burn which eliminate the third leading house fires.
- **Safety**: In terms of safety, the steel offers better protection during earthquakes, tornadoes and hurricanes due to its strength.
- **Termite proof**: Structural damage by the insects can be eliminating since steel is not influences by termites.

- Environmental: The steel material is 100% recyclable.
- Value: Since the price of the steel is more stable compare to other materials such as wood, therefore the used of steel is more cost-effective.

1.3 Significance of Study

Structural steel frame has become more popular in the construction industries in Malaysia. The use of steel gives more advantages compared to other construction materials. Similar with the hand calculation design, the design and analysis of steel structures using computer software is important. The advantage of using the software is to get reliable and fast results which can save more time.

One of the most widely used civil engineering software used to design and analyze structure is CSC. The CSC software includes S-FRAME, S-STEEL, CSC 3D+ CAD SYSTEM for Structural Engineer, ORION and FASTRAK. However, the focus of this study is the S-FRAME and S-STEEL.

1.4 Limit of Study

For this study, only 2D Frame Model type is used. Besides that, the design and analysis of the structure is by floor and not the whole structure.

1.5 Objectives of the study

Essentially, the objectives of this study are:

- i. To design four-storey steel structure using CSC.
- ii. To analyze the loading and the selected section used for the structure using CSC.
- iii. To verify the analysis and design result obtained from CSC
- iv. To compare the design result obtained from CSC with hand calculation result
- v. To check the suitability of using the CSC to design and analyze the steel structure.

1.6 Conclusion

Various methods for analysis and design have been developed over the years. Along with the growth of steel construction industries, there are a lot of civil engineering software being created to make the design and analysis of structure become easier. Generally, the usage of software in designing and analyzing the steel structures can save more time compared to hand calculation method.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the 21st century, taller building are built and designed by using the latest technology. In order to create an effective design for multi-storey steel structure, the structure must be analyzed properly to ensure safety.

Most of the multi-storey steel structures are constructed using the steel frame for modern high-rise construction. This frame is composed of rigidly connected beams and columns. One of the characteristic features for this frame structure is the reduction of load-carrying members to minimize sizes and cost.

Once the structure is constructed, it is expected that the structure look stylish, attractive and most important is structurally correct. Therefore, currently there are many civil and structural engineering projects using computer software to analyze and design the structure for the purpose of maintaining the strength and stability. STAADPRO, CADPRO, MICROSTRAN, CSC SOFTWARE including S-FRAME and S-STEEL are some example of the civil engineering software that usually being used by the structural engineers to design and analyze the structure.

2.2 Background

2.2.1 S-FRAME

Basically, most of the civil engineering analysis software provides analysis on linear static, frequency and earthquake effect to the building structure. S-FRAME is an example of civil engineering software that allows the linear static analysis to be applied for analyzing the structure.

S-FRAME is steelwork design software and it comes in several editions. There are 3 editions of S-FRAME that is S-FRAME Standard, S-FRAME Professional and S-FRAME Enterprise. Each of these editions is build on the features, functionality and analysis capabilities of the previous one yet still maintaining the same basic interface.

For S-FRAME Standard Edition, only the linear elastic static analysis option is applicable. This type of analysis is the most commonly used analysis option in structural engineering. If no non-linear elements or constraints have been defined for example tension only members and compression only members, then linear elastic static analysis is the most suitable option to analyze the structures.