

IMPROVEMENT OF GEOTECHNICAL PROPERTIES OF LOCAL CLAY BY USING FLY ASH

Muhammad Wazizi Hamzar b. Abdul Aziz

Bachelor of Engineering with Honours (Civil Engineering) 2009

BORANG PENGESAHAN STATUS TESIS			
JUI	DUL: IMPROVEMENT USING FLY ASH	OF GEOTECHNICA	L PROPERTIES OF LOCAL CLAY BY
		SESI PENGAJIA	N: <u>2008 / 2009</u>
Saya	MUH	AMMAD WAZIZI HA	MZAR B. ABDUL AZIZ
		(HURUF I	BESAR)
mengaku Sarawak	membenarkan tesis * dengan syarat-syarat keg	ini disimpan di Pusat unaan seperti berikut:	Khidmat Maklumat Akademik, Universiti Malaysi
1. 2. 3. 4. 5.	Tesis adalah hak milik U Pusat Khidmat Maklum tujuan pengajian sahaja. Membuat pendigitan un Pusat Khidmat Maklum ini sebagai pertukaran at ** Sila tandakan (/) di	Jniversiti Malaysia Sara at Akademik, Universiti tuk membangunkan Pan at Akademik, Universit ntara institut pengajian t i kotak yang berkenaan	wak. i Malaysia Sarawak dibenarkan membuat salinan untu gkalan Data Kandungan Tempatan. i Malaysia Sarawak dibenarkan membuat salinan tesi tenggi.
	SULIT (1 M	Mengandungi maklum Ialaysia seperti yang ter	at yang berdarjah keselamatan atau kepentinga maktub di dalam AKTA RAHSIA RASMI 1972).
	TERHAD (N	Mengandungi maklur rganisasi/badan di mana	nat TERHAD yang telah ditentukan ole penyelidikan dijalankan).
v	TIDAK TERHAD		
			Disahkan Oleh:
(TANI	DATANGAN PENULIS)	1	(TANDATANGAN PENYELIA)
Alamat	Tetap: <u>LOT 1390, LORO</u> <u>TAMAN SUKMA</u> <u>93050 KUCHING,</u>	<u>NG JUARA 1B.</u> . PETRA JAYA. SARAWAK	DR. PRABIR KUMAR KOLAY Nama Penyelia
Tarikh :			Tarikh :

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa / organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD

" I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the purpose for award of the Degree of Bachelor of Engineering (Civil) with Honors ".

Signature	:	
Name of Supervisor	:	DR. PRABIR KUMAR KOLAY
Date	:	

"I hereby declare that this report is prepared personally with my own effort unless references that have been cited accordingly in any part of the report".

Signature	:	
Name of Author	:	MUHAMMAD WAZIZI HAMZAR BIN
		ABDUL AZIZ
Date	:	

APPROVAL SHEET

This project report attached here to, entitles "IMPROVEMENT OF GEOTECHNICAL PROPERTIES OF LOCAL CLAY BY USING FLY ASH" prepared and submitted by MUHAMMAD WAZIZI HAMZAR BIN ABDUL AZIZ (14628) as a partial fulfillment of the requirement for the Degree of Bachelor of Engineering with Honours in Civil Engineering is hereby read and approved by:

DR. PRABIR KUMAR KOLAY

Date

SUPERVISOR

IMPROVEMENT OF GEOTECHNICAL PROPERTIES OF LOCAL CLAY BY USING FLY ASH

MUHAMMAD WAZIZI HAMZAR BIN ABDUL AZIZ

This Thesis Is Proposed To

Faculty of Engineering, University Malaysia Sarawak For Fulfilment of The Requirements for Bestowal The Degree of Bachelor of Engineering with Honours (Civil Engineering)

2009

DEDICATION

Dedicated to my beloved family, friends and all the people that have supported,

encouraged and inspired me through good and hard times.

Thanks for everything.

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to Allah S.W.T, for His Blessings for me that this final year project can be completed successfully, and for giving me patience to go through hard times during the completion of this project.

Millions of appreciations to my Supervisor, Dr. Prabir Kumar Kolay, for his valuable knowledge, guidance and support in my study. Without his help and patient, this study will not be successful. Thank you for everything.

Next, a special thanks to Mr. Md. Aminur Rahman, and not forgotten Mr. Simon and also the laboratory technician, Hj. Affandi for sharing their valuable information and technical support for me to conduct my study.

Finally, thanks to my all lecturers, colleagues and everyone who involved either directly or indirectly in preparing this report for their diligent help and respective jobs.

ABSTRAK

Penambahbaikan dan penstabilan tanah jenis lembut sudah lama dipraktikkan dengan mencampurkan bahan seperti kapur, simen dan 'pond ash' untuk meningkatkan kekuatan tanah tersebut. Terdapat banyak bahan yang dapat juga digunakan sebagai penstabil untuk meningkatkan kekerasan dan kekuatan tanah liat. Objektif kajian ini dibuat demi mengkaji perubahan dalam sifat tanah liat tempatan apabila dicampurkan dengan 'fly ash' dari kilang arang batu tempatan. Kajian dimulakan dengan mengkaji sifat-sifat asas tanah liat tersebut. Selepas itu sampel disediakan dengan berhati-hati untuk mendapatkan hasil yang konsisten kerana data daripada kajian ini harus berkaitan antara satu sama lain supaya kesan perubahan yang ketara dapat dikesan. Standard Proctor Test dan Unconfined Compressive Strength (UCS) Test adalah method utama yang digunakan dalam kajian ini. Merujuk kepada data yang telah dianalisis, terdapat peningkatan ketara dalam kekuatan sampel apabila dicampur dengan 'fly ash' sehingga 20 peratus. Sampel mengandungi 20 peratus fly ash ini mampu bertahan lebih lama dengan muatan tertinggi dalam ujian tersebut. Kekuatan sampel meningkat sehingga ke hari yang ketujuh ketika proses 'curing' dilakukan, kemudian menurun perlahan-lahan sebelum kembali meningkat sehingga ke hari yang ke-28. Kesimpulannya, tanah liat tempatan juga dapat distabilkan dengan mencampurkan 'fly ash', dan kajian ini boleh menjadi langkah pertama dalam kajian penambahbaikan tanah bagi tanah-tanah dalam Malaysia.

ABSTRACT

Soft soil improvement and stabilization has been widely practised for a long time by mixing admixtures such as lime, cement and pond ash to increase the strength of the soil. Different types of admixtures were also used as stabilizers to improve the stiffness and strength of a clay soil. As for this study, the objective is to analyze the improvement in local clay soil when being stabilized by using fly ash from the local coal plant. Tests were first made to study the characteristics of the clay soil. Then samples are prepared carefully to prevent inconsistencies between them since the outcome of each tests must be related to each other in order to produce a significant results. Standard Proctor Test and Unconfined Compression Strength (UCS) Test are the main tests used in this study. From the analyzed data, there is a significant increase in strength when the clay sample were mixed with fly ash and the trend continues until the addition of 20 percent fly ash to the sample. The sample containing 20 percent fly ash tends to sustain more loads during the compression tests. The strength of each samples increased until the seventh day of curing, before gradually decreasing. However, the strength of the samples regained after the fourteenth day. As a conclusion, local clay can also be stabilized or improved by using fly ash, and this may become as a starting step for future assessments that could lead to more soil improvement for ground soil in Malaysia.

TABLE OF CONTENTS

DEDICATION	i
ACKNOWLEDGEMENT	ii
ABSTRAK	iii
ABSTRACT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	xi
LIST OF APPENDICES	xiii

CHAPTER 1: INTRODUCTION

1.0	General	1
1.1	Problem Statements	4
1.2	Aim of study	4
1.3	Objectives	5
1.4	Scope and Limitation of Study	5

CHAPTER 2: LITERATURE REVIEW

2.0	General	6
2.1	Clay	7
2.2	Fly ash	9
2.3	Fly ash as a soft-soil treatment admixture	10

CHAPTER 3: METHODOLOGY

3.0	Gener	neral		15
3.1	Mater	rials		
	3.1.1	Clay soil		17
	3.1.2	Fly ash		18
3.2	Procee	lures		19
	3.2.1	Soil sample	analysis	19
		3.2.1.1 Mo	bisture content	19
		3.2.1.2 Hy	ydrometer test	20
		3.2.1.3 Lic	uid Limit (LL), Plastic Limit (PL)	
		an	d Plasticity Index (PI)	23
		3.2.1.4 Shi	rinkage limit	25
		3.2.1.5 Sp	ecific gravity	26
	3.2.2	Mixed clay	soil and fly ash analysis	27
		3.2.2.1 Co	mpaction test	28

29

CHAPTER 4: DATA ANALYSIS AND DISCUSSION

4.0	General	33	
4.1	Moisture content	34	
4.2	Hydrometer test		
4.3	Consistency Limits	37	
	4.3.1 Liquid Limit	38	
	4.3.2 Plastic Limit	39	
	4.3.3 Plasticity Index	40	
4.4	Shrinkage limit	41	
4.5	Specific gravity 4		
4.6	Compaction Test 4.		
4.7	Unconfined Compressive Strength (UCS) Test 45		

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.0	General	47
5.1	Conclusion	47
5.2	Recommendation	49

REFERENCES	
APPENDICES	5

52-149

50

LIST OF TABLES

Table

Table 3.1	Mixture proportion of each sample	27
Table 3.2	Condition of soil according to unconfined compressive	
	strength, q _u (geotech.uta.edu)	30
Table 4.1	Moisture content calculation of the soft clay sample	34
Table 4.2	Particle sizes of the clay and percent finer value	35
Table 4.3	Percentage distribution of the soil sample	37
Table 4.4	Moisture content for samples having different	
	penetration depths	38
Table 4.5	Moisture content and plastic limit of soil sample	40
Table 4.6	Consistency limits for soil sample	40
Table 4.7	Shrinkage limit of soil sample	41
Table 4.8	Specific Gravity, G _s of clay sample	42
Table 4.9	Specific Gravity, G _s of fly ash sample	42
Table 4.10	The OMC value for every admixture	44
Table 4.11	Average value of Undrained Cohesion C _u	45
Table 5.1	Properties of soil sample	48

LIST OF FIGURES

Figure Page Figure 2.1 Soil-separation Size Limits according to different 8 standards (After Bush, 1984) Figure 2.2 Soil treated with Class C fly ash 13 Figure 2.3 Image of sample treated with 10% CFBC fly ash and 7 days curing (Reyes and Pando, 2007) 14 Figure 3.1 Work planning diagram 16 Figure 3.2 The location of the clay sample used in this study 18 21 Figure 3.3 Clay sample undergo hydrometer test for 24 hours Figure 3.4 Hydrometer apparatus 21 25 Figure 3.5 Oven-dried sample in a shrinkage dish Figure 3.6 26 50 ml pyknometer used for S_g test Figure 3.7 Compacted sample in cylindrical mold for Standard 29 **Proctor Test** Figure 3.8 Graph showing relation between stress and strain 31 Figure 3.9 Molded samples are left for 7, 14 and 28 curing days 32 Figure 3.10 Sample undergo UCS test using triaxial compression test machine 32 36 Figure 4.1 Particle size distribution of the soil sample 39 Figure 4.2 Graphical results of the penetration test 43 Figure 4.3 OMC chart for every admixture Figure 4.4 Graph showing undrained cohesion against curing days 45

LIST OF SYMBOLS AND ABREVIATION

UCS	Unconfined Compression Strength
CFBC	Circulating Fluidized Bed Combustion
OMC	Optimum Moisture Content
MDD	Maximum Dry Density
ASTM	American Society for Testing and Materials
rpm	Rotation Per Minute
μm	Micrometer
mm	Millimeter
ml	Mililiter
g	Gram
R _h	True Reading
R' _h	Hydrometer Reading
C _m	Meniscus Correction
PI	Plasticity Index
LL	Liquid Limit
PL	Plastic Limit
L _D	Oven-Dried Sample Length
L ₀	Initial Sample Length
q _u	Unconfined Strength
C _u	Undrained Cohesion
kPa	Kilo-Pascal
$ ho_s$	Particle Density

%	Percent
kN	kilo-Newton
S _g	Specific gravity

LIST OF APPENDICES

Appendix	Title	Page
А	Calculation for the clay sample's moisture content	53
В	Hydrometer Test's Data Analysis	54
С	Data Analysis of Liquid Limit	57
D	Data Analysis of Plastic Limit	58
Е	Data Analysis of Specific Gravity	59
F	Data Analysis of Compaction Test (Standard Proctor Test)	61
G	Data Analysis of UCS Test	63
Н	Graph of Stress against Strain for all samples undergo	
	UCS Test	130
Ι	The value of q_u and C_u for every sample	148

CHAPTER 1

INTRODUCTION

1.0 General

Clay is the common name for a number of fine-grained earthy materials that become plastic when wet. As one of the principle types of soil, clay can be easily found in the local area. It has an individual size smaller than 0.002 mm compare to other types of soil. Clays often form colloidal suspensions when immersed in water, but the clay particles will flocculate and settle quickly in saline water. Clay can easily molded into a form that they retain when dry, and they become hard and lose their plasticity when subjected to heat (Grim, 1971).

Clay plays an important role in architecture, industry and agriculture. Nowadays, in architecture section, clay is still being used to form brick, manufacture tile for wall or floor coverings. Other uses include pipes for drainage and sewerage. Expanded clays are used as a lightweight aggregate in the manufacture of expanded clay blocks used for insulation. However, the major use of clay, after brick manufacture, is in the manufacture of cement.

In Sarawak, clay be easily found and generally, it can be categorized into two classes; residual clay and transported clay. Residual clay is clay that is found in its place of origin while transported clay is clay that was removed from its original place by agent of erosion and then deposited to a new distant position. Residual clays are most commonly formed by surface weathering, that includes the chemical decomposition of rocks such as granite-containing silica and alumina; the solution of rocks, such as limestone-containing clayey impurities, which are deposited as clay when being insoluble; and by the disintegration and solution of shale. One of the commonest processes of clay formation is the chemical decomposition of feldspar.

One major problem related to clay is its high compressibility because of its fine particle size. Any foundation constructed on the clay subgrade has risk of failure when the clay layer suddenly settled due to moisture and load.

An improvising of clay properties can be made by mixing it with fly ash as a replacement to lightweight coarse aggregates which will be useful in the construction practice. Fly ash is produced from coal-fired thermal power plants which are considered as waste. In order to reduce the increasing amount of these wastes, they were reused in many productions of materials and also in construction. Both possess finer particle size and usually used as a replacement to aggregates in concrete and road sub-base.

The usage of fly ash has been done for a long time in concretes which results in lighter concrete self-weight, while also reducing costs when producing optimum concretes. While they were widely used as admixtures in concrete, its effect on clay is still need to be defined. A study of the usage of both fly ash and bottom ash on clay could also be made to investigate the changes in its properties to improve the usage of clay in industrial and construction sector.

1.1 Problem Statement

The mixture of fly ash to clay soil could affect the clay in its main properties. This is because, theoretically, the fine particle size of fly ash will fill the void between the clay's particles and may change the composition's density, permeability, workability and also its strength. From the various amount of the mixtures used, there might be at some percentage where the clay product will possess the optimum strength.

When the proper mixture of the admixtures are determined, which gives optimum strength to the harden clay, the mix proportion can be used in the industry as to provide higher service level of clay product. Besides that, natural resources can also be preserved while industrial wastes, which are fly ash and bottom ash, can be recycled instead of being disposed to the nature.

1.2 Aim of study

Since the changes in clay properties with mixtures of fly ash and bottom ash are still not yet well defined, there is a need to study its behavior with different mixture of those materials through lab experiments.