

DESIGN OF DIGITAL SIGNAL PROCESSOR

TEO SIAW HUI

Bachelor of Engineering with Honours (Electronics and Computer Engineering) 2009

UNIVERSITI MALAYSIA SARAWAK

			F
]	BORANG PENGESAI	HAN STATUS TESIS
Judul:		DESIGN OF DIGITA	L SIGNAL PROCESSOR
		SESI PENGAJI	AN: <u>2008/2009</u>
Saya		TEO	SIAW HUI
mengal dengan	ku membenarkan tesis * in 1 syarat-syarat kegunaan sej	i disimpan di Pusat Khi perti berikut:	dmat Maklumat Akademik, Universiti Malaysia Sarawal
1. 2.	tujuan pengajian sahaja.	at Akademik, Universit	i Malaysia Sarawak dibenarkan membuat salinan untu
3. 4. 5.		t Akademik, Universiti antara institusi pengaji	
	SULIT		umat yang berdarjah keselamatan atau kepentingan g termaktub di dalam AKTA RAHSIA RASMI 1972).
	TERHAD	(Mengandungi makl badan di mana penyo	umat TERHAD yang telah ditentukan oleh organisasi/ elidikan dijalankan).
	✓ TIDAK TERHAD		
			Disahkan oleh
_	(TANDATANGAN	PENULIS)	(TANDATANGAN PENYELIA)
Al	amat tetap: 71-L, JALAN	N TABUAN,	
_	93200 KUCHIN	G, SARAWAK.	MS. SHAMSIAH SUHAILI Nama Penyelia

CATATAN

* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

The following Final Year Project report:

Title : DESIGN OF DIGITAL SIGNAL PROCESSOR

Prepared by : Teo Siaw Hui

Matric No. : 15834

Is hereby read and certified by:

Ms. Shamsiah Suhaili Project Supervisor Date

DESIGN OF DIGITAL SIGNAL PROCESSOR

TEO SIAW HUI

Thesis is submitted to Faculty of Engineering, University Malaysia Sarawak in partial fulfillment of the requirements for the Degree of Bachelor of Engineering with Honours (Electronic and Computer Engineering) 2009

ACKNOWLEDGEMENTS

I would like to express the highest gratitude to my supervisor, Miss Shamsiah Suhaili for guiding me throughout the project patiently. Her continual guidance, advises and supports is playing the main role in helping me to complete this thesis.

Besides, I would like to thank all lecturers from Electronic Department, Faculty of Engineering UNIMAS as well especially Dr. Al-Khalid Othman, Dr. Wan Azlan Wan Zainal Abidin, IR. David Bong Boon Liang and Mr. Tay Kai Meng for their selfless helps and consultations toward my project title. Without their previous guidance and constructive comments, some objectives for this project might be stray and incomplete.

Last but not least, I also want to thank my family members for showing their great supports to my study and whoever helps me directly or indirectly in finishing this thesis.

ABSTRAK

Pemprosesan digital signal (DSP) bergantung kepada perwakilan dari signal dengan urutan nombor dan signal pemprosesannya. Prosesor digital signal yang ringkas dapat dibentuk dengan pelbagai blok seperti unit aritmetik logik (ALU), pendarab-acumulator (MAC), dan penganjak lipatan. Oleh sebab itu, projek ini telah dilaksanakan untuk menggabungkan pelbagai blok yang telah dicipta untuk memproses jalur data kepada Bus Sesiri Universal(USB) dengan manfaatnya kurang logik atau kecil daerah di dalam memori. DSP arkitektur yang dicipta telah diterjemahkan ke dalam kod sumber VHDL. Seperti yang dirancangkan, jalur penting untuk setiap blok telah dikurangkan sebanyak mungkin untuk meminimakan kadar penundaan. Pemprosesan digital signal sering memproses data menggunakan aritmetik titik tetap, walaupun terdapat beberapa aplikasi yang tersedia untuk menggunakan aritmetik titik apung yang lebih berkesan, ia tergantung kepada rekacipta tertentu. Fungsi logik menawarkan penyelesaian untuk kiraaan intensif yang ditemukan dalam pemprosesan digital signal. Oleh kerana itu, logic di dalam perisian dapat memberikan peningkatan prestasi pada sistem DSP yang mengurangkan kos sistem. Jadi, alat penghantaran data USB untuk kemudahan pindah data dapat dihasilkan dengan harga yang lebih murah tetapi prestasinya kekal tinggi.

iii

ABSTRACT

Digital signal processing (DSP) is concerned with the representation of the signals by a sequence of numbers and the processing of these signals. A simple digital signal processor could be constructed from blocks like arithmetic logic unit (ALU), multiply-accumulator (MAC), multiplier and shifter. Thus, this project is carried out to combine those blocks and design the processing datapath for Universal Serial Bus with less logic utilization or small area. The architecture of DSP is constructed and translates into VHDL source code. In designing, critical path for each block are reduced as much as possible to minimum the delay. Digital signal processing often process data using fixed-point arithmetic, although some applications are available to use floating point arithmetic which is more powerful depending on the design. Logic function offers a solution for the computationally-intensive found in digital signal processing. Therefore, programmable logic can provide increased DSP system performance at reduced system cost. So, a cheaper price but higher performance USB interface devices could be created for the convenient of data transfer.

LIST OF TABLES

Table		Page
2.1	Comparison of Architecture Characteristics	12
2.2	FLEX 10K Device Family Features	27
2.3	Data Manipulation versus Mathematical Calculation	29
3.1	Arithmetic Logic Unit Functions Table	39
3.2	Two Multiplicand Products Matrix	41

LIST OF FIGURES

Figur	e	Page
2.1	Von Neumann Architecture	8
2.2	CISC Architecture with Microprogrammed Control and Cache	9
2.3	RISC Architecture with Split Instruction Cache and Data Cache	10
2.4	A Typical VLIW Processor and Instruction Format	11
2.5	High-level Block Diagram of Superscalar RISC and CISC	14
2.6	Block Diagram of General VLIW	14
2.7	Typical DSP Architecture	16
2.8	Harvard Architecture (dual memory)	17
2.9	Super Harvard Architecture (dual memory, instruction cache)	19
2.10	Typical DSP Filter Configuration	22
2.11	FIR Digital Filter	25
2.12	FLEX 10K Device Block Diagram	27
3.1	Design Flow Chart	33
3.2	Simple Microprocessor Architecture	34
3.3	DSP Architecture Design	35

3.4	FIFO Architecture	36
3.5	Binary Multiplication	37
3.6	D-Type Flip-Flops that forms Shift Register	38
3.7	ALU Architecture	40
3.8	Multiply-Accumulators	40
3.9	FIR Filter Design form by DFF	42
3.10	FPGA Design Flow	43
4.1	Top Level of PCI Bus Interface Processor	45
4.2	Finite State Diagram of Controller Block	46
4.3	Datapath Hierarchy Down Level	46
4.4	Architecture of designed DSP Datapath	47
4.5	Combination Blocks of DSP Datapath	47
4.6	Top Level of DSP Processor's Datapath Architecture	48
4.7	RTL Viewer of DSP Datapath Architecture	49
4.8	Compilation Flow Summary of DSP Datapath Architecture	49
4.9	FIFO Buffer Top Level Symbol	50
4.10	The RTL Viewer of FIFO Buffer	52
4.11	FIFO Simulation with Binary Inputs	53

4.12	Compilation Flow Summary	54
4.13	8-bits Multiplier Top Level Symbol	54
4.14	The RTL Viewer of 8-bits Multiplier	55
4.15	4 x 4 Multiplier Simulation Waveform	56
4.16	Shift Register Top Level Symbol	56
4.17	RTL Viewer of Shift Register	57
4.18	Shift Register Simulation Waveform	58
4.19	Top Level of ALU Arithmetic Unit	59
4.20	RTL View of ALU Arithmetic Unit	60
4.21	Arithmetic Unit Simulation Waveform	61
4.22	Top Level of ALU Logic Unit	62
4.23	RTL Viewer of ALU Logic Unit	62
4.24	ALU Logic Unit Simulation Waveform	63
4.25	Top Level of Multiplexer	63
4.26	RTL Viewer of ALU Multiplexer	64
4.27	ALU Multiplexer Simulation Waveform	65
4.28	Top Level of ALU	65
4.29	RTL Viewer of ALU	66
4.30	Simulation Waveform of ALU	66

4.31	Top Level of Multiply-Accumulator	67
4.32	RTL Viewer of Multiply-Accumulator	67
4.33	Simulation Waveform of MAC while reset is 0	68
4.34	Simulation Waveform of MAC while reset is 1	68
4.35	Top Level of 16-bits Multiplier	69
4.36	RTL Viewer of 16-bits Multiplier	69
4.37	Simulation Waveform for 16-bits Multiplier	70
4.38	Pin Assignment for Inputs and Outputs	71
4.39	Programming to FPGA	71
4.40	FPGA Board with No Reading	71

TABLE OF CONTENTS

ACKNOWLEDEGEMENT	ii
ABSTRAK	iii
ABSTRACT	iv
LIST OF TABLES	V
LIST OF FIGURES	vi

CHAPTER 1 INTRODUCTION

1.1	Project Background	1
1.2	Project Overview	2
1.3	Project Objectives	3
1.4	Project Scope	4
1.5	Project Outline	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction to the Architecture of Microprocessor		
	2.1.1	Von Neumann Architecture	7
	2.1.2	CISC Scalar Processors	9
	2.1.3	RISC Scalar Processors	9

	2.1.4	VLIW	10
	2.1.5	Architecture Comparison: CISC, RISC, AND VLIW	12
2.2		uction to the Architecture of l Signal Processor	15
	2.2.1	Harvard Architecture	16
	2.2.2	Super Harvard Architecture	17
	2.2.3	Multiply-Accumulates (MACs)	19
		2.2.3.1 Comparison between Fixed Point and Floating Point DSP	20
	2.2.4	Languages for DSPs	21
		2.2.4.1 C versus Assembly	21
	2.2.5	Digital Signal Processing Filter	22
		2.2.5.1 Finite Impulse Response (FIR) Filter	23
2.3		us II Compilation Devices X 10K	25
	2.3.1	Functional of FLEX 10K	26
2.4	Differ	ence between DSPs and Microprocessors	s 28

CHAPTER 3 METHODOLOGY

3.1	Overview of Project Implementation		
	3.1.1	Altera	32

	3.1.2	VHDL	32
3.2	Digita	l Signal Processor Design Flow	33
3.3	Design	n of Simple Microprocessor	34
3.4	Design Archit	n of Digital Signal Processor ecture	34
	3.4.1	FIFO Buffer	35
	3.4.2	4x4 bits Multiplier	37
	3.4.3	Shift Register	37
	3.4.4	Arithmetic Logic Units	38
	3.4.5	Multiply-Accumulator	40
	3.4.6	16-bits Multiplier	41
	3.4.7	FIR Filter	41
3.5	FPGA		42
	3.5.1	LP-2900 CPLD/FPGA Design Experimental Kit	43
CHAPTER 4 R	ESULI	TS, ANALYSIS AND DISCUSSIONS	
4.1	Result	s of Simple Microprocessor	45
4.2	Result	s of designed DSP Processor	46
	4.2.1	Results of FIFO Buffer	50
		4.2.1.1 Waveform Analysis of FIFO	53

	4.2.2	Results of 4x4 Multiplier		54
		4.2.2.1	Waveform Analysis of 4x4 Multiplier	55
	4.2.3	Results	of Shift Register	56
		4.2.3.1	Waveform Analysis of Shift Register	57
4.2.4		Results of ALU		58
		4.2.4.1	Result of ALU Arithmetic Unit	58
		4.2.4.2	Result of ALU Logic Unit	61
		4.2.4.3	Result of Multiplexer	63
		4.2.4.4	Complete ALU Results	65
	4.2.5	Results	of Multiply-Accumulator	67
	4.2.6	16-bits l	Multiplier	69
4.3	FPGA	GA Programming		

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	72
5.2	Recommendation	73
REFERENCES		75

APPENDIX

А	Microprocessor	81
В	DSPArch Main Code	88
С	FIFO BUFFER	90
D	4X4 Multiplier	93
E	Shift Register	94
F	Arithmetic Logic Unit (ALU)	95
G	Multiply Accumulator (MAC)	98
Н	8 x 8 Multiplier	100
Ι	Project Timeline	101
J	FYP I and II Grant Chart	102
K	VHDL Reserved Word, Operators & Attributes	103

CHAPTER 1

INTRODUCTION

1.1 Project Background

The invention of microprocessor has been innovating and impacting the world for the past few decades. From analogue signal processing, Integrated Circuit design has evolved to digital form to support the increasing of great numbers of transistors in a single IC. Applications of electronic devices are deal with various types of signals and multiple sets of data stream, these included mathematical manipulations of digitally represented signals. So, Digital Signal Processing (DSP) is a method introduced to do the signal processing. However, DSP would not operate without DSP Processor. DSP Processor is a microprocessor designed to perform digital signal processing. A Digital Signal Processor is a super-fast chip computer that has been optimized for the detection; processing and generation of the real world signals such as voice, video, music, etc in real time. Most DSP Processor share some common basic features designed to support high-performance and repetitive. Because of DSPs generally provide more parallelism than General

Purpose Processors (GPPs), it have some advantages compare to GPPs like cycle and memory use efficiency, and compiler friendliness to the user.

Therefore, for the better use of DSPs due to the efficiency purposes, DSPs memory architecture shall not be neglected and make it the first priority in the design for the faster processing speed. However with the targeting high speed processor, the crucial design parts would be an efficient data path which is needed to optimise the processor's performance and minimise the time consumed for critical path.

1.2 Project Overview

DSP systems are designed to sample incoming analog signals at fixed time intervals; so it must be fast enough to accurately describe the incoming signal, with enough resolution to keep the noise level as low as possible. In addition to doing this, it must convert the signal into a long list of numbers that represent the amplitude (e.g., voltage) of the signal at these points. The accuracy of this approximation determines the system's performance and the sampling rate determines the dynamic range that can be handling by the micro-controller.

A micro-controller requires an additional component such as data converters like the analog to digital (A/D) and digital to analog (D/A) converters to be able to interface to analog signals. A/D and D/A converters are electronic circuits that convert analog signals to digital signals or vice versa. Commonly, their representative sampling frequency range from 5.5125 kHz to 48 kHz and a 16-bit resolution or higher are used.

As digital signal processing becomes ubiquitous in both personal computers and embedded applications, designers must decide how best to implement signalprocessing functions in their systems and understand the key characteristics of the DSP processor design. However, there are limited possibilities, therefore in most cases designers have the choice to implement DSP on dedicated DSP chips or general-purpose microprocessors depend on the implementation purpose.

1.3 Project Objectives

Today, there is a wide range of products incorporating DSPs. So, digital signal processing has now become a core study of Electronic Engineering Department of University Malaysia Sarawak, especially for the real-time signal processing. With the ready of both hardware and software tools in the faculty, this project is providing a clear objectives and conveniences to undergraduate. The major objectives of this project are to:

- **4** To study and analysis digital signal processor architecture.
- **4** To understand the characteristics of DSP processor design.
- To design a simple Digital Signal Processor based on the characteristic of DSP with VHDL.

1.4 Project Scope

Indeed digital signal processing is a very wide field of study. For implementation of DSP design, there are a lot of architectures need to be considered and study. Applications of development tools are also to be determined. For this digital signal processor project, the scope would cover more on the study of Altera Quartus II even though Matlab softwares might be used for designing and simulink purposes. Besides, VHDL code would be studies and used for the writing of the designing language. Once the design has done, the written language would be implemented on the FPGA for the final outcome.

1.5 **Project Outlines**

Chapter 1 is basically the introduction to the whole project about, starting from the project overview of digital signal processing to it application. With the clear objectives guided, it is significantly contributes to the development of the project progress. DSP designation and its development tools are briefly introduced as well, and the project scope is determined. Overall, this chapter is divided into 5 parts which are the project background, project objectives, project scope and project outlines.

Chapter 2 is the most important and crucial chapter for the whole project which is literature review. This chapter is divided into 3 main parts. First part

discussed about typical microprocessor architecture and its application, while the second part discussed about digital signal processing architecture and its functional blocks briefly. The third part mentioned about development tools, software and hardware used, and a little bit regarding the designing methods and algorithm used.

Chapter 3 introduces the methodology of the design in digital signal processor by using hardware tools. It illuminates all the methods and techniques that used to carry out this project. All progress steps will be clearly shown and explain through this chapter.

Chapter 4 discusses all results that obtained from the software and hardware throughout this project. Top level of each block of data path is obtained as binary input applied. Synthesis and waveform generated from every single block of data path is also observed. Designing through two methods which are block diagram and VHDL code are also discusses. The responses obtained are compared and analyses are made based on the results.

Chapter 5 concludes the whole project implementation. The whole processes are analyzed whether it meets the project objectives or not. Problems that encountered during the whole process is stated and discussed in this chapter, as well as some constructive recommendations for future improvement and enhancement.

CHAPTER 2

LITERATURE REVIEW

Basically, the analyse of digital signal processor and study of the key characteristic of DSP processor designation, could be split into three majors areas which are microprocessor architectures, digital signal processor architectures and instruction set used for both microprocessors and DSPs. DSPs design could be non-real-time signal processing or real-time signal processing [5]. Real-time signal processing is a processing system that must keep pace with some external event while non-real-time processing has no such timing constraint, both has pro and con depending where it apply. To understand it, some architectures of DSP and instruction sets can be referred and implement it on DSP development tools for analysis purposes. In this simple DSP processor design, non-real-time processing design will be first considered as timing constraint problems can be neglected in the application. Differentiation between architecture of microprocessors and DSP processor architecture design.

2.1 Introduction to the Architecture of Microprocessor

A microprocessor is a digital electronic component with multiple transistors on a single semiconductor integrated circuit (IC). Typically, microprocessors serve as a central processing unit (CPU) in a computer system. But before this, electronic CPUs were typically made from bulky discrete switching devices that containing the equivalent of only a few transistors. By the integration of a few very large-scale integrated circuit packages, which containing millions of discrete transistors onto one circuit, the cost of processor power was greatly reduced and made the possible of microcomputer.

The evolution of microprocessors has been known to follow Moore's Law when it comes to steadily increasing performance over the years. This law suggests that the complexity of an integrated circuit, with respect to minimum component cost, doubles up every 18 months. This dictum has generally proven true since the early 1970s. From their humble beginnings as the drivers for calculators, the continued increase in power has led to the dominance of microprocessors over every other form of computer; every system from the largest mainframes to the smallest handheld computers now uses a microprocessor at its core.

2.1.1 Von Neumann Architecture

Figure 2.1 shows the seemingly simple design of traditional microprocessor, which is commonly known as a Von Neumann Architecture,