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Abstract 

Impacts of multiresistant bacteria such as Staphylococcus aureus and Escherichia coli have initiated active research 

of new effective drugs. Herein, new p-tolyldiazenyl azo derivatives 1-13 were successfully synthesized through a 

well-established diazo coupling reaction of p-toluidine with substituted phenol at ortho, meta and para positions. 

The series was obtained in a moderate yield of 58% – 79% and structural elucidation was done using FTIR and 

NMR spectroscopies. The antioxidant ability of the compounds 1-13 evaluated by 2,2’-diphenyl-1-picrylhydrazyl 

(DPPH) and ferric reducing antioxidant power (FRAP) assay outlined a potential activity with IC50 of 26 – 188 ppm 

and 12.29 – 182.73 mg/mL Trolox equivalent, respectively. Moreover, the antibacterial activity of the compounds 

assessed via the Kirby-Bauer disc diffusion method against S.aureus and E.coli show moderate to good inhibition 

zone of 7.04±0.50 mm to 17.46±0.50 mm as compared to standard ampicillin (19.29±0.33 mm). Determination of 

minimum inhibitory concentration (MIC) through a turbidimetric method towards similar bacteria strains, gave a 

MIC values of 84 – 178 ppm (S.aureus) and 112 – 194 ppm (E.coli) with compound 3 (m-F) (84.37 ppm) and 9 (m-

Br) (112.40 ppm) are better than ampicillin which the MIC were 97.70 ppm and 112.92 ppm for S.aureus and E.coli 

respectively. The molecular docking analysis towards MurE and DHFR enzymes reveals that the hydrogen bonding, 

hydrophobic and electrostatic interactions with amino acid in the vicinity are the major contributions to the 

activities. This study is important in discovering a potentially new candidate for combating emerging infections. 
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Introduction 

Antibiotics were considered as most astonishing 

medical discovery in the 20th century [1]. 

However, the abuse and imprudent of antibiotics 

usage in various sectors have contributed to the 

natural evolution of gene mutation that facilitates 

antimicrobial resistance [2,3]. The rapid 

emergence of multidrug-resistant bacteria has 

been a serious life-threatening issue for global 

public health due to the misuse of antibiotics [4,5] 

with a projection of 10 million deaths per year by 

2050 [6]. Other than the adverse effect on the 

healthcare sector, acid-producing bacteria such as 

S. aureus and E. coli play their parts in initiating 

20% of corrosion globally, which mostly 

influences the oil and gas industry, water 

pipelines and clinical settings [7]. It was 

estimated to be approximately an annual loss of 

USD 2.5 trillion to the world economy due to the 

microbially influenced corrosion sparked by 

organic acid secreted from microbes’ metabolism 

process [8,9].  

 

Due to that, the investment and research and 

development of new synthetic drugs against 

antimicrobial resistance have been intensified 

whereby a nitrogen-containing molecule 

specifically azo moiety is being seen as a 

potential scaffold by the researcher [10]. This is 

owing to its cost-effectiveness [11], simplicity 

[12] and reproducibility of the synthetic 

procedure [13] in addition to well-established 

pharmaceutical applications [14]. The 

incorporation of azo moiety as the nitrogen-

containing group into a new compound acts as a 

bridge linkage and enhances the synergic effect 
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[15,16]. Its unique properties such as flexibility 

[17], easy uptake by substrate [18], push-pull 

characteristic [19] and thermal stability [20] have 

given the moiety major attention. Azo 

compounds are traditionally used as dyes in 

textile industries [21], biomedical [22] and food 

industries [14]. Balsalazide, sulfasalazine, and 

olsalazine are examples of established drugs for 

colorectal diseases such as inflammatory bowel 

diseases [23,24] and colon cancer [25] treatments. 

These azo-bonded drugs’ ability to act as a 

hypoxia-responsive linker was resulting from 

their proficiency in reducing and cleaving the 

reductive species such as azoreductase [26] that 

would be able to deliver the drug to the targeted 

organ at the lower gastrointestinal tract [27]. 

Hence, azo as part of  hypoxia-responsive agent 

and glutathione (GSH-responsive agent) often 

used in hypoxia imaging and tumor targeting 

treatment [28]. 

 

Azo moieties can be synthesized from the 

diazotization of the amine group and coupled 

with phenol making the p-toluidine a suitable 

precursor for the development of new azo 

compounds. Over the years, p-toluidine has been 

used in the manufacturing of various 

pharmaceutical drug synthesis, pesticides and 

dyes such as p-toluidine-m-sulfonic acid and m-

nitro-p-toluidine [29]. A recent study by Obasuyi 

and Iyekowa (2019) also utilized p-toluidine in a 

synthesis of a Schiff base compound with 

antibacterial activity. Despite that, the studies on 

the p-toluidine azophenol derivatives for 

biological properties specifically for both 

antibacterial and antioxidant activities are still 

limited and seldomly reported. In this context, the 

azo moiety is expected to contribute to 

antibacterial properties as it can be protonated 

under acidic conditions to interact with the 

phosphate group of the bacterial cell wall leading 

to an interruption of cell membrane formation 

[31]. Whereas, the presence of a hydroxyl group 

able to donate the hydrogen atom and form a 

chemical bonding [32,33] apart from extended π 

electron conjugation and tautomeric form of azo-

hydrazo structure [34] is potentially attributed to 

antioxidant activity. The synergistic approach by 

combining different functional groups in a single 

structure is envisaged to enhance the biological 

potential via the ability to target multiple active 

sites and different mechanisms of pathogens [35]. 

 

Herein, this study aims to incorporate azo 

moieties from the diazo coupling reaction of p-

toluidine with phenol derivatives as a promising 

alternative for multidrug-resistant bacteria and 

antioxidant properties due to their synergistic 

effect [15,16].  The antioxidant capacity of 

compounds 1-13 was screened through DPPH and 

FRAP assay while the antibacterial activities 

were evaluated using Kirby Bauer disc diffusion 

and turbidimetric kinetic methods. Furthermore, 

in silico molecular docking analysis towards 

dihydrofolate reductase (DHFR) and UDP-N-

acetylmuramyl-tripeptide synthetase (MurE) 

enzymes defined the interactions occurring 

attributed to the eminent antibacterial activities of 

synthesized compounds.  

 

Materials and Methods 

Measurement and reagents 

The solvents and reagents used were obtained 

from Merck and employed without further 

purification. The melting point of the compounds 

was determined using an open tube capillary 

(Stuart SMP3). The Thermo ScientificTM FLASH 

2000 analyzers are used for the CHN analysis. 

The presence of functional groups was identified 

via an FTIR spectra analyzer (Perkin Elmer 

Thermoscientific Smart Omni Transmission 

Nicolet 1605 Spectrophotometer). An NMR 

spectrometer (JOEL ECA 500) was used to 

record 1H (500 MHz) and 13C (125 MHz) NMR 

spectra in DMSO- d6 and chemical shifts were 

reported in δ ppm.  A UV-visible 

spectrophotometer (Shimadzu UV-1900i) was 

used to perform optical measurements.  

 

Synthesis of p-tolyldiazenyl azo derivatives (1-

13) 

The p-toluidine (2 mmol) was dissolved in the 

mixture of water (10 mL) and HCl (6 mL, 3M) 

before being cooled to a low temperature (0-5 °C) 

under ice bath conditions. Dissolved sodium 

nitrite (10 mL) was added to the mixture to form 

diazonium salt which was closely monitored by 

potassium iodide paper for 10-15 minutes until 

the KI paper turned blue. Phenol derivative (2 

mmol) was subsequently added to the diazonium 

salt under alkaline conditions. The pH of the 

solution was adjusted to pH 8-9 to form a stable 

product. The reaction was under continuous 

stirring for the following 15 minutes and closely 

monitored by thin-layer chromatography (TLC) 

[36]. A few drops of 50% HCl were added to 

induce the precipitation of the product. Filtration 

was then performed to obtain a crude solid 

compound with further purification via 

recrystallisation using methanol: water (ratio 

1:15).  

 

Antioxidant evaluation 

DPPH free radical scavenging assay 

Freshly prepared 2,2-diphenyl-2-pycrylhydrazine 

(DPPH) (0.00394g) was dissolved in methanol 

(100 mL) prior to being added into synthesized 

compounds at various concentrations (200 ppm, 

100 ppm, 50 ppm, 25 ppm, 12.5 ppm and 6.25 

ppm). The solution mixture was incubated in the 
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dark for 0.5 hour before taking the absorbance 

reading using the UV-VIS spectrophotometer at 

517 nm. Ascorbic acid was employed as standard 

drug while methanol was used as negative 

control. The scavenging activity (%) of the 

compounds was calculated using the following 

formula: 

 

Scavenging activity % =
(AC −  At)

At

 x 100% 

 

Where,   

AC = Absorbance reading of negative control 

after 30 minutes 

At = Absorbance reading of tested compound 

after 30 minutes 

 

A graph with scavenging activity (%) versus 

concentration (ppm) was plotted to determine the 

scavenging activity value (IC50) of the 

synthesized compounds. 

 

Ferric reducing antioxidant power (FRAP) 

assay 

A fresh FRAP reagent comprising of 0.1M of 

acetate buffer at pH 3.6, 10 mM of 2,4,6-

tripyridylstriazine (TPTZ) in 40 mM of HCl and 

20 mM of iron (III) chloride (FeCl3) with a ratio 

of 10:1:1 was prepared. The FRAP reagent (1.9 

mL) was added to 100 µL of sample at 2 ppm in a 

vial. Ascorbic acid was employed as standard 

while methanol was used as a negative control. 

The aqueous mixture was incubated in the dark 

before the absorbance being measured using a 

UV-VIS spectrophotometer at 593 nm. The 

calibration curve of Trolox was used as a 

standard [37]. The reducing power of the 

compounds was derived from the standard graph 

and expressed as the equivalent amount of 

milligram of Trolox equivalents milligram per 

milliliter. 

 
Antibacterial activity  

Kirby-Bauer disc diffusion method 

The antibacterial activity of the compounds was 

screened with the Kirby-Bauer disc diffusion 

method [38]. Mueller-Hinton broth was used to 

grow Gram-positive bacteria (Staphylococcus 

Aureus, ATCC 25923) and Gram-negative 

bacteria (Escherichia coli, ATCC 25922) for 18 

hours at 37°C and 120 rpm. McFarland turbidity 

(1x108 CFU/mL) of inoculum was measured as 

standard before being spread on agar [39]. A 

sterile cotton bud was used to spread the 

inoculum containing bacteria (100 µL) and later 

were left to dry. Each disk comprising the 

impregnated compound at a concentration of 100 

ppm (10 µL) was pressed softly to ensure full 

contact with the agar surface. The bacterial plates 

were then incubated for 24 hours. The zone of 

inhibition was measured, and the mean value and 

standard deviation were calculated. The 

procedure was done in triplicates to improve the 

accuracy and reliability of the result. The result 

was compared to ampicillin as positive control in 

this experiment while DMSO was employed as a 

negative control.  

 

Minimum inhibitory concentration (MIC) 

The bacteriostatic potential of the compounds 

was tested via the turbidimetric kinetic method 

by employing gram-positive bacteria 

(Staphylococcus Aureus, ATCC 25923) and gram-

negative bacteria (Escherichia coli, ATCC 25922) 

[36]. The bacteria were cultured in Luria-Bertani 

broth for 24 hours under optimum conditions at 

120 rpm. The Luria-Bertani broth (10 mL) was 

added with different concentrations of 

compounds (50 ppm, 80 ppm and 100 ppm) and 

0.2 mL of inoculums. The mixture was shaken for 

6 hours by using an incubator. Then, 1 mL of 

aliquots of each concentration was pipetted out 

into a cuvette at every interval of 1 hour to 

monitor the transmittance value (T). The 

transmittance reading was taken using a UV-

visible spectrophotometer Shimadzu (UV-1900i) 

at a wavelength of 560 nm. The values obtained 

were substituted into the Equation 1 and 2 

according to the bacteria strain to the 

determination of In Nt which indicates the 

number of colonies forming unit (CFU) mL-1 

against time. 

 

S. aureus : In Nt = 27.4 – 10.3T   (Eq. 1) 

E. coli   : In Nt = 27.1 – 8.56T   (Eq. 2) 

  

Next, the values obtained were subjected to 

Equation 3 to obtain a specific growth rate of 

bacteria when µ=0. The graph on specific growth 

rate versus concentration was plotted and 

extrapolated to identify the minimum inhibitory 

concentration (MIC).  

 

µ = (In Nt - In N0 )/(t – t0)             (Eq. 3) 

 

Molecular docking 

The crystal structure of UDP-N-acetylmuramyl-

tripeptide synthetase (MurE) from E.coli 

crystalized with co-crystal ligand N-[2-(2,5-

dioxopyrrolidin-1-yl)ethyl]-3-methylbenzamide 

(PDB ID: 7B6M, Ligand ID: SZN) and 

Exogenous Dihydrofolate Reductase (DHFR) 

from S. aureus complexed with Trimethoprim 

(PDB ID: 2W9S, Ligand ID: TOP) were 

downloaded from the Protein Data Bank (RCSB-

PDB website). Maestro 2023-3 (version: 

13.7.125) interface of Schrodinger was used for 

all the steps involved in Molecular Docking 

studies. The proteins were prepared following 
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Maestro's Protein Preparation module [40] by 

removing the EDO ligand and chain A away in 

7B6M. Whereas, in 2W9S, ligands NDP and 

GOL, chains B, C, D and E were removed. In 

addition, the water molecules in both proteins 

that are not critical and out of the binding site 

were also removed to ensure binding scores 

accuracy [41,42]. While generating a receptor 

grid, the SZN and TOP ligands were picked as 

the binding sites for the respective protein with 

the cubic grid box size of 24 Å and receptor grid 

centers (x, y, z) set at [6.619, –0.014, 40.248] and 

[–37.031, 5.202, 0.727], respectively, as 

determined using the Receptor Grid Generation 

module. The active site key residues involved in 

grid generation included VAL184, SER202, 

LEU189, THR115, PHE204, LEU207, VAL245, 

TRP249, HOH779, HIS232, and CYS234 for the 

SZN-binding protein and ASN18, SER49, 

THR46, VAL6, ILE5, ALA7, ASP27, LEU20, 

PHE92, TYR98, and ILE31 for the TOP-binding 

protein. The synthesized compounds (ligand) 

were prepared using the LigPrep module of 

Schrodinger with default settings. The Glide 

module of the Schrodinger suit was then used to 

dock the prepared ligands to the binding sites 

with default settings of Standard Precision (SP) 

mode [43]. The docking scores obtained for the 

ligands were compared with the docking scores 

of the cocrystal and ampicillin (standard 

reference). The 2D interaction diagrams of 

docked complexes were visualized using the 

Discovery Studio 2024 Visualizer. 

 

In silico ADMET pharmacokinetic prediction 

An online tool, pkCSM, was employed to 

increase the accuracy and efficiency of 

identifying new drugs. The analysis involves a 

SMILES string of the compound structure to 

predict the absorption (A), distribution (D), 

metabolism (M), excretion (E) and toxicity (T) of 

the compounds. The deep comprehension of the 

compound through the pkCSM is able to reduce 

the deviations between clinical and laboratory 

tests and less adverse effects through the 

employment of computational technology during 

the drug development test [44]. 

 

Results and Discussion 

Chemistry 

The p-toluidine as starting material was dissolved 

in hydrochloric acid and distilled water to react 

with sodium nitrite to obtain a series of p-

tolyldiazenyl azo derivatives 1-13 under ice bath 

condition (0–5 oC) for 15 minutes to form 

diazonium benzene chloride salt. The formation 

was confirmed by using potassium iodide paper 

which turned purple [45]. The synthesis was done 

under low temperatures due to the highly reactive 

and unstable condition of the diazonium salt 

which can easily decompose [46–48]. The p-

toluidine was used as the starting material due to 

the presence of methyl group at the para-position 

that acts as an electron donating group and would 

be able to increase the basicity of nitrogen atoms 

that expedite the protonation forming interaction 

with bacteria [49,50]. The phenol derivatives as 

coupling reagents in sodium hydroxide were 

added to the priorly prepared arenediazonium salt 

intermediate. The reaction progress was 

constantly checked through TLC before being 

acidified with a few drops of concentrated 

hydrochloric acid to obtain a moderate yield of 

52% –78% of targeted compounds 1–13 after 

recrystallisation. The synthesis route is illustrated 

as shown in Scheme 1.1  

 
Compound R1 R2 R3 R4 R5 Compound R1 R2 R3 R4 R5 

1 H H OH H H 8 H Br OH H H 

2 H F OH H H 9 Br H OH H H 

3 F H OH H H 10 H Br H H OH 

4 H F H H OH 11 H OCH3 OH H H 

5 H Cl OH H H 12 OCH3 H OH H H 

6 Cl H OH H H 13 H OCH3 H H OH 

7 H Cl H H OH       

Scheme 1.1 Synthesis route of p-tolyldiazenyl azo derivatives 1-13
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The structural elucidation of the synthesized 

compounds was done by using FTIR and NMR 

spectroscopic analyses. In the  FTIR spectra, 

strong absorption bands were observed at 1474-

1502 cm–1 indicating the presence of the N=N 

bond [51] which confirmed the azo formation. 

The presence of a peak at frequencies 3021 – 

3261 cm–1 was attributed to the νOH, while the 

C=C skeleton of aromatic rings corresponded to 

the absorption band at 1520–1605 cm–1 [52,53]. 

In the 1H NMR, one singlet peak was observed at 

most downfield of 10.25 – 11.07 ppm 

corresponding to the O-H, while another one 

singlet peak was observed at the most upfield 

attributed to the methyl (-CH3) peak. The 

presence of hydroxyl proton was assigned to the 

most downfield peak due to the formation of 

hydrogen bonds between the OH group with 

electron-rich acceptors that deplete the electron 

density and result in highly deshielding nuclei 

[54]. The deshielding phenomenon was created 

by the external magnetic field that flows along 

with the direction of the induced magnetic field 

during the π-electrons rotation in a clockwise 

direction leading to an increase in the effective 

magnetic field experienced by the nuclei [55]. 

Despite that, the hydroxyl group on compound 8 

(o-Br) was not detected due to the labile proton 

property resulting from the rapid exchange of 

respective protons [56]. Meanwhile, the multiple 

peaks detected from the range of 6.45 ppm to 

7.92 ppm were assigned to protons from the 

aromatic ring. On the other hand, the 13C NMR 

analysis showed the presence of a C-O peak at 

most downfield regions of 150.25 – 162.34 ppm 

except for compounds 2, 3 and 4 with fluoro-

substituted compounds had a C-F peak at the 

most downfield instead. This finding is due to the 

more electronegativity of fluorine atoms as 

compared to oxygen, resulting in a highly 

deshielding effect [57,58]. The peaks at 99.83 – 

141.45 ppm were attributed to carbon in the 

aromatic ring while the peak observed at the most 

upfield region corresponded to the methyl group.  

 

Antioxidant evaluation  

Given the structural composition of compounds 

1-13, the presence of the phenolic group is highly 

associated with antioxidant activity due to its 

ability to donate a hydrogen atom to reduce the 

free radical species [59].  

 

DPPH free radical scavenging assay 

DPPH is a colorimetric method [60] whereby the 

antioxidant ability of the compound is indicated 

by the decolorization of the purple color of the 

DPPH solution. The decolorization to pale yellow 

occurred due to the cability of the compound to 

transfer hydrogen atoms to form hydrazine 

derivatives [61] via hydrogen atom transfer 

(HAT) and single atom transfer (SET) 

mechanisms [62]. In this study, the compounds 

were dissolved and prepared at different 

concentrations (6.25 ppm, 12.50 ppm, 25 ppm, 50 

ppm, 100 ppm and 200 ppm) before being added 

to the DPPH solution. The absorbance reading of 

the mixture was measured at 517 nm wavelength 

after 30 minutes of incubation in the dark. 

Ascorbic acid was used as a standard for result 

comparison while methanol was employed as 

negative control. The half-maximal inhibitory 

concentration (IC50) effectively reduced by the 

synthesized compounds is tabulated in Table 1. 

The IC50 can be interpreted as an effective 

concentration of the compound to reduce the 

initial concentration of DPPH by 50% [63].  

 

Based on the analysis, compounds 1-13 showed a 

wide range of antioxidant properties with IC50 of 

25.5 ppm to 187.8 ppm, which mainly 

contributed by the presence of a phenolic 

functional group and extended π-electron 

conjugated species from the compound structure 

[64,65]. Comparatively, ortho-substituted 

compounds have shown higher antioxidant 

activity across the series. The result is aligned 

with a previous study which reported that ortho-

substituted compounds have higher antioxidant 

ability than para- and meta-substituted 

compounds [54]. Significantly, compound 11 (o-

OCH3) showed the highest antioxidant potential 

with IC50 of 25.5 ppm. This result is possibly due 

to the presence of the methoxy group at the ortho 

position, which lowers the ionization potential, 

resulting in an easier dissociation of hydrogen 

atoms from the OH group [66]. Ascorbic acid 

showed higher antioxidant activity than all the 

compounds tested, as the structure of the 

compound has more than one hydroxyl group 

[67]. 

 

Ferric reducing antioxidant power (FRAP) 

assay 

Other than the DPPH assay, the colorimetric 

FRAP assay was also conducted by monitoring 

the color change of the solution from pale yellow 

(ferri-tripyridyl-triazine [Fe(III)TPTZ] complex) 

to blue (ferro-tripyridyl-triazine [Fe(II)TPTZ]) 

measure at 593 nm [68–70]. This method relies 

on the ability of the antioxidant to reduce the 

Fe(III) complex to the Fe(II) complex via a single 

electron transfer (SET) mechanism in an acidic 

medium to maintain the solubility of the complex 

[71]. The results obtained were tabulated as 

shown in Table 2.  
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Table 1. Effective inhibition concentration IC50 of compound 1-13 

Compound Value IC50 

(ppm) 

Compound Value IC50 

(ppm) 

1 (H) 44.5 8 (o-Br) 74.5 

2 (o-F) 39.0 9 (m-Br) >200 

3 (m-F) 42.2 10 (p-Br) >200 

4 (p-F) 187.8 11 (o-OCH3) 25.5 

5 (o-Cl) 29.1 12 (m-OCH3) >200 

6 (m-Cl) 31.2 13 (p-OCH3) >200 

7 (p-Cl) 35.6 Ascorbic Acid 17.8 

The results from FRAP analysis showed that 

compounds 1 (H), 2 (o-F), 8 (o-Br), 11 (o-OCH3), 

12 (m-OCH3) and 13 (p-OCH3) have 

outperformed the antioxidant activity of the 

standard ascorbic acid. In general, compounds 

with ortho- or para- of methoxy compound 

showed excellent activity due to their resonance 

and inductive effects [72]. The exceptional 

antioxidant activity of the methoxy series could 

be due to the ability of the methoxy group to 

reduce the O-H bond dissociation enthalpy which 

consequently reduces the stability of phenoxy 

radicals of the compound [73]. Other than that, 

the electron-donating behavior of the methoxy 

increased the electronic effect [74], electron 

cloud density [54] and HOMO energy that 

contributed to higher antioxidant activity [75,76]. 

On the other hand, the lower antioxidant 

properties of the halogenated compound might be 

due to the higher electron transfer enthalpy value 

and proton affinity [77].  

 

Antibacterial activity 

Kirby-Bauer disk diffusion method 

Kirby-Bauer disk diffusion was carried out to 

screen the antibacterial property of the compound 

by employing the McFarland turbidity standard to 

standardize the number of bacteria in the broth 

suspension before it (100 µL) was spread evenly 

on the Mueller-Hinton agar plates [78,79]. 

Compounds were tested against Gram-positive 

bacteria (Staphylococcus aureus) and Gram-

negative bacteria (Escherichia coli) with 

ampicillin chosen as positive control while 

DMSO alternately was employed as the negative 

control. The zone of inhibition was measured 

after 24 hours of incubation and the results 

obtained were tabulated as in Table 3.  

 

Generally, all compounds tested against S. aureus 

exhibited satisfying antibacterial activity except 

for compound 11 (o-OCH3). The inactivity of 11 

(o-OCH3) might be due to steric hindrance 

caused by the presence of the hydroxyl group 

next to the methoxy [100,101]. Whereas, the 

potential showed by the most halogenated 

substituted compounds owing to improved 

lipophilicity given by the ability of the compound 

to withdraw electron density away from the 

conjugated system [82], which consequently 

enhance binding ability towards the targeted 

molecular binding site hence increasing the 

antibacterial activity [83]. The overall results 

were also found to be more susceptible to S. 

aureus compared to E. coli which was believed to 

be due to the difference in the cell wall 

composition of the two strains. In gram-negative 

bacteria, the presence of lipopolysaccharides in 

the cell membrane protects the membrane from 

chemical attacks [84]. The complex outer 

membrane of E. coli consists of oligosaccharides, 

proteins and lipids that are capable of repelling 

both hydrophobic and hydrophilic molecules 

which improves the resistance of gram-negative 

bacteria [85]. On the other hand, S. aureus, a 

gram-positive bacteria composed of a simpler cell 

wall structure with a lack of outer cell 

membranes comprised of just cytoplasmic lipid 

membrane and layers of cross-linked 

peptidoglycan [86,87] is more fragile to 

penetration. The excellent antibacterial activity is 

owing to the existence of a hydroxyl group that 

effectively formed hydrogen bonding with the 

lipid bilayers, causing the rupture of bacteria cell 

walls leading to disruption of the arrangement 

and permeability mechanism of microsomes, 

lysosomes, and bacterial walls [88,89].  

 

Minimum inhibitory concentration (MIC) 

The bacteriostatic potential of compounds 1-13 

was further examined with a turbidimetric kinetic 

method to determine the minimum inhibitory 

concentration (MIC). MIC is denoted as the 

lowest concentration of a compound that is 

capable of suppressing the growth of bacteria 

tested under controlled conditions [90]. In this 

study, the bacteriostatic potential of the 

compounds was evaluated at 50 ppm, 80 ppm and 

100 ppm against the same bacteria strains of S. 

aureus and E. coli, whereby the growth of 
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bacterial rate was monitored through UV-VIS 

spectrophotometer for every interval hour. The 

transmittance values obtained were then 

calculated for the number of colonies forming 

(CFU/mL) and the specific growth rate of 

bacteria was tabulated as in the supplementary 

material file. Thereafter, MIC values were 

determined by extrapolating the graph of specific 

growth rate versus concentration as in shown 

S76-77 with all the values summarized in Table 

4.

 

Table 2. Trolox equivalent of compound 1-13 

Compound FRAP  

(mg Trolox Eq mg/ml) 

Compound FRAP  

(mg Trolox Eq mg/ml) 

1 (H) 71.66 8 (o-Br) 77.86 

2 (o-F) 76.52 9 (m-Br) 14.11 

3 (m-F) 15.69 10 (p-Br) 65.57 

4 (p-F) 12.29 11 (o-OCH3) 106.32 

5 (o-Cl) 57.42 12 (m-OCH3) 87.66 

6 (m-Cl) 41.85 13 (p-OCH3) 182.73 

7 (p-Cl) 27.49 Ascorbic Acid 70.43 

 

Table 3. Zone of inhibition of compound 1-13 

Compound Diameter of Inhibition 

Zone (mm) 

Compound Diameter of Inhibition 

Zone (mm) 

E. coli S. aureus  E. coli S. aureus 

1 (H) 6.21±0.26 15.25±0.34 9 (m-Br) 7.04±0.50 18.75±0.34 

2 (o-F) 6.79±0.26 14.92±0.67 10 (p-Br) 6.50±0.00 6.60±0.33 

3 (m-F) 6.63±0.22 17.46±0.50 11 (o-OCH3) 6.17±0.24 - 

4 (p-F) 6.46±0.54 6.33±0.25 12 (m-OCH3) 6.25±0.34 10.83±0.75 

5 (o-Cl) 6.29±0.26 16.71±0.26 13 (p-OCH3) 6.33±0.25 6.21±0.26 

6 (m-Cl) 6.50±0.00 15.96±0.14 Ampicillin 18.21±0.40 19.29±0.33 

7 (p-Cl) 6.50±0.00 15.79±0.26 DMSO - - 

8 (o-Br) 6.25±0.26 6.67±0.44    

Note: (-) = no activity; o = ortho, m = meta, p = para

 

Table 4. Minimum inhibitory concentration of 1-13 

Compound Concentration 

 (ppm) 

Compound Concentration 

 (ppm) 

E. coli S. aureus  E. coli S. aureus 

1 (H) >200.00 143.99 9 (m-Br) 112.40 103.95 

2 (o-F) 193.68 158.84 10 (p-Br) >200.00 >200.00 

3 (m-F) 171.19 84.37 11 (o-OCH3) >200.00 >200.00 

4 (p-F) 191.55 >200.00 12 (m-OCH3) >200.00 169.45 

5 (o-Cl) >200.00 110.36 13 (p-OCH3) >200.00 >200.00 

6 (m-Cl) 182.79 104.55 Ampicillin 112.92 95.70 

7 (p-Cl) >200.00 162.95 DMSO - - 

8 (o-Br) >200.00 178.20    

Note: (-) = no activity; o = ortho, m = meta, p = para
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The result tabulated showed a similar trend as in 

Kirby-Bauer screening with halogen-bearing 

compounds 2–10 having better inhibitory action 

than methoxylated compounds 11–13 remarkably 

the meta-substituted toward S. aureus. This result 

has suggested that the meta-substituted electron 

withdrawing group improve the binding affinity 

of compounds towards the bacteria [91], resulting 

from the electron deficiency and higher 

hydrophobicity of compounds [74] that enhance 

the bacteriostatic potential. In addition, the 

halogen atom elevates the binding linearity of the 

compound via non-covalent halogen bond 

interactions providing better membrane 

permeabilization activity and catabolic stability 

[92–94]. However, it is worth noting that the 

presence of different halogenated substituents on 

the compounds plays an important role in 

determining the conformations of molecules 

binding to the active site of bacteria in 

correspondence to steric, lipophilic, binding 

ability and cell membrane solubilities [95]. 

Notably, compound 3 (m-F) showed the lowest 

MIC (84.37 ppm) indicating the highest 

antibacterial potential against gram-positive 

bacteria instead of compound 9 (m-Br) despite 

having the largest inhibition zone of 18.75±0.34 

mm in the disc diffusion screening earlier. The 

contradicting result could be due to the smaller 

fluoro atom granting a bigger inductive effect led 

to a larger dipole moment and strengthening of 

scavenging activity [96,97]. The larger the dipole 

moment, the stronger the antibacterial potential 

[98]. Nevertheless, compound 9 (m-Br) did 

exhibit significant antibacterial activity against 

both bacterial strains with S. aureus (103.95 ppm) 

and E. coli (112.40 ppm), which is comparable to 

ampicillin for E. coli. The promising antibacterial 

activity of bromine substituted compound could 

be due to its molecular size and polarization 

ability leading to the formation of van der Waals 

interactions with the DNA of microbes [99].  

 

Molecular docking  

The compounds with minimum inhibitory 

concentration (MIC) below 200 ppm were further 

subjected to molecular docking analysis in order 

to identify the interactions attributed to the 

activities [100]. By using Schrodinger Maestro 

software (version 13.7.125), UDP-N-

acetylmuramyl-tripeptide synthetase (MurE) 

(PDB ID: 7B6M) and Exogenous Dihydrofolate 

Reductase (DHFR) (PDB ID: 2W9S) enzymes 

were chosen to represent E. coli and S.aureus 

respectively whereby the binding affinity 

obtained were compared to standard ampicillin 

and cocrystal ligands. The relevance of choosing 

the MurE enzyme was due to its substantial 

function in the synthesis of cell walls [101] while 

DHFR plays a role as NADPH-dependent 

catalyzed which is significant in the biosynthesis 

of various key metabolites [102]. The binding 

sites were then identified by selecting SZN and 

TOP co-crystals in MurE and DHFR proteins, 

respectively, based on the Schrodinger Receptor 

Grid Generation module. This parameter 

validation is important to set the docking [103] 

occurring in the stipulated binding pockets as in 

Figure 1. The binding scores obtained are 

tabulated in Table 5.  

 

Based on the in vitro MIC data, compounds 2 (o-

F), 3 (m-F), 4 (p-F), 6 (m-Cl) and 9 (m-Br) were 

docked to the MurE enzyme and gave a binding 

affinity in the range of –7.24 to –8.32 kcal/mol 

that is higher than ampicillin (–6.92 kcal/mol). 

The presence of hydrogen bonding, van der 

Waals, π–π stacked, π–π T-shaped and π–alkyl 

interactions are the key contributions to the 

binding scores [104]. The slightly higher binding 

energies of the compounds than ampicillin was 

attributed to the more amino acid residues such as 

GLY246, ILE239 and VAL94, which are similar 

to those interacting with the SZN cocrystal. 

Apart, compound 4 (p-F) with the highest binding 

affinity (–8.32 kcal/mol) portrayed a similar 

water hydrogen bonding interaction with 

HOH779 residue as in the SZN cocrystal. While 

the 2D interactions diagram can be retrieved from 

the S78 (Supplementary file), Figure 2 depicted 

the 2D interactions of compound 4 (p-F) as a 

representative, SZN cocrystal and ampicillin.  

 

Towards DHFR protein, all compounds except 

compounds 4 (p-F), 10 (p-Br), 11 (o-OCH3) and 

13 (p-OCH3) were docked whereby binding 

scores of –6.75 to –8.01 kcal/mol were obtained. 

Contrary to the previous, ampicillin possessed a 

commendable binding affinity of –7.48 kcal/mol 

which is slightly higher than compounds 1 (H) 

and 9 (m-Br) scoring –6.75 kcal/mol and–7.44 

kcal/mol respectively (Figure 3). This result is 

potentially due to the multiple hydrogen bonding 

shown by ampicillin with GLY93 and TYR98, 

whereas the compounds only showed one 

hydrogen bonding from the OH of phenol with 

ASN18 residue. An increases in the hydrogen 

bonding interaction significantly improves the 

binding affinity by increasing the solvation 

capacity of the compound in the biological 

system [105,106]. In addition, all docked 

compounds also displayed van der Waals and 

various hydrophobic interactions including alkyl, 

π–alkyl and others (see Supplementary File S79) 

with amino acid residues in the vicinity.
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Figure 1. (a) Docked ligand in the binding pocket of MurE and (b) Docked ligand in the binding pocket 

of DHFR 

 
Figure 2. 2D diagram of (a) Compounds 4 (p-F) (b) ampicillin and (f) Cocrystal SZN docked to MurE 

protein visualized by Discovery Studio 2024 

 

Table 5. Binding affinity for compounds with MIC <200 ppm 

Compound 

Binding affinity (Kcal/mol) 

E. coli 

(MurE) 

S. aureus 

(DPHR) 

1 (H) / -6.75 

2 (o-F) -7.62 -8.01 

3 (m-F) -7.68 -7.80 

4 (p-F) -8.32 / 

5 (o-Cl) / -7.93 

6 (m-Cl) -7.24 -7.55 

7 (p-Cl) / -7.77 

8 (o-Br) / -7.98 

9 (m-Br) -7.35 -7.44 

10 (p-Br) / / 

11 (o-OCH3) / / 

12 (m-OCH3) / -7.89 

13 (p-OCH3) / / 

Ampicillin -6.92 -7.48 

Cocrystal -8.00 -8.78 

   Note: (/) - not applicable 



 

Malays. J. Anal. Sci. Volume 29 Number 3 (2025): 1333 

10 

 

 

In silico ADMET pharmacokinetic prediction 

ADMET prediction was utilized as screening 

projection for the absorption (A), distribution 

(D), metabolism (M), excretion (E) and toxicity 

(T) properties by using in silico pkCSM [107]. 

The result obtained is tabulated in S80 

(Supplementary file). In absorption analysis, all  

compounds have shown moderate water 

solubility ranging from –3.974 log mol/L to –

5.034 log mol/L and excellent Caco2 

permeability with values higher than 0.9 log Papp 

in 10–6 cm/s except for compound 8 (o-Br) 0.544 

log Papp in 10–6 cm/s [108]. Most compounds 

have shown more than 90% intestinal absorption 

and excellent skin permeability of a Log Kp more 

than –2.5 [109]. In relation to the distribution 

aspect, the compounds have shown moderate 

blood-brain barrier permeability and moderate 

volume distribution [44] while high central 

nervous system permeability of more than –2.0 

log PS [108]. In terms of the metabolism 

screening, the compounds were able to inhibit 

three cytochromes of CYP1A2, CYP2C19 and 

CYP2C9 [110–112] that obstruct the elimination 

of drugs from the body [113] while CYP2D6 and 

CYP3A4 were not inhibited. Pertaining to the 

excretion, the compounds were not able to be 

excreted by the renal organic cation transporter 2 

(OCT2) [114] and were observed to have slow 

total clearance of compounds from the body. 

Lastly, most of the compounds found to be 

positive for AMES toxicity which can be 

potentially mutagenic except for compound 8 (o-

Br) [115]. However, the compounds were 

expected to have a maximum tolerated dose 

amount of 0.422 to 1.046 log mg/kg/day in 

humans. In conjunction with that, the compounds 

are expected to be safe for humans as they were 

not active as hERG I inhibitors, hERG II 

inhibitors, hepatotoxicity and skin sensitization 

[116] with a Minnow toxicity score of lower than 

log 05 mM which is considered as non-toxic 

[117] except for compound 1 (H) is expected to 

have skin sensitization.  

 

Figure 3. 2D diagram of (a) Compounds 1 (H) (b) 9 (m-Br) (c) ampicillin and (f) Cocrystal TOP docked 

to DPHR protein visualized by Discovery Studio 2024 

Conclusion 

A series of p-toluidine azo derivatives bearing 

halogen and methoxy substituent 1-13 were 

successfully synthesized and evaluated with their 

biological potential. Compound 11 (o-OCH3) has 

shown the most promising antioxidant activity 
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when tested against DPPH assay with an IC50 

value of 25.5 ppm while compound 13 has shown 

the highest activity when tested against FRAP 

assay with 182.73 mg/ml Trolox equivalent. 

Whereas, in the antibacterial study,  the 

compounds have shown better inhibition activity 

against gram-positive bacteria (S. aureus) than 

gram-negative bacteria (E. coli) potentially due to 

the difference in the bacterial cell wall 

composition. A significant inhibitory action was 

shown by compound 3 (m-F), which possessed 

the lowest MIC value probably due to the small 

fluoro atom providing a larger inductive effect 

that led to the enhancement of activity. Notably, 

the other meta-substituted compounds have also 

shown promising inhibitory activities specifically 

toward S. aureus. Structural activity relationship 

through molecular docking of compounds with 

activities indicated that hydrogen bonding and 

various hydrophobic interactions contribute to 

increasing the binding affinity led to activities 

enhancement. Last but not least, the 

pharmacokinetics analysis on compounds 1-13 

portrayed acceptable results with some dosage 

control needed for certain compounds.  
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