Faculty of Engineering

ggz”

COMPUTERIZE REMOTE CONTROL CAR

Mohd Azudin Bin Mohd Arif

Bachelor of Engineering with Honours
(Electronics and Computer Engineering)
2004



Universiti Malaysia Sarawak

BORANG PENYERAHAN PROJEK TAHUN AKHIR

Judul: Computerize Remote Control Car

SESI PENGAJIAN: 2000-2004

Saya MOHD AZUDIN BIN MOHD ARIF

mengaku membenarkan tesis ini disimpan di Pusat Perkhidmatan Akademik. Universiti Malaysia

Sarawak dengan syarat-syarat kegunaan seperti berikut:

1. Hakmilik kertas projek ini adalah di bawah nama penulis melainkan penulisan sebagai projek bersama
dan dibiayai oleh UNIMAS, hakmiliknya adalah kepunyaan UNIMAS,

2. Naskah salinan di dalam bentuk kertas atau mikro hanya boleh dibuat dengan kebenaran bertulis daripada
penulis.

3. Pusat Khidmat Maklumat Akademik, UNIMAS dibenarkan membuat salinan untuk pengajian mereka.

4. Kenas projek hanya boleh diterbitkan dengan kebenaran penulis. Bayaran royalti adalah mengikut kadar

yang dipersetujui kelak.

¥ )

* Saya membenarkan/tidalemembenarkan-perpustakaan membuat salinan kertas projek ini sebagai bahan
pertukaran di antara institusi pengajian tinggi.
6. ** Sila tandakan { +/)

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan
Malaysia seperti ynag termaktub di dalam AKTA RAHSIA RASMI 1972).

TERHAD (Mengandungi maklumat TERHAD vang telah ditentukan oleh
organisasi/badan di mana penyelidikan dijalankan).

| TIDAK TERHAD

Disahkan oleh:
rfl f” 7 ]

7 =
i<

[V
(171\:;:\TANGAN PENULIS) (TANDA_T_{&NQAN. PENYELIA)
ALAMAT TETAP: EN. HUSHAIRI BIN ZEN
No. 5 Jalan 6 Taman Bukit Kuchai,
47100 Puchong,

Selangor Darul Ehsan. e Kaayoln)

Tarikh: 4/ </ 2004 Takhs, /S LSO

CATATAN * Potong yang tidak berkenaan.
e Jika Kertas Projek ini SULIT atau TERHAD, sila lampirkan surat daripada
pihak berkuasa/organisasi berkenaan dengan menyertakan sekali tempoh
kertas projek. Ini perlu dikelaskan sebagai SULIT atau TERHAD.



Approval Page

The project report attached here to, entitled “Computerize Remote Control Car”
prepared and submitted by MOHD AZUDIN BIN MOHD ARIF in partial
fulfilment of the requirement for Bachelor of Engineering with Honours in

Electronics and Computer Engineering is hereby read and approved by:

o,
]

Mr. Hushairi Bin Zen,
Supervisor

April 2004



DlI0E -0 %E5(
Pusat Khldmal Makiumat Akademin
UNIVERSITI MALAYSIA SARAWAK
4300 Koia Samarahan

COMPUTERIZE REMOTE CONTROL CAR

P.KHIDMAT MAKLUMAT AKADEMIK
UNIMAS

T

MOHD AZUDIN BIN MOHD ARIF

This project is submitted in partial fulfilment of
the requirements for the degree of Bachelor of Engineering with Honours
( Electronics and Computer Engineering )

Faculty of Engineering
UNIVERSITI MALAYSIA SARAWAK
2004



To dad, mom, Abang Lan, Kak Lin and Ain



ACKNOWLEDGEMENT

The author would like to express appreciation to Mr. Hushairi Zen as a project
first supervisor and Mr. Thaleha Masri as a project second supervisor for all the
guidences and advices to complete this project.

Thank you very much to all electronics technicians especially to Mr. Wan Abu
Bakar, Mr. Wan Mohd Hamizah, Mr. Zakaria, Mr. Nawawi, Mr. Awangku Amirol and
Mr. Mahathir that helping me in the laboratory.

To beloved dad and mom, thank you very much for giving motivation and full
moral support to me from the beginning and sacrifice a lot of money to make this project
complete.

[ also want to thank my friends, Sharuzi, Syafik, Hishamuddin, Zuhairi and

Asma for moral support.

il



ABSTRACT

This project involved in designing a new remote control car system that is
interfaced by a microcomputer. Improvements to the design were made in sensing object
infront of the car and giving feedback the sensing result to the computer. A
microcomputer and a remote control car were the main materials used to develop this
system and the other devices were a PIC16F84 microcontroller, an ultrasonic proximity
detector and a pair of remote control transmitter and receiver. This project integrated
already available devices rather than design the devices from scratch. Process to develop
this system involved disassembling, developing, assembling and testing. There were 14
tasks from the process have completed to developed the system. As a result, by using
computer a user can controlled the car movements and directions and watched the car
sensor result operation. The remote control car system that was controlled by a computer
had been achieved. The car capable to sense object infront of it. The car can gave

feedback to the computer.

iv



ABSTRAK

Projek ini melibatkan merekabentuk sebuah sistem kereta kawalan jauh yang
diantaramuka menggunakan mikrokomputer. Pembaharuan telah dibuat dengan
menambah kebolehén mengesan objek di hadapan kereta dan memberi maklumbalas
kepada computer hasil pengesanan tersebut. Sebuah mikrokomputer dan sebuah kereta
kawalan jauh telah digunakan sebagai alatan utama untuk membina system ini dan
peranti yang lain adalah sebuah microcontroller PIC16F84, pengesan ultrasonic dan
sepasang penghantar dan penerima isyarat kawalan jauh. Projek ini hanya
mencantumkan peranti yang telah sedia ada dan tidak merekabentuk daripada asal.
Proses membina system ini ialah menceraikan, membina, mencantumkan dan menguji.
Terdapat 14 tugas telah disiapkan daripada proses tersebut untuk menyiapkan system ini.
Hasilnya, pengguna boleh mengawal gerakan dan arah kerata serta melihat hasil operasi
pengesan. Kereta kawalan jauh yang dikawal menggunakan computer telah berjaya
dibuat. Kereta tersebut mampu mengesan objek di hadapannya. Kereta itu juga mampu

memberi maklumbalas kepada computer.



Pusat Khidmat Makiumat Akademfk
UNIVERSITTI MALAYSIA SARAWAK
94300 Kota Samarahan

TABLE OF CONTENTS

CONTENTS

TITLE

DEDICATION
ACKNOWLEDGEMENT
ABSTRACT

ABSTRAK

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

CHAPTER 1: INTRODUCTION
1.1 Objectives
1.2 Project Overview

1.3 Project Scope

CHAPTER 2: LITERATURE REVIEW
2.1 Previous Project Revision
2.1.1 Surveillance Car
2.1.2 RoboCar
2.1.3 RC Car Construction and Interface

22 Related Information

Vi

PAGES

i

i

X
X1

X1l

(%]



225

2.2.6

Computer Program

Parallel Port Interfacing

Remote Control Transmitter
Signals Transmitter and Receiver
Microcontroller

Sensor Circuit

CHAPTER 3: METHODOLOGY

3.1

3.2

3.3

Divisions and Sections

< B

.12

Division |, Computer

Division 2, Remote Control Car

Disassembling

3.2.1

322

3.2.3

Task 1| : A remote control transmitter was

disassembled

Task 2 : A remote control transmitter was

disassembled

Task 3 : A remote control transmitter was

disassembled

Developing

33.1

3.32

333

334

3039

Task 4 : Computer Program was developed

Task 5 : Remote Control Transmitter was

configured

Task 6 : Data Receiver was configured

Task 7 : Power Supply was developed

Task 8 : Microcontroller was setup

vii

L5

15

18

23

23

23

24

24

25

29

26

26

27

29

33

35



3.3.6 Task 9 : Proximity Detector was developed
3.3.7 Task 10 : Data Transmitter was configured
34  Assembling
3.4.1 Task 11: Division | was assembled
3.42 Task 12 : Division 2 was assembled
3.5  Testing
3.5.1 Task 13 : Operation Mode 1 was tested

3.5.2 Task 14 : Operation Mode 2 was tested

CHAPTER 4: RESULT AND DISCUSSION
4.1 Task 13 : Operation Mode | Test

4.2  Task 14 : Operation Mode 2 Test

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion

5.2 Recommendations

REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

APPENDIX E

viil

45

45

45

46

47

47

49

51

51

87

89

94



15.
16.
17.
18.

19.

LIST OF FIGURES

Figure 1.1 : Mode 1, Movement and Direction Control
Operation

Figure 1.2 : Mode 2, Object detection operation

Figure 2.1 : The Surveillance Car modified remote controller

Figure 2.2 : The Surveillance Car with wireless camera

Figure 2.3 : The Surveillance Car program GUI

Figure 2.4 : The computer, the transmitter and the RoboCar car

Figure 2.5 : The RoboCar program GUI

Figure 2.6 : The bottom of the RC car

Figure 2.7 : Program MFCExample GUI

. Figure 2.8 : DB25 Socket

. Figure 2.9 : Program ParPortExample GUI

. Figure 2.10 : Program ParPortExample schematic diagram
. Figure 2.11 : Remote controller

. Figure 2.12 : PIC 16F84A pins configuration

Figure 2.13 : Simple organ circuit diagram

Figure 2.14 : Proximity Detector operation

Figure 3.1 : Divisions and Sections of The Project
Figure 4.1 : Program GUI

Figure 4.2 : Interface Circuit 1 Schematic Diagram

. Figure 4.3 : Interface Circuit 2 schematic diagram

X

PAGES

2

12

12

15

17

17

19

29

32

34



21. Figure 4.4 :
22. Figure 4.5 :
23. Figure 4.6 :
24, Figure 4.7 :

25, Figure 4.8 :

Operation of Data Receiver
Microcontroller Schematic Diagram
Operation of Microcontroller
Interface Circuit 3 Schematic Diagram

Operation Data Transmitter

36

35

37

39

40



LIST OF TABLES

TABLES

. Table 2.1 : Pins Configuration of DB25 Socket
. Table 2.2 : Data Port Bits
. Table 2.3 : Status Port Bits

. Table 2.4 : Control Port Bits

. Table 4.1 : Result of Operation Mode |

. Table 4.10 : Result of Operation Mode 2

xi

PAGES

10

11

L1

11

49



LIST F ABBREVIATIONS

b : Base of a bipolar junction transistor label

Bat : Battery label

c : Collector of a bipolar junction transistor label
C . Capacitor label

D : Decimal numbering system

e : Emitter of a bipolar junction transistor label

EEPROM : Electricle Erasable Programble Read Only memory

GUI : Graphica User Interface

Gnd : Ground terminal

Hz : Hertz unit

IC : Integrated circuit label

ICSP : In-Circuit Serial Programming
k : kilo unit prefix

LED : Light Emitting Diode

m : mili unit prefix

M : Mega unit prefix

MFC : Microsoft Foundation Class

n : nano unit prefix

OST : Oscillator Start-up Timer

p : pico unit prefix

P . Pins of microcontroller PIC 16F84 label

xii



Pin : Pins of Parallel Port / DB25 female socket labrl

Pnt . Points of Data Transmitter label

POR : Power-on Reset

Pt . Points of Signal Transmitter label
PWRT : Power-up Timer

Q : Transistor label

R : Resistor label

RAM : Random Access Memory

S : Sources of Signal Transmitter label

Se : Sources of Data Receiver label

Sre . Sources of Data Transmitter label

URX : Ultrasonic Receiver

UTx : Ultrasonic Transmitter

Vv : Voltage Unit

+ve : Positive terminal of Power Supply label
-ve : Negative terminal of Power Supply label
+Vee : Positive terminal of Power Supply label
~Vee : Negative terminal of Power Supply label
1 : micro unit prefix

xiii



Chapter 1

INTRODUCTION

Remote control technology has been widely used in many technical areas and the
effectiveness has been proven. The simplest implementation of this technology has been
applied to toys such as remote control car.

The computer controls external devices through its ports such as Parallel Port.
Controlling external devices through any port is called port interfacing. To display
output, most programs and applications use GUI (Graphical User Interface) to
accommodate Microsoft Windows environment system and it is user-friendly too. Port
interfacing and GUI can be created using most programming language.

This project is to combine computer and remote control car system. A program
with GUI will be developed to maneuver the remote control car. The remote control
transmitter is modified and connected to the parallel port. This car can sense object in

front of it and give feedback to the computer.

1.1 OBJECTIVES
The objective of this project can be divided into three main tasks that are :
1) To interface remote control car with the computer.
2) To develop a remote control car that is capable to sense object in front it.
3) To build a remote control car that can give feedback to the remote controller

( computer ).



1.2  PROJECT OVERVIEW

Computerize remote control car is a combination of computer system and remote
control system. This new system communicates in two ways communication where
computer act as the car controller and the car provide information to the computer. In
this case, the control signals are the car movement and directions whereas the
information are the car object detection status.

There are 2 operation modes of the project. Each mode differs in terms of the

source and the destination and also input and output.

a) Mode | : Movement and Direction Control.
In this mode, by using computer, user control the movement and the direction of the

car as describe in Figure | below.

Remats cfontro! Movemert / Direction

transcelver

User Computer =
Instruction Radio .
‘ infertace crcut and 7 ) YWave 3|

Figure 1.1 : Mode 1, Movement and direction control operation.

b) Mode 2 : Object detection
In this mode, the car detect object in front of it and inform the computer as

describe in Figure 1.2 below.



Compter
C] interface circutt and ((C Wave ((C Remote commw
— {

transceiver

car

)))

Figure 1.2 : Mode 2, Object detection operation.

1.3 PROJECT SCOPE
This project designs the system rather than the devices. The equipments that were used to
developed this project are a computer, a Microsoft Visual C++ program, two remote control
car, a PIC16F84 microcontroller, an ultrasonic sensor and typical electronic components
such ICs( Integrated Circuit ), capacitors and resistors. The project development
methodologies are disassembling specific devices, developing each section, assembling all

sections and testing the system.



Chapter 2

LITERATURE REVIEW

This topic was concentrate on two major points that are revised projects that has
been developed by other people and the other one was to expose all devices that will be

used later.

4.1 Previous Project Revision

For all these projects below, the remote control car was modified from any toy
product that was available in market. The remote controller was modified and connected
to parallel port. The car moving in six directions that are forward, back, forward right,

forward left, back right and back left. Each project had their additional characteristics.

4.1.1 Surveillance Car

This RC car was equipped with wireless camera. It was a X10 technologies
product, Its’ receiver was connected to the USB port. The software to display the video
was downloaded from the site http://www.x10.com/. The program was developed using
Microsoft Visual C++ 6.0 Figure 2.1 shows the remote controller that was modified and
interfaced Parallel Port. Figure 2.2 shows the remote control car that has been modified
for this project. Figure 2.3 shows the program GUI that is the display part of the

program[1].


http://www.x

Figure 2.1 : The Surveillance Car Figure 2.2 : The Surveillance Car

modified remote controller1] with wireless camera( 1]

Figure 2.3 : The Surveillance Car program GUI[1]

4.12 RoboCar

The car acts as a robot. Two Nikko remote control cars at 40MHz and 27MHz
were used. Equipped with magnetic boom arm and able to pick up metallic object. It had
artificial mouth made by an array of LED to talk. The system can record macros (a
group of actions) that can be played back. Example, move the car from point A to point
B and pick up an object then place the car at point A. In the future, we can do the same
actions as describe in this example. The program was developed using Visual Basic 6.
Figure 2.4 below shows the car and the notebook computer that used to control the car.

Figure 2.5 shows the GUI of the program[2].



Figure 2.4 : The computer, the receiver Figure 2.5 ; The RoboCar

and the RoboCar car[2] program GUI[2]

4.1.3 RC Car Construction and Interface

The interface circuit between remote controller and parallel port was composed
of Sv relay. A camera was mounted to the hood of the truck. The car power supply was a
12 Volt Battery, 4.5 Amp Hour Gel-Cell. It will run the camera and transmitter for 21
hours and recharge fully in about an hour. Figure 2.6 shows the car receiver at. the

bottom of the car{3].

Figure 2.6 : The bottom of the RC car[3]



4.2 Related Information

4.2.1 Computer Program

Computer Software or Program is a component of computer system that makes
the computer a multipurpose machine that can be applied in many areas. Computer
hardware is quite complicated to manipulate and must strictly follows manufacture
specification.. In contrast with hardware, software is quite easy, fast and flexible to
design and manipulate it according to user need. A Software or a program is a list of
instructions that was written by a programmer. A programmer can make the program
that written by him to interact both with user and machine or ecither one. Examples, a
program that interacts with user is GUI program whereas a program that interact with

hardware is Parallel Port interface.

a) GUI
GUI ( Graphics User Interface ) program is a program that was developed in
Windows OS (Operating System) environment. GUI program display is in graphic-
based and a mouse has been frequently used rather than keyboard to control it.
Microsoft has standardized Windows window and there are several components such
as button, dialog box, slider, status bar and others that work together to operate the
program. Most of the windows operating system functions have been created using
C++ programming language and one of the best programming language to create a

program in windows-based is Microsoft Visual C++,



b)

c)

d)

Microsoft Visual C++ 6.0
Microsoft Visual C++ 6.0 is a type of C++ compiler and a part of Microsoft Visual
Studio. Microsoft Visual Studio has provided most development tools to create any
GUI program. Beside that, this compiler work closely with MFC classes that create
all the parameters and functions of all windows components.
MFC
MFC ( Microsoft Foundation Class ) is a library collection of classes to create GUI
program in standard Windows application. For windows programming beginner is
advisable to use AppWizard facilities to develop GUI program.
AppWizard

AppWizard is a method to create a GUI program without doing it from scratch,
where Visual C++ compiler creates basic structures of the program based on MFC
classes. By AppWizard, the programmer still has to write the desired application
source code but not to type the entire source codes and there are few steps to create
the program and to modify it.
Steps to create a program :
i)  Select £ile at menu bar and select New at File pull down menu.
ii) Select MFCAppWizard (exe), insert project name under Project name: field

and click OK button.

i) Select Single document, click to uncheck Document/View architecture

support? checkbox and click Einish button.



As an example, Figure 2.7 shows a GUI that was created using AppWizard.

Appendix A shows the full source code of this program.

Figure 2.7 : Program MFCExample GUI

4.2.2 Parallel Port Interfacing
Computer has several ports to communicate with external peripherals. Methods

to interface each port are different. Parallel Port is a type of computer port.

a) Parallel Port
The term parallel refers to the data that is transmitted through this port. This port
transmits 1 byte at a time. It is also capable to receive signals in and sends signals
out. Fig. 2.8 shows the Parallel Port socket that is called DB25 socket. Table 2.2

shows pins assignment of the DB235 socket.

e o e
=LA P L L b

S .
C-R-N-N-R-S-0-N-N-5-X-E-¥-

(8] o
000000000000
b

BT DOWO N WG

Figure 2.8 : DB25 Socket[4]



Table 2.1 : Pins Configuration of DB23 Socket

PIN | SIGNAL | PIN [ SIGNAL
1 | nStrobe 14 | Auto Feed
2 | Data0 15 | nError
3 | Datal 16 | ninit
4 | Data2 17 | nSelect In
5 | Datal 18 | Ground
6 |Data4d 19 | Ground
7 | Data$5 20 | Ground
8 | Data6 21 | Ground
9 |Data7 22 | Ground
10 | nAck 23 | Ground
11 | Busy 24 | Ground
12 | Paper End | 25 | Ground
13 | Select

Parallel port was build by combination of 3 buffers that are Data, Status and
Control ports. Each butfer has their address, signal direction data that will be read by
microprocessor.

1) Data Port :
Address : 378H
Direction : Out.

Data :

10



Table 2.2 : Data Port Bits

6|3l a] 3 |2 1 0
D6 | D5 | D4 | D3| D2|Dl1|DO
2) Status Port :
Address : 379H
Direction : In
Data :
Table 2.3 : Status Port Bits
6 5 R 3 2 1 0
nAck | Paper End | Select | Error | - - |-
3) Control Port:
Address : 37aH
Direction : Out
Data :
Table 2.4 : Control Port Bits
A R 3 2 1 0
- | - | - |IRQ| nSelectIn | nlnit | Auto | nStrobe

Feed

11




[nstructions to access any computer port :
1) Input data:

result = _inp( 0x0379 );
2) Output data :

_outp( 0x0378, data );

As an example, Figures 2.9 shows a GUI that controls a simple circuit that

shown in Figures 2.10.

Figure 2.10 : Program ParPortExample schematic diagram

12



The Program file name is ParPortExample.exe and Appendix shows the full
source code of this program. When the button Check was pressed the program any of
read Status port, the Signal In checkbox was checked because the Status port
received a High state external signal. +5V is a High signal for Parallel Port and Pin
12 is a Pin of Status Port. When the button Send was pressed, the LED was
illuminated because the program was sending number | to Data Port, which means
to make Pin 2 in High State. These are the important parts of the program according
to the file name where it is belong to :

i)  File : ParPortExampleDlg.h

These are variables used.

LINE
18 Int Signat;
19 Int Statusin;
LINE

24 CButton btnCheck;

25 CButton binSend;

ii)  File : ParPortExampleDlg.cpp

This is additional header file :
LINE
8 #include "conio.n”
These are controller for button and checkbox :

LINE

79 DDX_Control(pDX, IDC_CHECK, btnCheck);

80 DDX_Control(pDX, IDC_SEND, btnSend);

13




These are additional functions and handlers :

LINE

179
180
181
182
183
184
185
186
187
188

189

191
192
193
194

195

197
198
199
200
201
202
203
204
205

206

void CParPortExampleDig::OnSignalin()

{
/I TODO: Add your control notification handler code here
Sigral = _inp( 0x0379 );
Statusln = Signal & 32;
ifl Statusin == 32)
btnCheck SetCheck(1):
}

void CParPortExampleDlg::OnCheck()
{

// TODO: Add your control notification handler code here

void CParPortExampleDlg::OnSend()
{
/{ TODO: Add your control notification handler code here

_outp( 0x0378, 1 );

void CParPortExampleDlg::OnCancel()

{
/i TODO: Add extra cleanup here
_outp{ 0x0378, 0 );

CDialog:0OnCancel();

14



mn

4.2.3 Remote Control Transmitter

424

This transmitter was the remote controller and its’ task was to control car

direction. This device was taken from a remote controller of a car toy.

Steering

_/,Common:_’ﬂ'

=

. Common 2

-

" -Right

" Backward —_
/ 'f . n /

/ / O A0
Left f alw ll_m :‘
Common 1 A b P
i I IO

Wi

Figure 2.11 : Remote controller{3]

Figure 2.11 above, for the remote controller explanation. There for
significant point that are Left, Right, Backward and Forward. To interface this
device four lines must be connected to all these point. High voltage at that point

will indicate the car direction. Other parts of this device remain the same.

Signals Transmitter and Receiver

These transmitter and receiver were to transmit and receive information signals.

A pair of remote control transmitter and receiver of remote control car can be used for

this communication system.

15



4.2.5 Microcontroller :

Microcontroller is a type of processor that integrates varies kind of digital
circuits in a single IC. Microcontroller has its internal ROM and RAM.

PIC16F84A microcontroller is belonging to PICI6CXXX family[5]. It is the
most popular of all PIC microcontroller. This Microcontroller is a RISC (Reduce
Instruction Set Computer) type system. Another advantage of this Microcontroller is it
can be program by PIC BASIC compiler which is quite similar to high-level language
rather than assembly language. This microcontroller features[6] :

i) 1024 Flash EEPROM program memory.

i) 14 bit wide instruction.

iii) 64 bytes data EEPROM.

iv) 68 bytes RAM.

v) 8 bit wide data bytes.

vi) 20 MHz clock input.

vii) 200 ns instruction cycle.

viii) 15 special function register.

1x) 8 level stack.

X) 4 interrupt sources.

Xi) Sleep Mode and 1| Watchdog Timer.

xii)  POR ( Power-on Reset ), PWRT ( Power-up Timer ) and OST (Oscillator Start-
up Timer).

xiii)  [CSP ( In-Circuit Serial Programming ).

xiv) 35 single word instruction.

16



Pin Configuration :

T
rRA2[] 1 18 JRA1
RA3[] 2 17 QRAO
RA4TOCKI[] 3 16 [JOSC1/CLKIN

WIRO4 A 15 [JOSCICLKOUT

vss[s5 & 14[VvDD
RBOANT[] & g 13 [JRB7

rRBIO 7 12 [ RE6

rRB2[ 8 11 (RBS

RB3[ 9 10 [JRB4

Figure 2.12 : PIC 16F84A pins configuration[6]

As an example, Figure 2.13 shows a simple organ circuit. The input was 8 push-

button connected to Port B. The output was a speaker a speaker connected to Port A.

1
4.'?11%4.71:;1.7}1%4.7k$1.7k£1.?k$4.7k§4.7k
P

1ok
4 18 B 55,51
7 35{s2
3 —55{53
T g 5554
s =

10uf E 10 1!:-)-55
I|@—||——t? E 1 0036
12 aods7
13 55dss

5
15 18 | =

= =

s L

Figure 2.13 : Simple organ schematic diagram[5]

17




Source Code :

LINE

19
20

21

SOURCE

buzzer var PORTA.0
notes var word[0]
key var byte

key_pressed var byte

notes[1] = 262 : notes(2] = 294 : notes[3] = 330 : notes{4] = 349

notes[5] = 392 : notes[6] = 440 : notes[7] = 494 : notes[8] = 524

TRISB = %11111111
TRISA=0

loop :
IF PORTB <> 255 THEN
key = ~PORTB
key_pressed = NCB key
FREQOUT buzzer, 5, notes[key_pressed)]
ENDIF

GOTO LOOP

END

4.2.6 Sensor Circuit

The tasks of sensor circuit are to detect any object in front of the car and tell the

result to the computer. To carry out these tasks, proximity detector is the best solution.

18




a)

b)

Proximity Detector

Proximity detector is an electronic transducer that is use to detect any object that
is placed near to it. This device operation principle:
i)  Device sends a signal in a waveform to a point near to it.
ii)  Any object that being hit by the signal will reflect the signal back to the device.
i) Device will detect the signal and indicate there is an object near to it.

To achieve this operation principle, this device must be build by a pair of

transmitter and receiver of certain type of wave. Light, lasers, infrared and ultrasonic

are common waves that are use by this device as a signal. Figure 2.14 shows the

\

Tramtter Receiver

operation of Proximity Detector.

Figure 2.14 : Proximity Detector operation

Ultrasonic Proximity Detector

Ultrasonic Proximity Detector uses a high frequency of sound wave as a signal.
The highest human voice frequency is 5 kHz and the highest stereo audio frequency
is 15 kHz but ultrasonic signal has a higher frequency than both frequencies such as
40kHz.

19



¢)

This is an observation of an ultrasonic module of Application Module

DT35 that is developed by L.J. ELECTRONICS[7].

Ultrasonic Module:

This module can be divided into 3 sections:

1)

i)

i)

Transmitter :

The transmitter, UTX consists of an oscillator that generates a 40 kHz sound
wave. To switch on the transmitter, Port PB6 must set to high (+5v).

Receiver :

The receiver, URX is a circuit that had been designed to detect a 40 kHz sound
wave, If it detects a 40 kHz ultrasonic signal, a TTL level square wave is
produced at the output PB7. When no signal is detected, URX will be at Logic
| (+5v).

Gain controller:

Gain controller is use to control the sensitivity of the receiver. This
controller makes the receiver to detect only an object that produces a stronger
reflection within a specific range. To do that, the GAIN controller can be turn
down and up. To use the ultrasonic transmitter and receiver as a proximity
detector, switch on the transmitter to generate a pulse of ultrasound and then
monitor URX (PB7) for a set period. If a 40 kHz waveform ids detected during

this period, an alarm can be generated.

20



As an example of a program to run an Ultrasonic Module as a Proximity
Detector[8]. When an object is placed directly above the Ultrasonic Unit, all of the

Port 2 monitor LEDs were illuminated.

LINE SOURCE CODE COMMENTS

{ ORG 0200H ; Defines the start address for

2 , object code as 0080:02004

3 UMODEREG EQU 086H : Define address of Mode

4 . Register

5 UPORTICTL EQU 088H ; Defines address of Port

B8 ; Control Register

7 UPORT1 EQU 080H ; Defines address of Port 1

8 UPORT2 EQU 092H ; Defines address of Port 2

9 MOV AL, 40H ; Configures Port 1, bit 6 ( P16 )
10 OUT UPORTICTL, AL ;as an output and bit 7 { P17 )
1 ; as an input

12 MOV AL, 03H : Configures Port 2, as all

13 OUT UMODEREG, AL ; outputs

14 MOV AL, 40H ; Outputs a logic “1" on P16

15 OUT UPORT1, AL : ( UTX) to switch on Ultrasound
16 DETECT: IN AL, UPORT1 ; Tests P17 ( URX ) for Ultrasound
17 TEST AL, 80H : Received

18 JZ ALARM

19 MOV AL, 00H ; No Ultrasound detected so

20 OUT UPORT2, AL , output 004 at Port 2

21 JMP DETECT 1 Jump back to check for

22 ; Ultrasound again

23 ALARM: MOV AL, OFFH ; Ultrasound detected so

21


http:de\ed.ed

24 OUT UPORTZ, AL ; output 00y at Port 2
25 JMP DETECT : Jump back to check for
26 : Ultrasound again

22




Chapter 3

METHODOLOGY

3.1  DIVISIONS AND SECTIONS

This project was divided into 2 divisions and 6 sections as describe in Figure 3.1

below. This arrangement was made according to physical aspect of all the devices where

they were suppose to be attached logically.

Section | Section 2

Remote
Control
Transmitter

Computer

Program Section 3

Data Receiver

Division 1 : Computer

Section 4 Section 5

Microcontroller

Proximity

Section 6 Detector

Data
Transmitter

Division 2 : Remote Control Car

Figure 3.1 : Divisions and Sections Block Diagram

3.1.1 Division I, Computer :

1) Section | : Computer Program

2) Section 2 : Remote Control Transmitter



3) Section 3 : Data Receiver
3.1.2 Division 2, Remote Control Car :

1) Section 4 : Microcontroller

2) Section 5 : Proximity Detector

3) Section 6 ; Data Transmitter

3.2 DISASSEMBLING

This duty involves disassembled already made devices to form the system of the project.

3.2.1 Task 1: A remote control transmitter was disassembled

A remote control transmitter of Wonder Arm model remote control car toy from
Toy House Company was taken out from the casing. This remote controller is the
controller for the car that was used in this project. This devive was renamed to Signal
Transmitter 1. Figure 3.2 below shows the block diagram of the device with all

terminals.

o-Prl

3. 4 &
©31 o3 §2 pes

>prz ¢ 9
Gnd +9V

o

Figure 3.2 : Signal Transmitter 1 Block Diagram

24



3.2.2 Task 2 : A remote control transmitter was disassembled
A remote control transmitter of Cobra Car model of remote control car toy fron
Jinhuan Company was taken out from the casing and was labelled as Signal Transmitter

2. Figure 3.3 shows the block diagram of Signal Transmitter 2.

< 8rel 45 é’ $
Pnt3 SrcZ Pntd

- PncZ 2 &
Gnd 49V

Figure 3.3 : Signal Transmitter 2 Block Diagram

3.2.3 Task 3 : A remote control receiver was disassambled
A remote control car reciver for the the same toy that has been described above
in Task 2 was disassembled and the new name for this devive is Signal Receiver 2.

Figure 3.4 below shows the block diagram of this device.

S 5ecl

HEc2
G g
Gnyg  +9Y

Figure 3.4 : Signal Receiver 2 Diagram

25



3.3 DEVELOPING

3.3.1 Task 4 : Computer Program was developed

The Computer program is a combinations of inputs and outputs terminals for the

user to run both operations of this project. The program file name is Computerize

Remote Control Car.exe. The two subsections of the Computer Program are the GUI

and the Parallel Port Interfacing. Figure 3.5 below shows the Computer Program Block

Diagram.

User lnput ——» —P
Gut
‘_

Output Display <4

Parallel Port
Interfacing

L% Outpu

— lnput

Figure 3.5: Computer Program Block Diagram

GUI is a Windows Dialogue type display. Parallel Port Interfacing is set

of instructions that control the Parallel Port to transmit and receive specific data. List of

GUI components:
1) Five push buttons
2) A Movements and Directions display

3) An Object Detection display

List of Parallel Port Interfacing instructions:
1)  Five outpw( 0x0378, number ); intructions

2) A inStatusP = _inpw( 0x0379 ); intruction

26



Figure 3.6 below shows the GUI of the Computer Program. The program was
created using Programming Language Microsoft Visual C++ 6.0 Enterprise Edition. The

functions and classes to created this Computer Program were taken from MFC,

_d:_-'l omputerize Remote Control Car

DIRECTION CONTROL

OBJECT OETECTEM

been ]

Figure 3.6 : The Computer Program GUI

Appendix C shows the Flow Charts of both operation of Computer Program and

the source code of the Computer Program.

3.3.2 Task 5 : Remote Control Transmitter was configured

Remote Control Transmitter is a device that transmits movements and directions

control signals from Division I( computer ) to Division 2( car ). The three

27



subsections of Remote Control Transmitter are the Socket, the Interface Circuit 1

and the Signal Transmitter | as shown in Figure 3.7.

Input  ~—P» Socket —  Interfuce Circuit | [—P»  Signal Transmitter | —P»  Output

Figure 3.7 : Remote Control Transmitter Block Diagram

The Socket is a connector between computer Parallel Port to Remote
Control Transmitter Device. Interface Circuit | is a combination of electrical-controlled
switches for Signal Transmitter 1. Signal Transmitter | is a device that converts

electrical signals to electromagnetic waves.

List of components:
1) A DB25 FEMALE Socket
2)  Four 2N2222A NPN transistors

3) A Signal Transmitter

The connector is a DB25 Female Socket. It consist of two parts that are
the Frontside with holes and Backside with pins. Each hole is connected to a respective
pin. There are 25 holes and pins. Each one is numbered and is arrangged in sequence.
The Frontside is connected to Parallel Port using a Parallel Port Male to Male Cable.
The Backside is connected to the Interface Circuit | using copper wires that are

soldered.

28



Interface Circuit 1 consist of four 2N2222A NPN transistors. For each
transistor, the base b is connected to a pin of socket. The collector ¢ and the emitter ¢ are
connected to the Signal Transmitter 1,

Signal Transmitter | consist of two sources that are S1 and S2 and
also  four points that are Ptl, Pt2, Pt3 and Pt4. All these sources and points are
connected to the transistors of Interface Circuit 1. Figure 3.8 below shows the schematic

diagram of Remote Control Transmitter connections,

DEZS FEMALE
o] i
Ao Prl
L [ —
. o
2 ; e I
[e28L ] pes s2 ped
4| o  f
o ? Pz
o 21k o)
1
Ly P {
Q
SUC}IC‘; . ¥ Ql _‘l__ l
b ZNZZ2ZZA = 499
e Signal Transmitter 1

Interface Circuit 1

Figure 3.8 : Remote Control Transmitter Schematic Diagram

Appendix B shows the operation Flow Charts of Computer of Remote

Control Transmitter.

3.3.3 Task 6 : Data Receiver was configured
Data Receiver is a device that receives Object Detection Signals for

Division 1(computer) from Division 2(car). There are three subsections of Data Receiver

29



that are the Signal Receiver 2, the Interface Circuit 2 and the Socket as shown in Figure

3.10.

Input —P»  Signal Receiver 2 —P  Interface Circuit2  —P  Socket P Output

Figure 3.10 : Data Receiver Block Diagram

Signal Receiver is a device that converts electromagnetic waves to
electrical signals. It receives electromagnetic waves from Data Transmitter. It is labelled
as Signal Receiver 2 because it communicates only with Signal Transmitter 2 and work
together as a communication system. The Interface Circuit 2 is an electrical-controlled

switch for the socket. The Socket is the same socket of Section 2.

List of components :

1) A 330nF ceramic capacitor
2) A 100nF ceramic capacitor
3) A 78L05 voltage regulator
4) A 2N2222A NPN transistor

5) A Signal Receiver 2

Signal Receiver 2 consist of two sources that are Scl and Sc2. Both

sources are connected to the transistor Q5 of Interface Circuit 2.

30



Interface Circuit 2 consist of a 2N2222A NPN transistors and a voltage
regulator circuit. For the transistor, the base b is connected to the voltage terminal Scl of
Signal Receiver 1. The collector ¢ is connected to voltage regulator circuit and the
emitter e is connected to voltage terminal Sc2 of Signal Receiver 2 and Pin 12 of Socket.

Figure 3.11 below shows the schematic diagram of Data  Receiver connections.

IC1
+3v 78L0OS
3 + 1IN OUT}e

i3
£

Figure 3.11 : Data Receiver Schematic Diagram

31



Data Signal from
Data Transmitter

Data Signal present ?

Transistor Q5is On

.

Current flows from voltage regulator to Pin 12

.

Pin 12 changes to High State, +5V

v
/ State of Pin 12 /

Figure 3.12 : Data Receiver Operation Flow Chart

Figure 3.12 shows the Flow Chart of Data Receiver Operation. The input
parameter is the Data Signals from Data Transmitter. And the output is the Pin 12 state
of the Socket.

Firstly, the Signal Receiver 2 is waiting the Data Signals. If the device
receives the Data Signals, source Scl flows current to transistor Q5. As a result the
transistor on and allows current flows from voltage regulator circuit to Pin 12. If no Data

Signals present, the Signal Receiver will stays in waiting condition.

32



3.3.4 Task 7: Power Supply was developed

Power Supply is a circuit that supply supply +5V voltage and -5V voltage. The

Power Supply is formed by two subsections that are Positive Power Supply and  the

Negative Power Supply as shown in Figure 3.13.

—P 5V
——» Ground

Source | ——P  Positive Power Supply

f

Source2 ——»  Negative Power Supply —Pp -5V

Figure 3.13 : Power Supply Block Diagram

Positive Power Supply is a voltage regulator circuit that convert +9V

voltage to +5V. Negative Power Supply is a voltage regulator circuit that convert -9V

voltage to -5V,

List of components :

)
2)
3)
4)
5)
6)
7)
)

9)

Two 9V batteries

Two SPDT switches

Four 100nF ceramic capacitors
Two 1000uF electrolytic capacitors
Two 47uF electrolytic capacitors

A 7805 voltage regulator

A 7905 voltage regulator

Two red LED

Two 470C) resistors

33



Positive Power Supply consist of a voltage regulator 7805 and the
common is connected to negative terminal of battery Bat2. Negative Power Supply
consist of a voltage regulator 7905 and the common is connected to positve terminal of
battery Bat3, Both common are connected together to form ground terminal Gnd. Figure

3.14 below shows the Power Supply schematic diagram[1].

102
7805
+Vce
- % = 1IN OUTHe + +0 .5y
CoM LED1
[ 2 RED
c4
: Batr2 <
= oy 100nF 1000uF 100: \F -nuF -
470
Gnd
5 “ e . - 0 v
Positive Power Supply ‘l_
IC3 —
7905 —die
IN OU 5 o -5V
LED2
J_ -l- \l‘ -}- L RED
Bac3 C10
T gy TlUGnF Tmoou? —[wmnp 47uF o
470

Negative Power Supply

Figure 3.14 : Power Supply Schematic Diagram

34



Start

Voitage Regulator converts 5V to 9V

v
/ 5V at Vee terminal /

Figure 3.15 : Power Supply Operation Flow Chart

Figure 3.15 above describe the Power Supply Operation. Both power supplies
perform the same functions but the differences are the polarities of input and output
voltages.

When the 9V battery is applied to the input terminal, the volage regulator changes

it into 5V.

3.3.5 Task 8 : Microcontroller was setup

Microcontroller circuit is a circuit that control the Proximity Detector and the
Data Transmitter. The Microcontroller circuit consist of hardware and software. It is
divided into 4 subsections that are Reset circuit, Oscillator circuit, the Microcontroller
and the Microcontroller Program. Figure 3.16 shows the ~ Microcontroller circuit block

diagram.

35



——P  Trigger
Reset Cireuit  ———»
Microcontroller

¢—— Ioput

Microcontroller
Oscillator Circuit  ——» Program

P Output

Figure 3.16: Microcontroller Circuit Block Diagram

Reset circuit enable the microcontroller for self-resetting every time when
power is applied to the microcontroller voltage source terminal Vpp to run the
microcontroller. Oscillator circuit provides 10Mhz frequency clock to the
microcontroller. The Reset circuit and the Oscillator circuit are compulsory circuits to
operate the microcontroller. Both circuit do not contribute directly to both operations of
this project. The microcontroller receives one input signal and transmit two oufput
signals. The Microcontroller Program is a set of instructions to operate the
microcontroller.

List of components :

1) A IN4001 general purpose diode
2) A 470Q resistors

3) A 10kQ resistors

4) A 100nF ceramic capacitor

5)  Two 33pF ceramic capacitors

6) A 10MHz crystal oscillator

7) A PIC16F84 microcontroller

36



Reset circuit consist of a diode, resistors and a capacitor. Oscillator
circuit consistof a 10MHz crystal oscillator and two 33pF capacitors. The
microcontroller is a PIC16F84 integrated circuit with 18 Pins. Figure 3.17 shows the

microcontroller circuit schematic diagram[5].

c12
P15 1

Cryl
:::163%2 c13
P16 vEpE

0sC1

PIC 16F34 Oscillator Circuit

IB7|—e—op13
RBl —e—o0P7
REQ (—e—OPB

Microcontroller

Figure 3.17 : Microcontroller Circuit Schematic Diagram

The Microcontroller Program is hexadecimal machine code that is stored
inside the Microcontroller EEPROM. The program name is MicroProg.hex and
Appendix D list down the all the Microcontroller Programs that is written originally in
BASIC source code MicroProg.bas, the source code that has been converted into
assembly code MicroProg.asm and the same promram in hexadecimal code that is

Program|.hex.

37



/ State of P13 /

v

Set P6 to High State ( +5V )

P13 recerves
=5 V square wave 25us 7

Set P7 1o High State
{ =5 V square wave 500 ms )

v

/ State of P7 ;

Figure 3.18 : Microcontroller Flow Chart

Figure 3.18 shows the Microcontroller Operations. When pin P6 is in
High state, it will switch on and trigger the ultrasonic transmitter UTX at Proximity
Detector, If P13 receives +5V square waves 25s, it will transmit +5 V square  wave
500 ms to Data Transmitter through pin P7. Otherwise, Microcontroller stays in waiting

condition.

3.3.6 Task 9 : Proximity Detector was developed

Proximity Detector is a device that detect object infront of it. This device

operates using an ultrasonic wave principle. The Proximity Detector is divided into two

38



subsections that are ultrasonic transmitter UTX and ultrasonic receiver URX. Figure

3.19 shows the block diagram of Proximity Detector.

Trgger —P| UIX —P Ultrasonic Output

Ouiput €—— URX |d—— Ultrasonic Input

Figure 3.19 : Proximity Detector Block diagram

The ultrasonic transmitter UTX generate 40kHz ultrasonic square waves.
The ultrasonic receiver URX receive the reflected 40kHz square waves from ultrasonic
transmitter UTX.
List of components :
1) Two 1002 resistors
2) A 390 resistor
3) Two 1k resistors
4) Three 10kQ resistors
5) Two 22kQ resistors
6) A 33kQ resistor
7) A 56k( resistor
8) A IMQ resistor
9) A 50 kQ variable resistor

10) A 100 k€ variable resistor

39



11) A 220pF ceramic capacitor

12) A 390pF ceramic capacitor

13) A 10nF ceramic capacitor

14) Five 100nF ceramic capacitors

15) A 1puF ceramic capacitor

16) A 555 timer

17) A TLO74 Quad Low Noise CMOS OpAmp
18)A LM311

19) An Ultrasonic Transmitter module

20) An Ultrasonic Receiver module

The ultrasonic transmitter UTX is consist of an oscillator circuit that generates
40kHz square waves and an ultrasonic transmitter module that converts electrical signals
into ultrasonic waves. The ultrasonic receiver URX is consist of an ultrasonic receiver
module that sense the reflected 40kHz square waves from ultrasonic transmitter UTX
and converts it into electrical signals, an amplifier to amplify the elecrical signasl
and also a comparator that generates square waves. Figure 3.20 below shows the

Proximity Detector connections[3].

40



RS

56k

UTX
Module

R16
4
RL7
100

URX
Module

Figure 3.20 : Proximity Detector Schematic Diagram{7]

41



/ I'rigger from Microcontroller /

UTX transmits ultrasonic signals

LIRX receives utrasonic signals?

Yes

URX sends clecinical square
waves 1o Microcontroller

/ URX electrical signals /

Figure 3.18 : Proximity Detector Operation Flow Chart

Figures 3.21 shows the operation of Proximity Detector. The ultrasonic
transmitter UTX transmit ultrasonic waves after receive trigger signal from
microcontroller. If there is an object infront of the this device the waves will be reflected
back to the ultrasonic receiver URX. Ultrasonic Receiver URX sense the waves  and

generates +5V square waves 25us to the Microcontroller.

3.3.7 Task 10: Data Transmitter was configured
Data Transmitter is a device that transmits Object Detection Signals from
Division 2( car ) to Division I( computer ). The two subsections of Data  Trnansmitter

are the Interface Circuit 3 and the Signal Transmitter 2 as shown in Figure 3.22.

42



Input ——P» Interface Circuit 3 ——P» Signal Transmitter 2 ——P»  Output

Figure 3.22: Data Transmitter Block Diagram

Interface Circuit 3 is an electrical-controlled switch for the socket. Signal
Transmitter 2 is a device that converts electrical signals to electromagnetic waves. It

transmits electromagnetic waves to Data Receiver.

List of components :
1) A 2N2222A NPN transistor

2) A Signal Receiver 2

Interface Circuit 3 consist of a 2N2222A NPN transistors. the base b is
connected to the pin P13 of the Microcontroller. The collector ¢ and the emitter e are
connected to the Signal Transmitter 2.

Signal Transmitter 2 consist of two sources that are Srcl and Src2 and
also  four points that are Pntl, Pnt2, Pnt3 and Pnt4. Only the source Srcl and the point
Pntl are connected to the Interface Circuit 3. Figure 3.23 below shows the schematic

diagram of Data Transmitter connections.

43



el

s = & é &
b@ 06 Srel | pntd srez Pncs
T
ZHNZZ22ZA
-0 Pns2

e
Herface Orcut 3 ? T
Sgrs Traraminter 2 _L l
Tt

Figure 3.23 : Data Transmitter Schematic Diagram

P7 in High State *

Transistor Q6 On

v
Current flows from Src1 to Pnt1

A
Signal Transmitter 2 sends Data Signal

Figure 3.24 : Data Transmitter Operation Flow Chart



Figure 3.24 illustrates the operation of Data Transmitter. The input is the state of
pin P7 of microcontroller. When the state is high, transistor Q6 is on and allows current
flows from sourse Srcl to point Pntl. As a result Data Signal sends Data Signals to Data

Receiver.

34  ASSEMBLING

34.1 Task 11 : Division | was assembled
Division 1 is the computer and the sections that are atthached to it are
Section | the Computer Program, Section 2 the Remote Control Transmitter and Section

3 Data Receiver.

3.4.2 Task 12 : Division 2 was assembled
Division 2 is the car, The sections that form this division are Section 4 the
Microcontroller, Section 5 the Proximity Detector, Section 6 the Data Transmitter and

the Power Supply.

3.5 TESTING

3.5.1  Task 13 : Operation Mode | was tested

In this operation mode, the inputs are the buttons that are pressed by the user at
the GUI of Computer Program and the output are the movements and directioms of the
car. To test this operation mode, the user pressed all the buttons at the GUI of the

Computer Program at a time for each button and the car movements and directions that

45



caused by the specific button pressed was indicated. The sequence of button pressed are

the Forward button, Backward button, Right button, Left button and Stop button.

3.5.2  Task 14 : Test Operation Mode 2 was tested
The second operation mode is the car can detect an object infront of it. An object

was placed infront of the car. The output dislay of Computer Program GUI was

indicated,

46



Chapter 4

RESULTS AND DISCUSSIONS

All tasks that have been described in Chapter 3 Methodology. This chapter stated
the results of all tasks. Task | to Task 12 have been carried out without any
modification. In this chapter, the result that was described here are result of Task113 and

Task 14.

4.1 Task 13 : MODE 1 OPERATION TEST
Table 4.1 shows the results of this operation and Appendix D shows the operation

Flow Chart that described the overall operation of this operation mode.

Table 4.1 : Result of Operation Mode 1

BUTTON PRESS | CAR MOVEMENT / DIRECTION

Move forward

Reverse

Turn right

Turn left




) Not moving

For the first action when the user pressed the button, the Computer Program was

ready to send a number 4 to the Parallel Port. Before the number was transferred to the
Parallel Port, the number was converted into a byte of a number in binary that was 0000
0001. Next, the Computer Program sent the number to a specific register in the
Parallel Port that was Data Port. The byte was transferred to Parallel Port Pins and Pin 2
that was connected to Data Port Bit 0 was in High state. The state of the pin caused
transistor Q1 on and allowed current flowed from source S1 to point Ptl. When the
current flows into point t1, the Signal Transmitter | transmitted forward signal to the car
and as the result, the car move forward. Button Backward, button Right, button Left
were performed same steps as button forward actions as described before but
differences are the numbers that were used, the transistor involved, the current  flow
and the transmitted signals. For the Stop button the was slightly different from the
button mechanisms.

When the button Backward was pressed, number 24 was sent to Parallel Port, Pin
3 was in high state. Transistor Q2 was on and current flows from source S1 to point Pt2.
The transmitter transmitted backward signal. Forward and Backward operation shared
the same Source of Signal Transmitter. Both operations were indicated the car
movements.

When the button Left was pressed, number 8y was sent to Parallel Port, Pin 5 was
in high state. Transistor Q4 was on and current flows from source S2 to point Pt4. The

transmitter transmitted left signal.

48



When the button Right was pressed, number 44 was sent to Parallel Port, Pin 4
was in high state. Transistor Q3 was on and current flows from source S2 to point Pt3.
The transmitter transmitted right signal. Turning Right and Left operations shared the
same Source of Signal Transmitter. Both operation were indicated the car directions.

When the button Stop was pressed, number 04 was sent to Parallel Port, Al Pins
were in Low state. None of transistor allowed any current flows from both sources S1
and S2 to all points Ptl, Pt2, Pt3 and Pt4. No transmitted signal to the car and as a result

the car stopped.

42 MODE 2 OPERATION TEST
Table 4.1 shows the results of this operation and Appendix D shows the

operation Flow Chart that described the overall operation of this operation mode.

Table 4.2 : Result of Operation Mode 2

SENSOR CONDITION DISPLAY

No object detected No sign and warning text

Detect object Object Infront

In this operation mode the input was reflected ultrasonic waves that sensed by
the ultrasonic receiver URX and the output was output display at the Computer Program.
Firstly, the microcontroller transmit trigger signal to the ultrasonic transmitter UTX to

switch on the device. The ultrasonic transmitter, transmitted the ultrasonic waves. When

49



there are no object the ultrasonic waves were not reflected back the signal, so no input
for this operation. When there was an object infront of the car, the waves that are
transmitted by the ultrasonic waves were reflected by the object to the ultrasonic
receiver URX. Ultrasonic receiver URX transmit a +5V square-wave 25us electrical
signal to the microcontroller. When microcontroller received that signal, it transmit a
+5V 500ms square-wave to the transistor Q6 at Signal Transmitter 2. The transistor on
and allowed current flowed from source Srcl to point Pntl and the Signal Transmitter 2
transmit an electromagnetic wave signals to Signal Receiver 2. When the Signal
Receiver 2 received that signals, it transmit a current to transistor Q5. Transistor Q3
allowed current flowed from voltage regulator to Pin 12 of Parallel Port. The Computer
Program read the signal from Pin 12 and Display the sign and text at the GUI of the
Program,

As a conclusion Task 3 to Task 12 that have been completed driven the results of
Task 13 and Task 14. For Task 13, button Forward, Backward, Right and Left had a
same mechanism of operation. Their differences are, the number sent to Parallel Port,
the used transistor, the point at Signal Transmitter 1 that received current and control
signal, For task 14, there two possible input and output. In the test, the system can only

detect object infront of it.

50



Chapter §

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

The main objective of this project is to interface the remote control car with the
computer and this objective was achieved. The computer can controls all movements
and directions of the car.

The second objective is to build a remote control car that capable object infront
of it. This objective has been achieved by placing a proximity detector that was
controlled by a microcontroller at the remote control car.

The third objective is to develop a remote control car that can give feedback to
the computer. This objective is achieved by attach Data Transmitter to the

microcontroller and attach Data Receiver to the computer.

52 RECOMMENDATION
a) Change sensor operation to distance measurement. In this project, the
proximity detector just sense object in front of the car but in distance
measurement operation, the proximity detector measure the distance between
the car and object in front of it. The result that display computer program in
numerical form.
b) Create database for the car activities. The database consists of historical

records of the car movements and directions and also the proximity detector



d)

€)

sensing activities, Each activity was recorded with their own time interval.
The purpose of creating the database is to save all the activities and can be
reviewed and playback in the future for analysis purposes or to perform the
same task next time.

Use joystick as an alternative controller. The limitation of GUI buttons and
mouse usage limitation has been described before in Chapter 4. When using
joystick user doesn’t has look at the device when controlling the car because
his fingers can easily push the suitable joystick button by sensing suitable
buttons. To perform this task, the program must be capable to interface the
game port.

Add camera video to the car. This accessory to the car can make user much
easier to control it. The video must be small and light because the car is in
small size and also must be cordless system. The computer program will be
quite complicated to display the output of this camera. DirectX can used to
develop video output oriented program.

Interface other types of remote control system. In this project the car can
move in four directions per time. Other remote control system, the car can
combine the movement and direction of the car. As a result it can move in six
directions per time. To carry out this job, the car must be substitute with the
car that cable move in six directions and a few commands in computer
program must be changed. Another type of remote control system that mimic
the real car steering system. The heart of the controller actually consists of
potentiometer. To carry out this job DAC can be used to interface the

computer and the remote controller.

52



REFERENCES

. Reddy, B.R.S., Reddy, G.A.V. and Sriram, V. Surveillance Car. Retrieved 3 July

2003 from http :// gdit.ilit.net / ~ravi_b / projects / embeddedforcy.htm.

Sirah, Phil. RoboCar. Retrieved 4 July 2003 from http :// website.lincone.net /

~iomarcus / robocar.html.

. RC Car Construction and Interface. Retrieved 4 July 2003 : htip/ /www,

drivemeinsane. Com / project / rccar / recar.html

Dhananjay V.Gadre ( 1998 ) Programming the Parallel Port, Miller Freeman Inc.

[brahim, Dogan( 2001 ). PIC BASIC PROGRAMMING AND PROJECTS. Newnes.

Oxford, England.

Microchip Technology Inc. PICF84A Data Sheet Retreived at 5 July 2003 :

http://wwww.microchip.com

. Application Module DT35 User Manual. L) Electronics Inc.

. An Introduction to 80286 Microprocessor Applications D3000 Laboratory Manual

8.62 Part 2 of 2.


http:hnp:llwwww.microchip.com
http://www
http:website.lineone.net
http:gdit.iiit.net

9. KIT 62, 5V Regulated voltage. Circuit Description. The Electronics Hobby Kit.

10. Jones, Richard M.( 2000 ). Introduction to MFC Programming with Visual C++.

Prentice Hall PTR. Upper Saddle River, New Jersey, USA,

L1. Pappas, Chris H. & Murray, William H. ( 1998 ). Visual C++ 6: The Complete

Reference. Osborne / McGraw-Hill. Berkeley, California, USA.

12. EE401  Project Archive Fall 2001. Retrieved 4 July 2003 from http ://

www.ee.ualberta.ca / ~eed401 / archive_fall 2001.html.

54



http:www.ee.ualbcrta.ca

APPENDIX A
Program MFCExample

File name : stdafx.h

LINE SOURCE CODE

{f stdafx.h : include file for standard system include files,

I or project specific include files that are used frequently, but
/I are changed infrequently

i

R

o

o

#if defined(AFX_STDAFX_H__F67BDACD_F816_11D7_B1A3_F35D77579832_ INCLUDED_)
#define AFX_STDAFX_H__F67BDACD_F818_11D7_B1A3_F35D77579832_ INCLUDED _

W~

#if_MSC_VER > 1000

#pragma once
#endif // _MSC_VER > 1000

N b N =

#define VC_EXTRALEAN /I Exclude rarely-used stuff from Windows headers

#include <afxwin.h> #f MFC core and standard components
#include <afxexth> I MFC extensions
#include <afxdisp.h> /I MFC Automation classes

O~

#include <afxdtctl.h> // MFC support for internet Explorer 4 Common Controls
19 #ifndef AFX_NO_AFXCMN_SUPPORT
20 #include <afxcmn.h> /I MFC support for Windows Common Controls

[ &

#endif / _AFX_NO_AFXCMN_SUPPORT

P = £

I{{AFX_INSERT_LOCATION}}
I Microsoft Visual C++ will insert additional declarations immediately before the previous line.

L ECRY
O 2-

o
~d

#endif // |defined(AFX_STDAFX _H__F67BDACD_F816_11D7_B1A3_F35D77579832__INCLUDED_)

File name : stdafx.cpp

LINE SOURCE CODE
1 Il stdafx.cpp : source file that includes just the standard includes
2 " MFCExample.pch will be the pre-compiled header
3 " stdafx.obj will contain the pre-compiled type information
1
5 #include "stdafx.h”
i} // stdafx.cpp : source file that includes just the standard includes

File name : MainFrm.h

LINE SOURCE CODE
1 // MainFrm.h : interface of the CMainFrame class
2 i
3 e e e
4
5 #if !defined(AFX_MAINFRM_H__F67BDACF_F816_11D7_B1A3_F35D77579832__INCLUDED_)
6 #define AFX_MAINFRM_H__F67BDACF_F816_11D7_B1A3 F35D77579832__INCLUDED _
7
8 #f_MSC_VER > 1000
9 #pragma once

2




10 #endif /i _MSC_VER > 1000

11

12 class CMainFrame : public CMDIFrameWnd
13 {

14 DECLARE_DYNAMIC(CMainFrame)

15 public:

16 CMainFrame():

17

18 if Attributes

19 public:

20

21 I/ Operations

22 public:

23

24 il Overrides

25 {t ClassWizard generated virtual function overrides

26 I{{AFX_VIRTUAL(CMainFrame)

27 virtual BOOL PreCreateWindow(CREATESTRUCT& cs),
26 IYAFX_VIRTUAL

29

30 # Implementation

K3 public:

32 virtual ~CMainFrame();

33 #fdef DEBUG

34 virtual void AssertValid() const;

15 virtual void Dump(CDumpContext& dc) const;

38 #endif

37

38 protected: /f control bar embedded members

39 CStatusBar m_wndStatusBar;

40 CToolBar m_wndToolBar;

41

42 I Generated message map functions

43 protected:

44 IH{AFX_MSG(CMainFrame)

45 afx_msg int OnCreate{LPCREATESTRUCT IpCreateStruct);
46 /i NOTE - the ClassWizard will add and remove member functions here.
47 /i DO NOT EDIT what you see in these blocks of generated code!
48 IMAFX_MSG

49 DECLARE _MESSAGE_MAP()

50 )i

51

52 e e e

53

54 IH{{AFX_INSERT_LOCATION}}

55 /i Microsoft Visual C++ will insert additional declarations immediately before the previous line.

56

57 #endif // |defined(AFX_MAINFRM_H__ F67BDACF_F816_11D7_B1A3_F35D77579832 INCLUDED. )

File name : MainFrm.cpp

LINE SOURCE CODE
1 Nl MainFrm.cpp : implementation of the CMainFrame class
2 i
3
4 #include "stdaf.h"
5 #include "MFCExample.h"
5
7 #include "MainFrm.h"
8

56



10

24

30

40

L= R R S
- DWW~

o
L]

63
64
65
66
&7
68
69

70

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[}= _ FILE
#endif

e
[ CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
HH{AFX_MSG_MAP(CMainFrame)
/f NOTE - the ClassWizard will add and remove mapping macros here.
/i DO NOT EDIT what you see in these blocks of generated code !
ON_WM_CREATE()
IMAFX_MSG_MAP
END_MESSAGE_MAP()

static UINT indicators[] =

{
ID_SEPARATOR, i/ status line indicator
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL.

%

e e e
// CMainFrame construction/destruction

CMainFrame:.CMainFrame()

{
/I TODO: add member initialization code here

}

CMainFrame::~CMainFrame()

!
)

Int CMainFrame::OnCreate(LPCREATESTRUCT IpCreateStruct)

if (CMDIFrameWnd::OnCreate(IpCreateStruct) == -1)
return -1,

if (Im_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE | CBRS_TOP
| CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
im_wndToolBar.LoadToolBar(IDR_MAINFRAME))

TRACEOQ("Failed to create toolbar\n™);
return -1;  / fail to create
}
if (!m_wndStatusBar.Create(this) ||
!'m_wndStatusBar.Setindicators(indicalors,
sizeof{indicators)/sizeof{ UINT)))

TRACEQ("Failed lo create stalus barin”);
retun -1;  // fail to create

}

I/ TODO: Delete these three lines if you don't want the toolbar to

57



T

>y

73
74
75
76

Il

79
80
81
82
83
B4
85
B6
87
a8
B89
90
)|
92
93
G4
95
]
a7
93
99
100
101
102
103
104
105
106

/I be dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY):
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCTS& cs)

{
if{ \CMDIFrameWnd::PreCreateWindow(cs) )

retumn FALSE;
/I TODO: Modify the Window class or styles here by modifying
Il the CREATESTRUCT cs

return TRUE;
}

TN T TR
/l CMainFrame diagnostics

#ifdef DEBUG
void CMainFrame::AssertValid() const

CMDIFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpConlext& dc) const
{

}
#endif //_DEBUG

CMDIFrameWnd::Dump(dc);

L e e g
/I CMainFrame message handlers

File name : Resource.h

LINE

W ~N O b d -

SOURCE CODE

I{{NO_DEPENDENCIES}}
/ Microsoft Visual C++ generated include file.

/I Used by MFCEXAMPLE.RC

i

#define IDD_ABOUTBOX 100
#define IDR_MAINFRAME 128
#define IDR_MFCEXATYPE 129
/I Next default values for new objects

i
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS

#define _APS_3D_CONTROLS 1
#define _APS_NEXT_RESOURCE_VALUE 130
#define APS_NEXT_CONTROL_VALUE 1000
#define _APS_NEXT_SYMED_VALUE 101
#define APS_NEXT_COMMAND_VALUE 32771
#endif

#endif

58


http:MFCEXAMPlE.RC

File name : MFCExample.h

LINE SOURCE CODE

1 /I MFCExample.h : main header file for the MFCEXAMPLE application
2 Il
3
4 #if |defined(AFX_MFCEXAMPLE_H__F67BDACB_F816_11D7_B1A3_F35D77579832__ INCLUDED )
5 #define AFX_MFCEXAMPLE_H__F67BDACB_F816_11D7_B1A3_F35D77579832_ INCLUDED_
6
7 #f_MSC_VER > 1000
8 #pragma once
9 #endif // _MSC_VER > 1000

10

11 #ifndef _ AFXWIN_H__

12 #error include "stdafx.h’ before including this file for PCH

13 #endif

14

15 #include “resource.h”  // main symbols

16

17 e e R

18 I CMFCExampleApp:

19 /I See MFCExample.cpp for the implementation of this class
20 1

21

22 class CMFCExampleApp : public CWinApp

2 {

24 public:

25 CMFCExampleApp():

26

27 /l Overrides

28 if ClassWizard generated virtual function overrides
29 H{{AFX_VIRTUAL(CMFCExampleApp)

30 public:

31 virtual BOOL Initinstance();

32 virtual int Exitinstance();

13 IMAFX_VIRTUAL

34

45 Il Implementation

36 protected:

37 HMENU m_hMDIMenu;

38 HACCEL m_hMDlAccel;

39

40 public:

41 JH{{AFX_MSG(CMFCExampleApp)

42 afx_msg void OnAppAbout();

43 afx_msg void OnFileNew{);

44 /I NOTE - the ClassWizard will add and remove member functions here.
45 /I DO NOT EDIT what you see In these blocks of generated code |
45 /MAFX_MSG

a7 DECLARE_MESSAGE_MAP()

48 )

49

50 i e

51

52 IK{AFX_INSERT_LOCATICN}}

53 I Microsoft Visual C++ will insert additional declarations immediately before the previous fine.
54

55 #endif //

59



55 !defined{AFX_MFCEXAMPLE_H__F67BDACB_F816_11D7_B1A3_F35D77579832__INCLUDED )

File name : MFCExample.cpp

LINE SOURCE CODE

/I MFCExample.cpp : Defines the class behaviors for the application.
/]

#include "stdafx.n”
5 #include "MFCExample.h"

&

() #include "MainFrm.h"
8 #include "ChildFrm.h"
9

10 #ifdef DEBUG

11 #define new DEBUG_NEW

12 #undef THIS_FILE

13 static char THIS_FILE[]=__ FILE_ ;
14 #endif

16 e L e
17 /f CMFCExampleApp

19 BEGIN_MESSAGE_MAP{CMFCExampleApp, CWinApp)

20 I{AFX_MSG_MAP(CMFCExampleApp)

21 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

22 /I NOTE - the ClassWizard will add and remove mapping macros here.
23 i/ DO NOT EDIT what you see in these blocks of generated code!

24 ON_COMMAND(ID_FILE_NEW, OnFileNew)

25 IMAFX_MSG_MAP

26 END_MESSAGE_MAP()

27

28 e T
29 /I CMFCExampleApp construction

30

31 CMFCExampleApp::CMFCExampleApp()

32 {

33 / TODO: add construction code hare,

34 /! Place all significant Initialization in Initinstance
35 }

36

37 M e e
ag // The one and only CMFCExampleApp object

40 CMFCExampleApp theApp;

41
42 e

4 /f CMFCExampleApp initialization

a4

45 BOOL CMFCExampleApp::initinstance()

46 {

47 AfxEnableControlContainer();

43

49 !/ Standard initialization

50 I/ if you are not using these features and wish to reduce the size

51 il of your final executable, you should remove from the following

52 /I the specific initialization routines you do nol need.

53

54 #ifdef AFXDLL

55 Enable3dControis(); /I Call this when using MFC in a shared DLL

60



57
58
59
60
81
62
83
64
65
65
67
68
69
70
7
72
73
74
75
77
79
80
81
82
83

a5
86
B7
BB
a9
a0
91
92
93
94
a5
a6
97
98
59
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
17

telse
Enable3dControisStatic():  // Call this when linking to MFC statically
#endif

/I Change the registry key under which our settings are stored.

/I TODO: You should medify this string to be something appropriate
// such as the name of your company or organization.
SetRegistryKey(_T("Local AppWizard-Generated Applications”));

/I To create the main window, this code creates a new frame window
Il object and then sels it as the application’s main window object.

CMDIFrameWnd" pFrame = new CMainFrame;
m_pMainWnd = pFrame;

I/ create main MDI frame window
if (!pFrame->LoadFrame(IDR_MAINFRAME))
return FALSE;

!/ try to load shared MDI menus and accelerator table
/ITODD: add additional member variables and load calls for
i additional menu types your application may need.

HINSTANCE hinst = AfxGetResourceHandle();
m_hMDIMenu = ::LoadMenu(hinst. MAKEINTRESOURCE(IDR_MFCEXATYPE)):
m_hMDIAccel = ::LoadAccelerators{hinst, MAKEINTRESOURCE(IDR_MFCEXATYPE));

/I The main window has been initialized, so show and update it.
pFrame->ShowWindow{m_nCmdShow);
pFrame->UpdateWindow():

return TRUE;
}

I T
{l CMFCExampleApp message handlers

int CMFCExampleApp::Exitinstance()
{
{{TODO: handle additional resources you may have added
if (m_hMDIMenu != NULL)
FreeResource(m_hMDIMenu);
if (m_hMDIAccel != NULL)
FreeResource(m_hMDIAccel);

return CWinApp::Exitinstance();

}
void CMFCExampleApp::OnFileNew()
{

CMainFrame® pFrame = STATIC_DOWNCAST(CMainFrame, m_pMainWnd);

/f create a new MDI child window

pFrame->CreateNewChild(

RUNTIME_CLASS(CChildFrame), IDR_MFCEXATYPE, m_hMDIMenu, m_hMDIAccel);

}

61


http:m_hMDlAcc.eI

ik |l i el ok el el
o O b
LI % R e T T I -

T
= o

155
166
157
158
169
160
161
162
163
164
165
166
167
168
169
170
171
172

W e e

/! CAboutDIg dialog used for App About

class CAboutDIg : public CDialog
{
public:

CAboutDig();

// Dialog Data
I{{AFX_DATA(CAboutDig)
enum { IDD = IDD_ABOUTBOX };
INJAFX_DATA

i ClassWizard generated virtual function overrides

IH{AFX_VIRTUAL(CAboutDIg)
protected:

virtual void DoDataExchange(CDataExchange* pDX);

IIAFX_VIRTUAL

Il Implementation

protected:
{AFX_MSG(CAboutDig)

// No message handlers

INJAFX_MSG
DECLARE_MESSAGE_MAP()

b

?AbomDig::CAbomDig(] : CDialog(CAboutDig::IDD)
I{{AFX_DATA_INIT(CAboutDig)
IMAFX_DATA_INIT

}

void CAboutDig::DoDataExchange(CDataExchange” pDX)

{
CDialog::DoDataExchange(pDX);
IH{AFX_DATA_MAP(CAboutDIg)
IF}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDIg, CDialog)

I{{AFX_MSG_MAP(CAboutDIg)
I No message handlers
IMAFX_MSG_MAP
END_MESSAGE_MAP()

Il App command to run the dialog
void CMFCExampleApp:OnAppAbout()
{
CAboutDlg aboutDig;
A aboutDig.DoModak );

e

// CMFCExampleApp message handlers

t DDX/DDV support

62



File name : ChildView.h

LINE SOURCE CODE

1 /f ChildView.h : interface of the CChildView class
2 It

3 e e

4

5 #if Idefined(AFX_CHILDVIEW_H__FB7BDAD3_F816_11D7_B1A3_F35D077579832_ INCLUDED )
6 #define AFX_CHILDVIEW_H__F67BDAD3_F816_11D7_B1A3_F35077579832_ INCLUDED _

7
8 #f _MSC_VER > 1000
] #pragma once
10 #endif // _MSC_VER > 1000

12 ST LT L R
13 /I CChildView window

14

15 class CChildView : public CWnd

16 {

17 /I Construction

18 public:

19 CChildView();

20

21 I/ Attributes

22 public:

23

24 /| Operations

25 public:

26

27 // Overrides

28 /f ClassWizard generated virtual function overrides
29 MI{{AFX_VIRTUAL(CChildView)

30 protected:

31 virtual BOOL PreCreateWindow(CREATESTRUCT cs);
32 IAFX_VIRTUAL

33

34 I Implementation

35 public:

35 virtual ~CChildView():

37

38 i/ Generated message map functions
39 protected:

40 JH{AFX_MSG(CChildView)

41 afx_msg void OnPaint();

42 IMMAFX_MSG

43 DECLARE MESSAGE_MAP()

44 h

45

46 e T e U
47

48 I{{AFX_INSERT_LOCATION}}

49 /I Microsoft Visual C++ will insert additional declarations immediately before the previous line.

50

51 #endif // !defined(AFX_CHILDVIEW_H__F67BDAD3_F816_11D7_B1A3_F35D77579832_ INCLUDED )

63



File name : ChildView.cpp

LINE

S WO~ L WK —

£ L N -

o

16
17
18
20
21
22

"
e

24
25
26
27
28
29
20
N
32
33
34
35
36
ar
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55
56

SOURCE CODE

/I ChildView.cpp : implementation of the CChildView class
it

#include "stdafx.h*
#include "MFCExample.h"
#include "ChildView.h"

#ifdet _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE_;
#endif

(R e i
i CChildView

CChildView::CChildView()
{
}

CChildView::~CChildView()
{
}

BEGIN_MESSAGE_MAP(CChildView,CWnd )
IH{{AFX_MSG_MAP(CChildView)
ON_WM_PAINT()
IMAFX_MSG_MAP

END_MESSAGE_MAP()

e e
I CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
if (!\CWnd::PreCreateWindow(cs))
return FALSE:

cs.dwExStyle [= WS_EX_CLIENTEDGE:

cs.style &= ~WS_BORDER:

cs JpszClass = AlxRegisterWndClass(CS_HREDRAW|CS_VREDRAW|CS_DBLCLKS,
=LoadCursor(NULL, IDC_ARROW), HBRUSH(COLOR_WINDOW+1), NULL);

retumn TRUE:
!
void CChildView::OnPaint()
{ CPaintDC dc{this): // device context for painting
/f TODO: Add your message handler code here
} il Do not call CWnd::CnPaint() for painting messages




File name : ChildFrm.h

LINE

90 =~ @ LN s W N e

o

10
1
12
13

15
16
17
18
19
20
21
22
23
25
26
27
28
29
30

31
32
33
a4
35
36
37
38
34
40
41
42
43
44
a5
46
47
48
49
50
51
52
53
54
55
56
57

SOURCE CODE

/I ChildFrm.h : interface of the CChildFrame class
it
e g

#if |defined(AFX_CHILDFRM_H__F67BDAD1_F816_11D7_B1A3_F35D77579832__ INCLUDED )
#define AFX_CHILDFRM_H__F67BDAD1_F816_11D7_B1A3_F35D77579832__INCLUDED_

#f_MSC_VER > 1000
ma once
#endif /I _MSC_VER > 1000

#include "ChildView.h"
class CChildFrame : public CMDIChildWnd

DECLARE_DYNCREATE(CChildFrams)
public:
CChildFrame();

// Attributes
public:

il Operations
public:

Il Overrides

/I ClassWizard generated virtual function overrides

IH{{AFX_VIRTUAL(CChildFrame)

pubiic:

virtual BOOL PreCrealeWindow(CREATESTRUCT& cs);

virtual BOOL OnCmdMsg(UINT niD, int nCode, void* pExtra, AFX_CMDHANDLERINFO*
pHandierinfo);

IMAFX_VIRTUAL

Il Implementation
public:
il view for the client area of the frame.
CChildView m_wndView:
virtual ~CChildFrame();
#ifdef DEBUG
virtual void AssertValid() const;
virtual void Dump{CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
IH{{AFX_MSG(CChildFrame)
#/ NOTE - the ClassWizard will add and remove member functions here.
/f DO NOT EDIT what you see in these blocks of generated code!
afx_msg void OnFileClose();
afx_msg void OnSetFocus(CWnd"* pOldWnd);
afx_msg int OnCreate{LPCREATESTRUCT IpCreateStruct);
IAFX_MSG
DECLARE_MESSAGE_MAP()
%

e e e

65



58 J{{AFX_INSERT_LOCATION)}

59 /f Microsoft Visual C++ will insert additional declarations immediately before the previous line.

60

61 #endif // |defined(AFX_CHILOFRM_H__F67BDAD1_F816_11D7_B1A3_F35D77579832__INCLUDED )

File name : ChildFrm.cpp

LINE SOURCE CODE
1 /i ChildFrm.cpp : implementation of the CChildFrame class
2 il
3
4 #include "stdafx.h”
5 #include "MFCExample.h”
&
i #include "ChildFrm.h"
B

9 #ifdef DEBUG
10 #define new DEBUG_NEW
1" #undef THIS_FILE
12 static char THIS_FILE[]=__ FILE__:

13 #endif

14

15 e e e

16 # CChildFrame

18 IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd)

19

20 BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)

21 IH{AFX_MSG_MAP(CChildFrame)

22 // NOTE - the ClassWizard will add and remove mapping macros here.
23 {/ DO NOT EDIT what you see In these blocks of generated code !
24 ON_COMMAND(ID_FILE_CLOSE, OnFileClose)
25 ON_WM_SETFOCUS()

26 ON_WM_CREATE()

27 IAFX_MSG_MAP

248 END_MESSAGE_MAP()

29

30 e e

3 {l CChildFrame construction/destruction

32

13 CChildFrame::CChildFrame()

34 {

35 / TODO: add member initialization code here

36

37 }

368

39 CChildFrame::~CChildFrame()

40 '[

41 }

42

43 BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)

44 {

45 /1 TODO: Modify the Window class or styles here by modifying
45 /I the CREATESTRUCT cs

47

48 ift \CMDIChildWnd::PreCreateWindow(cs) )

49 return FALSE;

50

51 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;

52 cs.pszClass = AfxRegisterWndClass(0);

66



han th gn v gn n
O~ &

=]
o

90

93
04
95
96
a7
a8
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

return TRUE;

e e
/I CChildFrame diagnostics

#ifdef DEBUG
void CChildFrame::AssertValid() const

{
)
void CChildFrame::Dump(CDumpContext& dc) const

CMDIChildWnd::AssertValid():

{
CMDIChildWnd::Dump(dc);
}
#endif //_DEBUG
e e
/| CChildFrame message handiers
void CChildFrame::OnFileClose()
{
/I To close the frame, just send a WM_CLOSE, which Is the equivalent
/Il choosing close from the system menu.
SendMessage{WM_CLOSE);
}
int CChildFrame::OnCreate{LPCREATESTRUCT IpCreateStruct)
{
if (CMDIChildWnd::OnCreate(ipCreateStruct) == -1)
return -1
/I create a view to occupy the client area of the frame
if (!m_wndView.Create(NULL, NULL, AFX_WS_DEFAULT_VIEW,
CRect(0, 0, 0, 0), this, AFX_IDW_PANE_FIRST, NULL))
{
TRACEO("Failed to create view window\n™);
return -1;
}
return C;
}
void CChildFrame::OnSetFocus(CWnd" pOldWnd)
{
CMDIChildWnd::OnSetFocus{pOidWnd);
m_wndView.SetFocus();
}

BOOL CChildFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra, AFX_CMDHANDLERINFO* pHandlerinfo)

{
I/ let the view have first crack at the command

if (m_wndView.OnCmdMsg(niD, nCode, pExtra, pHandlerinfo))
return TRUE;

I/ otherwise, do default handling

67




115 return CMDIChildWnd::OnCmdMsg(nID, nCode, pExtra. pHandlerinfo);
16 }

File name : ReadMe.txt

MICROSOFT FOUNDATION CLASS LIBRARY : MFCExample

AppWizard has created this MFCExample application for you. This application not only demonstrates the basics of
using the Microsoft Foundation classes but is also a starting point for writing your application,

This tile contains a summary of what you will find in each of the files that make up your MFCExample application,

MFCExample.dsp

This file (the project file) contains information at the project level and is used to build a single project or subproject.
Other users can share the project (.dsp) file, but they should export the makefiles locally.

MFCExample.h

This is the main header file for the application. It includes other project specific headers (including Resource.h)
and declares the CMFCExampleApp application class.

MFCExample.cpp
This is the main application source file that contains the application
class CMFCExampleApp.

MFCExample.re
This is a listing of all of the Microsoft Windows resources that the program uses, [t includes the icons, bitmaps,
and cursors that are stored in the RES subdirectory, This file can be directly edited in Microsoft Visual C++.

MFCExample.clw
This file contains information used by ClassWizard to edit existing classes or add new classes. ClassWizard also
uses this file to store information needed to create and edit message maps and dialog data maps and to create
prototype member functions.

res\ MFCExample.ico

This is an icon file, which is used as the application's icon, This icon is included by the main resource file
MFCExample.rc.

res\MFCExample.rc2
This file contains resources that are not edited by Microsoft Visual C++.  You should place all resources not
editable by the resource editor in this file.

S L L L L L L

For the main frame window:

MainFrm.h, MainFrm.cpp
These files contain the frame class CMainFrame, which is derived from CMDIFrameWnd and controls all MDI
frame features.

res' Toolbar,bmp
This bitmap file is used to create tiled images for the toolbar. The initial toolbar and status bar are constructed in the

CMainFrame class. Edit this toolbar bitmap using the resource editor, and update the IDR_MAINFRAME TOOLBAR
array in MFCExample.re to add toolbar buttons.

NI BT LT PR T T

68


http:MFCElIamp!c.rc
http:MFCExample.rc
http:MFCExmnplc.rc

For the child frame window:

ChildFrm.h, ChildFrm.cpp
These files define and implement the CChildFrame class, which supports the child windows in an MDI application.

L L L U L L

L i
Other standard files:

StdAfx.h, StdAtx.cpp

These files are used to build a precompiled header (PCH) file named MFCExample.peh and a precompiled types
file named StdAtx.obj.

Resource.h
This is the standard header file. which defines new resource 1Ds, Microsoft Visual C++ reads and updates this file.

L e
Other notes:

AppWizard uses "TODO:" to indicate parts of the source code you should add to or customize.
If your application uses MFC in a shared DLL, and your application is in a language other than the operating system’s

current language, vou will need to copy the corresponding localized resources MFC42XXX.DLL from the Microsoft

Visual C++ CD-ROM onto the system or system32 directory. and rename it to be MFCLOC.DLL. ("XXX" stands for
the language abbreviation.

For example. MFC42DEU.DLL contains resources translated to German.) If you don't do this. some of the UI
elements of your application will remain in the language of the operating system.

e T T

69




ParPortExample Program

This program use DialogBox as its™ interface. It has same files like MFCExample in
Appendix A except for these files :

. MainFrm.h
2. MainFrm.cpp
3. ChildFrm.h

4. ChildFrm.cpp

There are 2 additional files :
|. ParPortExampleDlg.h
2. ParPortExampleDlg.cpp

These 2 files were the application of the project.

File name : ParPortExampleDlg.h
LINE SOURCE CODE

{f ParPortExampleDig.h : header file
1/

#if !defined(AFX_PARPORTEXAMPLEDLG_H__6ECEBBAT7_F885_11D7_B1A3_AF4FB94E6A35_ INCLUDED )
#define AFX_PARPORTEXAMPLEDLG_H_ BECEBBA7 _F885_11D7_B1A3_AF4FBO4EBA3S __INCLUDED_

#f_MSC_VER > 1000

#pragma once
#endif / _MSC_VER > 1000

SR~ E WK -

11 e e
12 { CParPortExampleDlg dialog

14 class CParPortExampleDig : public CDialog
{
16 If Construction

17 public:

18 int Signal;

19 int Statusin;

20 CParPortExampleDlg{CWnd" pParent = NULL);  // standard constructor
21 // Dialog Data

22 /I{{AFX_DATA(CParPortExampleDlg)

2 enum { IDD = IDD_PARPORTEXAMPLE_DIALOG };

24 Cbutton btnCheck;

25 Cbutton binSend;

26 I/ NOTE: the ClassWizard will add data members here

27 IMAFX_DATA

29 /I ClassWizard generated virtual function overrides

30 I{AFX_VIRTUAL(CParPortExampleDig)

31 protected:

32 virtual void DoDataExchange(CDataExchange* pDX): // DDX/DDV support
33 IMAFX_VIRTUAL

35 {/ Implementation
36 protected:

37 HICON m_hicon;

8

39 /l Generated message map functions
40 I{{AFX_MSG(CParPortExampleDig)
41 virtual BOOL OnlnitDialog();

70



42 afx_msg void OnSysCommand(UINT nID, LPARAM |Param);

43 afx_msg void OnPaint();

44 afx_msg HCURSOR OnQueryDraglcon();
45 afx_msg void OnSignalin():

48 afx_msg void OnCheck();

a7 afx_msg void OnSend();

48 virtual void OnCancel();

49 IMAFX_MSG

50 DECLARE _MESSAGE_MAP()

51 ki

52

53 I{{AFX_INSERT_LOCATION}}

54 // Microsoft Visual C++ will insert additional declarations immediately before the previous line.
55

56 #endif )/

57 Idefined(AFX_PARPORTEXAMPLEDLG H__6ECEBBA7_F885_11D7_B1A3_AF4FBY4E6A35 INCLUDED_)

File name : ParPortExampleDlg.cpp

LINE SOURCE CODE
1 /i ParPortExampleDlg.cpp : implementation file
2 /i
3
4 #include "stdafx.h”

5 #include "ParPortExample.h”
6 #include "ParPortExampleDig.h"
7
8 #include "conio.h™
9
10 #ifdef DEBUG
11 #define new DEBUG_NEW
12 #undef THIS_FILE
13 static char THIS_FILE[] = _ FILE__:
14 #endif
15
16 e e
17 /I CAboutDig dialog used for App About
18
19 class CAboutDlg : public CDialog
20 {
21 public:
22 CAboutDig( );
23
24 /i Dialog Data
25 JI{{AFX_DATA({CAboutDIg)
26 enum { IDD = IDD_ABOUTBOX };
27 IMAFX_DATA
28
29 /I ClassWizard generated virtual function overrides
30 I{{AFX_VIRTUAL(CAboutDig)
31 protected:
32 virtual void DoDataExchange(CDataExchange® pDX); // DDX/DDV support
33 IMAFX_VIRTUAL
34
35 /f implementation
36 protected:
37 IH{{AFX_MSG(CAboutDig)
a8 (MAFX_MSG
39 DECLARE_MESSAGE_MAP()
40 k
41
42 CAboutDig::CAboutDIg() : CDialog(CAboutDIg::IDD)

71



43
44
45
46
47
.l3
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
5
66
67
58
69
70
74
72
73
74
75
76

78
79
BO
81
82
83
84
BS
a6
£ 7
B8
89
90
N
92
93
Gd
95

a7
98
99
100
101
102
103
104

HII{AFX_DATA_INIT(CAboutDlg)
INAFX_DATA_INIT

)

void CAboutDig::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
II{{AFX_DATA_MAP(CAboutDIg)
IMAFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDig, CDialog)
H{{AFX_MSG_MAP(CAboutDIg)
/l No message handlers
IAFX_MSG_MAP
END_MESSAGE_MAP()

e e
/f CParPortExampleDig dialog

CParPortExampleDig::CParPortExampleDig(CWnd* pParent "=NULL*/)
: CDialog(CParPortExampleDlg::|DD, pParent)

{

- H{{AFX_DATA_INIT(CParPortExampleDig)
// NOTE: the ClassWizard will add member initialization here

HMAFX_DATA_INIT
/I Note that Loadlcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetApp()->Loadlcon({IDR_MAINFRAME);

}

void CParPortExampleDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
IH{AFX_DATA_MAP{CParPortE xampleDig)
/I NOTE: the ClassWizard will add DDX and DDV calis here
DDX_Control{pDX. IDC_CHECK, btnCheck);
DDX_Control{(pDX, IDC_SEND, btnSend);
[AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CParPortExampleDlg, CDialog)

IH{AFX_MSG_MAP(CParPortExampleDig)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_SIGNALIN, OnSignalin)
ON_BN_CLICKED(IDC_CHECK, OnCheck)
ON_BN_CLICKED(IDC_SEND, OnSend)
INJAFX_MSG_MAP

END_MESSAGE_MAP()

e
// CParPortExampleDig message handlers

BOOL CParPortExampleDig::OnlinitDialog()
{
CDialog::OninitDialog();
I{ Add "About...” menu item to system menu.

/f IDM_ABOUTBOX must be in the system command range.

72



105
106
1Q7
108
109
110
11
12
113
114
115
116
1"y
118
119
120
121
122
123
124
125
126
127
128
129
130
N
132
133
134
135
136
137
138
139
140
P41
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
158
160
161
162
163
164
165
166

ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu = NULL)
{

CSitring strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (!strAboutMenu.|sEmpty())

{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu;

}

/I Set the icon for this dialog. The framework does this automatically
/! when the application's main window is not a dialog
Setlecon{m_hicon, TRUE) il Set big lcon
Seticon(m_hicon, FALSE); /I Set small icon

/I TODO: Add extra initialization here

return TRUE: // return TRUE unless you set the focus to a control
}

void CParPortExampleDig::OnSysCommand(UINT niD, LPARAM IParam)

{
f ((nID & OXFFFO) == IDM_ABOUTBOX)
{

CAboutDig digAbout;
digAbout.DoModal();

CDialog::OnSysCommand(nID, [Param);

il f you add a minimize button to your dialog, you will need the code below
il to draw the icon. For MFC applications using the document/view model,
1l this is automatically done for you by the framework.

void CParPortExampleDig::OnPaint()

if (Islconic{))

{
CPaintDC dc(this); // device context for painting
SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc{), 0);
If Genter icon in client rectangle
int cxicon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRectrect:
GetClientRect{&rect);
int x = (rect.Width{) - cxicon + 1)/ 2;
int y = (rect.Height{) - cylcon + 1)/ 2:

i Draw the icon
de.Drawlcon(x. y. m_hlcon);

73



167 {

168 CDialog::OnPaint();

169 i

170 }

171

172 // The system calis this o obtain the cursor to display while the user drags
173 # the minimized window.

174 HCURSOR CParPortExampleDlg::OnQueryDraglcon()

175 {

176 return (HCURSOR) m_hlcon;

177 i

178

179 void CParPortExampleDig::OnSignalin()
180 {

181 1 TODO: Add your control notification handler code here
182 Signal = _inp( 0x0379 );

183 Statusin = Signal & 32;

184

185 if{ Statusin == 32)

186 btnCheck.SetCheck(1);
187 }

188

189 void CParPortExampleDig::OnCheck()

190 {

191 /I TODO: Add your control notification handler code here
192

103 }

194

195 void CParPortExampleDig::OnSend()

196 {

167 /I TODO: Add your control notification handler code here
198 _outp({ 0x0378, 1 );

199 1

200

201 void CParPortExampleDig::OnCancel()

202 {

203 1 TODO: Add extra cleanup here
204 _outp( 0x0378,0 );

205 CDialog::OnCancel(};

206 }

File name : ReadMe.txt

MICROSOFT FOUNDATION CLASS LIBRARY : ParPortExample

AppWizard has created this ParPortExample application for you. This application not only demonstrates the basics of
using the Microsoft Foundation classes but is also a starting point for writing your application.

This file contains a summary of what you will find in each of the files that make up your ParPortExample application.
ParPortExample.dsp
This file (the project file) contains information at the project level and is used to build a single project or subproject.
Other users can share the project (.dsp) file, but they should export the makefiles locally.

ParPortExample.h

74



This is the main header file for the application. It includes other project specific headers (including Resource.h)
and declares the CParPortExampleApp application class,

ParPortExample.cpp
This is the main application source file that contains the application class CParPortExampleApp.

ParPortExample.re
This is a listing of all of the Microsoft Windows resources that the program uses. It includes the icons, bitmaps,
and cursors that arc stored in the RES subdirectory. This file can be directly edited in Microsoft Visual C++.

ParPortExample.clw
This file contains information used by ClassWizard to edit existing classes or add new classes. ClassWizard also
uses this file to store information needed to create and edit message maps and dialog data maps and to create
prototype member functions.

res\ParPortExample.ico
This is an icon file. which is used as the application’s icon. This icon is included by the main resource file
ParPortExample.rc.

res\ParPontExample.rc2
This file contains resources that are not edited by Microsoft Visual C+=. You should place all resources not
editable by the resource editor in this file.
L L L L T L
AppWizard creates one dialog class:
ParPortExampleDlg.h, ParPortExampleDlg.cpp - the dialog
These files contain your CParPortExampleDlg class. This class defines the behavior of your application's main
dialog. The dialog's template is in ParPortExample.re, which can be edited in Microsoft Visual C++.

e

Other standard files:

StdAfx.h, StdAfx.cpp
These files are used to build a precompiled header (PCH) file named ParPortExample.peh and a precompiled types
file named StdAfx.obj.

Resource.h
This is the standard header file, which defines new resource IDs, Microsoft Visual C++ reads and updates this file.

L L L L

Other notes:

AppWizard uses "TODO:" to indicate parts of the source code you should add to or customize.

If your application uses MFC in a shared DLL. and your application is in a language other than the operating system's
current language, you will need to copy the corresponding localized resources MFC42XXX.DLL from the Microsoft
Visual C++ CD-ROM onto the system or system32 directory, and rename it to be MFCLOC.DLL. ("XXX" stands for
the language abbreviation.

For example, MFC42DEU.DLL contains resources translated to German.) If you don't do this, some of the Ul
elements of your application will remain in the language of the operating system.

e e

75


http:ParPonExamplc.rc
http:ParPortExampk.rc
http:mcssa.ge
http:ParPonExanlpl~.rc

APPENDIX B

Movements and Directions Control Operation of
Computer Program

Mavement and
Directions Buttons

"

Send a byte =0, to
Parallel Pont

; O

All pins in Low State, 0 V

Button |
Pressed ?

Sends a byte = 1 Sends a byte = 2,
to Parallel Port to Parallel Port

G

Parallel Port Pins
State

76



Sends a byte = 4,

to Para

el Port

Sends a byte = §,
1o Parallcl Pon

mahﬂc=0‘
to Paraflel Port

QRO




Object Detection Operation of Computer
Program

/ Pin 12 State /

Pin12in
High State?

Yes

Computer Program show
the result

/ Program Display /

78



Computer Program

File name : HoverButton.h
LINE SOURCE CODE

#if Idefined{AFX_HOVERBUTTON_H__16C6D980_BD45_11D3_BDA3_00104B133581_ INCLUDED )

1
3 #define AFX_HOVERBUTTON_H__16C6D980_BD45_11D3_BDA3_00104B133581_ INCLUDED _
4
5 #if _MSC_VER > 1000
6 #pragma once
7 #endif // _MSC_VER > 1000
8 {/l HoverButton.h : header file
9 i
10

11 e e e

12 If CHoverButton by Niek Albers

13 I/ Thanks to some people for the tooltip.

14 /f A cool CBitmapButton derived class with 3 states,
15 I Up/Down/Hover.

18 class CHoverButton : public CBitmapButton

\7 {
18 DECLARE_DYNAMIC({CHoverButton);
19
20 /! Construction
1 public:
22 CHoverButton();
2 void SefToolTipText{CString” spText, BOOL bActivate = TRUE);
24 void SefToolTipText{int nld, BOOL bActivate = TRUE);
25
26 /I Attributes
27 protected:
28 void ActivateTooltip{BOOL bActivate = TRUE);
29 BOOL m_bHover; # indicates if mouse is over the button
30 CSize m_ButtonSize; /' width and height of the button
3 CBitmap mybitmap;
32 BOOL m_bTracking;
a3
34 If Overrides
35 /I ClassWizard generated virtual function overrides
36 IH{{AFX_VIRTUAL(CHoverButton)
37 protected:
38 virtual BOOL PreTranslateMessage(MSG* pMsg);
39 virtual void Drawltem(LPDRAWITEMSTRUCT IpDrawltemStruct);
40 INYAFX_VIRTUAL
41
42 Il Implementation
43 public:
14 BOOL LoadBitmap(UINT bitmapid),
45 virtual ~CHoverButton();
48
A7 // Generated message map functions
48 protected:
49 CtoolTipCtrl m_ToolTip:
50 void InitTooiTip();
51 {{{AFX_MSG{CHoverButton)
52 afx_msg void OnMouseMove(UINT nFlags. CPoint point);
53 afx_msg LRESULT OnMousel eave(WPARAM wparam, LPARAM Iparam);
54 afx_msg void OnMouseHover(WPARAM wparam, LPARAM Iparam) ;
55 INAFX_MSG
=20
57 DECLARE_MESSAGE_MAP()
58 }
59
60 HHIH R R
61
62 H{AFX_INSERT_LOCATION}}
63 I Microseft Visual C++ will insert additional declarations immediately before the previous line.
64

65 #endif // |defined(AFX_HOVERBUTTON_H__16C6D880_BD45_11D3_BDA3_00104B133581__ INCLUDED )

79



File name : HoverButon.cpp

;

::-ur\_a:ct:}wwmu-:-um—-

SOURCE CODE

{// HoverButton.cpp : implementation file
i

#include "stdafx.h”
#include "HoverButton.h™

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;
#endif

T e e e
/! ChoverButton

CHoverButton::CHoverButton()

{
m_bHover = FALSE;
m_bTracking = FALSE;

}
CHoverButton::~CHoverButton()
{

)
IMPLEMENT_DYNAMIC(CHoverButton, CBitmapButton)

BEGIN_MESSAGE_MAP(CHoverButton, CBitmapButton)
II{AFX_MSG_MAP(CHoverButton)
ON_WM_MOUSEMOVE()

ON_MESSAGE(WM_MOUSELEAVE, OnMousel.eave)

ON_MESSAGE(WM_MOUSEHOVER, OnMouseHover)
IIBAFX_MSG_MAP

END_MESSAGE_MAP()

e e
i CHoverButton message handlers

void CHoverButton::OnMouseMove(UINT nFlags. CPoint point)

{
i TODO: Add your message handler code here and/or call default

if (!m_bTracking)
{

TRACKMOUSEEVENT ime;

tme.cbSize = sizeof(tme):

tme.hwndTrack = m_hWnd:

tme.dwFlags = TME_LEAVE|{TME_HOVER:
tme.dwHoverTime = 1;

m_bTracking = _TrackMouseEvent(&tme);

}
CBitmapButton::OnMouseMove(nFlags, point);
}

BOOL CHoverButton::PreTranslateMessage(MSG* pMsg)
{
1/ TODO: Add your specialized code here and/or call the base class
InitToolTip{);
m_ToolTip.RelayEvent(pMsg):
return CButton::PreTranslateMessage(pMsg);
}

/I Set the tooltip with a string resource
void CHoverButton::SetToolTipText(int nld, BOOL bActivate)

{
CString sText;

{/ load string resource

sText.LoadString{nid);

i If string resource is not empty

if (sText.IsEmpty() == FALSE) SetToolTipText(&sText, bActivate);

80


http:HoverButton.cw

72
73
74
75
78
7
78
79
80
a1
82
B3
84
B85

87

a8
90

92
83
ad
05

a7
88

100
101
102
103
104
105
108
107
108
109
110
111
112
113
114
15
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131

133
134
135
136
137
138

139
140
141
142
143
144
145

/1 Set the tooltip with a Cstring
void CHoverButton::SetToolTipText(CString “spText, BOOL bActivate)

{

/! We cannot accept NULL pointer
if (spText == NULL) return;

/f Initialize ToolTip
InitToolTip();

! If there is no tooltip defined then add it
if (m_ToolTip.GetToolCount() == 0)
{

CRect rectBtn;

GetClientRect(rectBtn);

m_ToolTip.AddTool(this, (LPCTSTR) spText. rectBtn, 1);
}
/I Set text for tooltip

m_ToolTip.UpdateTipText((LPCTSTR) spText, this, 1);
m_ToolTip Activate(bActivate);

}

void CHoverButton::InitToolTip()

if (m_ToolTip.m_hWnd == NULL)
{

i Create ToolTip control
m_ToolTip.Create(this);

/i Create inactive
m_ToolTip.Activate(FALSE);

}
} // End of InifToolTip
il Activate the tooltip

void CHoverButton::Activate Tooltip(BOOL bActivate)

{

il If there is no tooltip then do nothing
if (m_ToolTip.GetToolCount() == 0) return;

I Activate tooltip

m_ToolTip.Activate(bActivate);

} // End of EnableTooltip

void CHoverButton::Drawitem(LPDRAWITEMSTRUCT IpDrawitemStruct)
{

{/ TODO: Add your code to draw the specified item

CDC *mydc=CDC:
CDC * pMemDC =

:FromHandle(lpDrawitem Struct->hDC):

new CDC;

pMemDC -> CreateCompatibleDC(mydc);

CBitmap " pOidBitmap;
pOldBitmap = pMemDC -> SelectObject(&mybitmap);

CPoint point(0.0);

if{lpDrawitemStruct->itemState & ODS_SELECTED)

{

Mydc-
>Baﬂt(0,0},m_3umnSize.c.x.m_BummShe.cy.pMemDC.m_BuﬂonSize.mO.SRCCOPY}‘.

‘{if(m_waar}

Else

{
Jelse
{
}

}

I/ ¢lean up

mydc->BitBIi(0,0,m_ButlonSize.cx.m_ButtonSize.cy,pMemDC,
m_ButtonSize.cx*2,0,.SRCCOPY);

mydc->BitBIt(0,0,m_ButtonSize.cx.m_ButtonSize.cy,pMemDC,0,0, SRCCOPY);

81



146 pMemDC -> SelsctObjeci pOcSeag )

147 delete pMemDC:

148 }

149

150 /f Load a bitmap from the resources in e bution, he bemap has o have 3 buttonssiates next 1 each other:

Up/Down/Hover

151 BOOL CHoverButton: LoadBamap(UINT bitmapsd)

152 {

153 mybitmap Attach{ - Loadimags( “AixGetinstanceHandle{ ), MAKEINTRESOURCE(bitmapid).
IMAGE_BITMAP.0.0LR_LOADMAP3DCOLORS)).

154 BITMAP bitmapbits:

155 mybitmap GelBitmap(&bitmapbits),

157 m_ButtonSize.cy=bitmapbits.bmHeight;

158 m_ButtonSize.cx=bitmapbits bmWidth/3;

159 SetwindowPos( NULL, 0,0, m_ButtonSize.cx.m_ButtonSize.cy,SWP_NOMOVE |SWP
_NOOWNERZORDER };

160 return TRUE;

161 }

162

163 void CHoverButton::OnMouseHover(WPARAM wparam, LPARAM lparam)

164 {

165 #f TODO: Add your message handler code here and/or call default

166 m_bHover=TRUE;

167 Invalidate():

168 }

170 LRESULT CHoverButton::OnMousel.eave(WPARAM wparam, LPARAM Iparam)
171 {

172 m_bTracking = FALSE;
173 m_bHover=FALSE:;

174 Invalidate();

178 return 0;

176 }

File name : Computerize Remote Control CarDlg.h

LINE SOURCE CODE

Il Computerize Remote Control CarDig.h : header file
1l

s L3RS

#if ldefined(AFX_COMPUTERIZEREMOTECONTROLCARDLG_H__ 7COEB2E7_63B8_11DB_B798
_0050BA5F7625_ INCLUDED )

#define AFX_COMPUTERIZEREMOTECONTROLCARDLG_H__7COEB2E7_63B8_11D8_B798
_DO50BASF7625_ INCLUDED

o

)

7 #if MSC_VER > 1000

8 #pragma once

g #endif // _MSC_VER > 1000
1G
11 #include "HoverButton.h"
12 #include <conio.h>

13
14 e e
15 /I CComputerizeRemoteControlCarDig dialog
16

17 class CComputerizeRemoteControlCarDIg : public CDialog
18

{
19 {i Construction

20 public:

21 CComputerizeRemoteControlCarDIg{CWnd" pParent = NULL); /I standard constructor
22 CString  text;

23 int count;

24 int count1;

25 int inStatusP;

28 int StatusP;

27

28 Hshort _stdcall Inp32(short PortAddress);

29 void _stdcall Out32(short PortAddress, short data);
30

31 /Il Dialog Data

32 H{{AFX_DATA(CComputerizeRemoteControlCarDig)

82



33 enum { IDD = IDD_COMPUTERIZEREMOTECONTROLCAR_DIALOG };

34 CHoverButton m_BTN_STOP;

35 CHoverBution m_BTN_RIGHT:

36 CHoverButton m_BTN_LEFT;

a7 CHoverButton m_BTN_FORWARD;

38 CHoverButton m_BTN_BACKWARD;

39 I})AFX_DATA

40

41 I ClassWizard generated virtual function overrides

42 H{AFX_VIRTUAL(CComputerizeRemoteControlCarDig)
43 protected:

44 virtual void DoDataExchange(CDataExchange™ pDX); // DDX/DDV support
45 IJAFX_VIRTUAL

a7 Il Implementation
48 protected:

49 HICON m_hlcon;

50

51 I/ Generated message map functions

52 I{AFX_MSG(CComputerizeRemoteControlCarDlg)
53 virtual BOOL OnlnitDialog();

54 afx_msg vold OnPaint();

56 afx_msg HCURSOR OnQueryDraglcon();
56 afx_msg void OnBtnBackward();

57 afx_msg void OnBtnForward();

58 afx_msg void OnBinLeft();

59 afx_msg void OnBinRight():

60 afx_msg void OnBinStop():

61 virtual void OnCancel():

62 afx_msg void OnTimer(UINT nIDEvent);
63 IMAFX_MSG

64 DECLARE_MESSAGE_MAP()

65 %

62 IH{AFX_INSERT_LOCATION}}
83 /I Microsoft Visual C++ will insert additional declarations immediately before the previous line.

85 #endif // Idefined(AFX_COMPUTERIZEREMOTECONTROLCARDLG H__ 7COEB2E7 6388 1108 B798
_0050BASF7625_ INCLUDED )

File name : Computerize Remote Control CarDlg.cpp

LINE SOURCE CODE

I Computerize Remote Control CarDlg.cpp : implementation file
i

#include "stdafx.h"
#include "Computerize Remote Control Car.h”
#include "Computerize Remote Control CarDig.h"

#ifdef DEBUG

#define new DEBUG_NEW

10 #undef THIS_FILE

11 static char THIS_FILE[ = _ FILE_;
12 #endif

LW ~NOO & WM -

14 L e e
16 I/f CComputerizeRemoteControlCarDlg dialog

17 CComputerizeRemoteControlCarDig::CComputerizeRemoteControlCarDig(CWnd* pParent /*=NULL*/)

18 : CDialog(CComputerizeRemoteControlCarDlg::|DD, pParent)

19 {

20 I{{AFX_DATA_INIT(CComputerizeRemoteControlCarDig)

21 IMAFX_DATA_INIT

22 1/ Note that Loadicon does not require a subsequent Destroylcon in Win32
23 m_hicon = AfxGetApp()->Loadlcon(IDR_MAINFRAME);

24 }

25

26 vold CComputerizeRemoteControlCarDlg::DoDataExchange(CDataExchange® pDX)
{
28 CDialog::DoDataExchange(pDX);

83



}

J{{AFX_DATA_MAP(CComputerizeRemoteControlCarDig)
DDX_Control(pDX, IDC_BTN_STOP, m_BTN_STOP);
DDX_Control(pDX, IDC_BTN_RIGHT, m_BTN_RIGHT):

DDX_Control(pDX, IDC_BTN_LEFT, m_BTN_LEFT);

DDX_Control(pDX, IDC_BTN_FORWARD, m_BTN_FORWARD);

DDX_Contro{pDX, IDC_BTN_BACKWARD, m_BTN_BACKWARD):
IMJAFX_DATA_MAP

BEGIN_MESSAGE_MAP(CComputerizeRemoteControlCarDlg, CDialog)

HH{{AFX_MSG_MAP{CComputerizeRemoteControlCarDig)
ON_WM_PAINT()

ON_WM_QUERYDRAGICON()

ON _BN_CLICKED(IDC_BTN_BACKWARD, OnBtnBackward)
ON_BN_CLICKED(IDC_BTN_FORWARD, OnBinForward)
ON_BN_CLICKED(IDC_BTN_LEFT, OnBtnLeft)

ON_BN_CLICKED(IDC_BTN_RIGHT, OnBtnRight)
ON_BN_CLICKED(IDC_BTN_STOP, OnBinStop)
ON_WM_TIMER()

IAFX_MSG_MAP

END_MESSAGE_MAP()

e L e e
/I CComputerizeRemoteControlCarDlg message handlers

BOOL CComputerizeRemoteControlCarDig::OninitDialog()

{

CDialog::OninitDialog():

// Set the icon for this dialog. The framework does this automatically
/i when the application's main window is not a dialog
Seticon{m_hicon, TRUE); /f Set big icon
Seticon{m_hicon, FALSE): /I Set small icon

// TODO: Add extra initialization here
m_BTN_FORWARD.LoadBitmap(IDB_BTN_FORWARD);
text=_T("Forward");

m_BTN_FORWARD.SetToolTipText(&text);

GetDigitem( IDC_TEXT_MOVE_FORWARD )->ShowWindow( FALSE );

I

m_BTN_BACKWARD.LoadBitmap(IDB_BTN_BACKWARD);
text=_T("Backward");

m_BTN_BACKWARD.SelToolTipText(&text);

GetDigitem( IDC_TEXT_MOVE_BACKWARD }->ShowWindow( FALSE };

1.
o

m_BTN_RIGHT.LoadBitmap(IDB_BTN_RIGHT);

text=_T("Right");

m_BTN_RIGHT.SetToolTipText(&lext);

GetDigitem({ IDC_TEXT_MOVE_RIGHT )->ShowWindow( FALSE );

i

m_BTN_LEFT.LoadBitmap(IDB_BTN_LEFT);

text=_T("Left");

m_BTN_LEFT SetToolTipText(&text);

GetDigltem( IDC_TEXT_MOVE_LEFT )->ShowWindow( FALSE );

{1
i

m_BTN_STOP.LoadBitmap(IDB_BTN_STOP),
text=_T({"Stop™);
m_BTN_STOP.SetToolTipText{&text):

StatusP = 0;

count=0;

countl =0;

SetTimer( 1, 100, NULL );

return TRUE; // return TRUE unless you set the focus to a control



i you add a minimize bution to your dialog, you will need the code below
/I to draw the icon. For MFC applications using the document/view model,
/I this is automatically done for you by the framework.
void CComputerizeRemoteControlCarDig::OnPaint()

;f {Isiconic())

CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0):

/f Center icon in client rectangle

int cxlcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect):

int x = (rect. Width() - cxlcon + 1) / 2;

inty = (rect.Heighl() - cylcon + 1) / 2;

/I Draw the icon
de.Drawlcon(x, y, m_hlcon);

CDialog::OnPainl():

/l The system calls this o obtain the cursor to display while the user drags
/f the minimized window.

HCURSOR CComputerizeRemoteControlCarDlg::OnQueryDraglcon()

{

}

void CComputerizeRemoteControlCarDig::OnBtnForward()
{

return (HCURSOR) m_hicon;

/I TODO: Add your control notification handler code here

GetDigltem( IDC_TEXT_MOVE_FORWARD )->ShowWindow( TRUE );
GetDigitem( IDC_TEXT_MOVE_BACKWARD )->ShowWindow({ FALSE );
GetDigitem( IDC_TEXT_MOVE_RIGHT )->ShowWindow{ FALSE );
GetDigitem( IDC_TEXT_MOVE_LEFT )->ShowWindow( FALSE );
_outpw( 0x0378, 1 );

}

void CComputerizeRemoteControlCarDlg::OnBtnBackward()

{
// TODO: Add your control notification handler code here
GetDlgitem( IDC_TEXT_MOVE_FORWARD )->ShowWindow( FALSE );
GetDigitem( IDC_TEXT_MOVE_BACKWARD }->ShowWindow{ TRUE );
GetDlgitem( IDC_TEXT_MOVE_RIGHT )->ShowWindow( FALSE );
GetDlgitem( IDC_TEXT_MOVE_LEFT )->ShowWindow{ FALSE );
_outpw{ 0x0378, 2 );

}

void CComputerizeRemoteControlCarDig::OnBtnRight()

{
{l TODO: Add your control notification handler code here
GetDigitem{ IDC_TEXT_MOVE_FORWARD )->ShowWindow{ FALSE );
GetDigitem( IDC_TEXT_MOVE_BACKWARD )->ShowWindow{ FALSE ):
GetDigitem{ IDC_TEXT_MOVE_RIGHT )->ShowWindow( TRUE );
GetDigltem( IDC_TEXT_MOVE_LEFT )->ShowWindow{ FALSE );
_outpw{ 0x0378.4 );

}

void CComputerizeRemoteControlCarDlg::OnBtnLeft()

{
/I TODO: Add your control notification handler code here
GetDigltem( IDC_TEXT_MOVE_FORWARD )->ShowWindow{ FALSE );
GetDigltem({ IDC_TEXT_MOVE_BACKWARD )->ShowWindow( FALSE );
GetDigltem( IDC_TEXT_MOVE_RIGHT )->ShowWindow( FALSE );
GetDlIgltem( IDC_TEXT_MOVE_LEFT )-»>ShowWindow( TRUE );
_outpw( 0x0378, 8 ).

85


http:intexl('.On

176
177
178
179
180
181
182
183
184
185
186
187
188
189
180
181
192
183
184
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
2N
212
213
214
215
218
217
218
219
220
221
222
223

void CComputerizeRemaoteControlCarDlg::OnBtnStop()

{

}

/I TODO: Add your control notification handler code here

GetDiglitem( IDC_TEXT_MOVE_FORWARD )->ShowWindow( FALSE );
GetDigitem( IDC_TEXT_MOVE_BACKWARD )->ShowWindow{ FALSE );
GetDigltem( IDC_TEXT_MOVE_RIGHT }->ShowWindow{ FALSE )
GetDigltem( IDC_TEXT_MOVE_LEFT }->ShowWindow( FALSE );
_outpw( 0x0378.0 );

void CComputerizeRemoteControlCarDig::OnTimer(UINT nIDEvent)

{

!

/I TODO: Add your message handler code here and/or call default
inStatusP = _inpw( 0x0379 )

StatusP = inStatusP & 32;

StatusP = 32,

if( StatusP 1= 32)
ifl count==0)

GeltDigitem( IDC_ALERT_PICTURE )->ShowWindow( TRUE );
GetDlgltem( IDC_ALERT_TEXT )->ShowWindow( TRUE );

count++;
count1 = 0;
}
}
Flse
;I'( countl ==0)
GetDigltem( IDC_ALERT_PICTURE }->ShowWindow( FALSE );
GetDigltem( IDC_ALERT_TEXT )->ShowWindow{ FALSE );
countl++;
count = 0;
L
}

CDialog::OnTimer(nIDEvent);

void CComputerizeRemoteControlCarDlg::OnCancel()

/{ TODO: Add extra cleanup here
_outpw{ 0x0378, 0 );

CDialog::OnCancel();

86



APPENDIX C

Microcontroller Program

File name : MicroProg.bas

Line

16

18

DEVICE
DEFINE
SYMBOL
SYMBOL
SYMBOL

LOOP:

ACTION:

Source Code

16F84

PORTB = 10000000
TRIG=B.0

OuUT=B.1

IN=B.7

SET TRIG

SET IN
BUTTON IN
GOTO ACTION

Clear TRIG

SET OUT
DELAYMS (500)
Clear OUT
GOTO LOOP

End

File name : MicroProg.asm

Line

Source Code

; (C) Leading Edge Technology Ltd

; === Pic Basic Compiler V4.6 ---

. Website: http://LET.cambs.net

; EMail: johnmorr@mail keyworld.net

w equ 00
F equ 0l

LIST p=16F84, =DEC
; ~==== DEFINEPORTB=10000000 -----
movlw 128

87


mailto:johnmorr@mail.keyworld.net
http:http://LET.cambs.nc

14

16
17
18
19
20
21

L.

23

24
25
26
27
28
29
30
31
32
33
35
36
3
38
39
40
41
42
43

tris 06

LOOP : ----- LOOP: SET TRIG -----

bsf 06,00

1 === SET IN -----
bsf 06,07

i «===- BUTTON IN -----
btfsc 06,07
goto  S$-1
bifss 06,07
goto  S-1
goto ACTION

ACTION e alus ACTION:

bef 06,00

1 ----- SET OUT -----
bsf 06,01

i ====- DELAYMS( 500 ) -=---
movlw 500
movwf 13
clef 12

pb_lab2
nop
nop
decfsz 12,F
goto pb_lab2
decfsz 13.F
goto pb_lab2

3 mmm—- CLEAR OUT -----
bef 06,01
goto LOOP
END

CLEAR TRIG -----



APPENDIX D

Mode 1 Operation : Movements

And
Directions Control

Movement and
Directions Buttons

Send a byte =04 10
Parallel Port

:

No movement and
turn

Program

Button |
Pressed ?

Button —
Pressed ?

Sends a byte = 1
to Parallel Port

Sends a byte = 2,
to Parallel Port

Sends a byte = 44
to Parallel Pont

l _______________ l L _______

Pin 2, P2 changes
to High State,
45V

Pin 3, P3 changes
to High State.
FHN

Parallel Port

Pin 4, P4 changes
to High State,
+3V

o

89

o




Program

Parallel Port

Car

Sends a byte = 84
to Parallel Port

Sends a byte = 0
to Parallel Port

Pin 4, P4 changes
to High State,

All Pins change to
Low State, 0 V

Transistor 4. Q4
ON

All Transistors OFF

Current flows
from Source 2, S2
1o Point 4, Ptd

Car tums left

No currents How
from both Source
to all respective
pomnts

90




Parallel Port

Pin 2, P2 changes
to High State,
+5¥

Pin 3, P3 changes
to High State,
+5V

Pin 4, P4 changes
to High State,
+5V

Interface Circuit 1

Transistor 1. Q1
On

Transistor 2, Q2
On

Transistor 3. Q3
On

Remote Controller

Current lows
from Source 1, S|
to Point 1, Ptl

Current flows
from Source 1, S1
to Point 2, Pt2

Current flows
from Source 2, S2
to Point 3, Pt3

PG

______________ I ¥

Car move forward

Car

Car move
backward

Car turns right

91

Car Movements
and Directions




Mode 2 Operation : Object Detection

Microcontroller

UTx

LRX

Microcontroller

Interface Circuit 3

Signal Transmitter

URX sens¢
ultrasonic signal

Trigger UTX

3

Transmit ultrasonic
signal

Generate 25us +5V
square wave

'

Generate 500ms
+5V square wave

'

Transistor 6. Q6
On

i

Current flows from Source Srcl

to Point Pntl




Interface Circuit 2 Transistor 5, Q3
On

Current flows from Voitage
regulator, VR to Pin 12

Computer Program show
the result

I
[==7
va )




APPENDIX E

Photographs

The Remote Control Car in The Remote Control Car in
Isometric View Left View

The Remote Control Car in The Remote Control Transmitter
[ Back View and Data Receiver View

94





