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ABSTRACT 

Sarawak is transitioning to green energy adoption, yet progress is hindered by a lack of 

comprehensive spatial data to identify optimal locations, inadequate optimization techniques 

for effective integration of these sites, and insufficient robust Industrial Internet of Things-

based real-time monitoring and automation strategies to manage the intermittent nature of 

green energy resources. To address these challenges, a novel Geographical Information 

System-based fuzzy Technique for Order Preference by Similarity to Ideal Solution coupled 

with filtration algorithms was proposed. This two-layered approach effectively filters 

potential green energy sites. The first layer identified 23 optimal wind energy sites and 138 

optimal hydro energy sites. The second layer employed spatial data and the fuzzy Technique 

for Order Preference by Similarity to Ideal Solution algorithm to refine potential solar energy 

sites, yielding the top 100 optimal locations. The proposed method demonstrated a 69.01 % 

alignment when validated against the weighted sum method. Following site identification, 

an improved Geographical Information System-driven fuzzy Traveling Salesman Problem-

Binary Integer Programming algorithm was proposed to integrate these sites into a reliable 

ring-based system topology, aiming to achieve a zero-carbon footprint. The process involved 

clustering by divisions and designing optimal electrical power line routing for each cluster, 

prioritizing minimum total distance, elevation difference, and average ground flash density. 

Validation against conventional methods and state-of-the-art algorithms confirmed the 

superior performance of the proposed approach. Additionally, an Industrial Internet of 

Things-based system utilizing servers, cloud platforms, and Supervisory Control and Data 

Acquisition systems was developed for real-time monitoring, control, and automation to 

address green energy intermittency. Hardware prototypes using Raspberry Pi and Industrial 

Internet of Things components were interfaced with SCADA systems to validate real-world 
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applicability. Experimental results confirmed the effectiveness of the proposed 

methodologies. In conclusion, the proposed methodologies demonstrate the potential to 

overcome barriers to green energy implementation, fostering sustainable development in 

Sarawak. This research offers practical insights for policymakers, energy stakeholders, and 

researchers advancing green energy initiatives. 

Keywords: Fuzzy, green energy resources, geographical information system, integrated 

green energy systems, industrial internet of things  
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Satu Kerangka untuk Pengenalpastian dan Penyepaduan Sumber Tenaga Hijau 

Disokong oleh Aplikasi Pemantauan, Kawalan dan Automasi Masa Nyata  

ABSTRAK 

Sarawak sedang beralih kepada penggunaan tenaga hijau, namun perkembangannya 

terhalang oleh kekurangan data spatial yang komprehensif untuk mengenal pasti lokasi 

optimum, teknik pengoptimuman yang tidak mencukupi bagi penyepaduan efektif tapak-

tapak ini, serta strategi pemantauan masa nyata dan automasi berasaskan Internet 

Perindustrian Perkara yang kurang kukuh bagi mengurus sifat berselang-seli sumber 

tenaga hijau. Bagi mengatasi cabaran ini, satu metodologi baharu Sistem Maklumat 

Geografi berasaskan teknik kabur untuk Technique for Order Preference by Similarity to 

Ideal Solution digabungkan dengan algoritma penapisan telah dicadangkan. Pendekatan 

dua lapisan ini berjaya menapis tapak tenaga hijau yang berpotensi. Lapisan pertama 

mengenal pasti 23 tapak tenaga angin optimum dan 138 tapak tenaga hidro optimum. 

Lapisan kedua menggunakan data spatial dan algoritma kabur untuk Technique for Order 

Preference by Similarity to Ideal Solution untuk memperhalusi tapak tenaga suria 

berpotensi, menghasilkan 100 lokasi solar optimum teratas. Kaedah yang dicadangkan 

menunjukkan tahap keselarasan sebanyak 69.01 % apabila disahkan terhadap kaedah 

jumlah berwajaran. Selepas pengenalpastian tapak, algoritma Masalah Jurujual 

Perjalanan-Pengaturcaraan Sistem Angka Perduaan yang dipacu oleh Sistem Maklumat 

Geografi  yang dipertingkatkan dicadangkan untuk menyepadukan tapak-tapak ini ke dalam 

topologi sistem berasaskan gelang yang boleh dipercayai, bertujuan mencapai sifar jejak 

karbon. Proses ini melibatkan pengelompokan mengikut bahagian dan merekabentuk laluan 

talian kuasa elektrik optimum untuk setiap kluster, dengan keutamaan diberikan kepada 

jumlah jarak minimum, perbezaan ketinggian, dan purata ketumpatan kilat tanah. 
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Pengesahan terhadap kaedah konvensional dan algoritma terkini membuktikan keunggulan 

pendekatan yang dicadangkan. Selain itu, sistem berasaskan Internet Perindustrian Perkara 

yang menggunakan pelayan, platform awan, dan sistem Kawalan Penyeliaan dan 

Pemerolehan Data dibangunkan untuk pemantauan masa nyata, kawalan, dan automasi 

bagi menangani sifat berselang tenaga hijau. Prototaip perkakasan menggunakan 

Raspberry Pi dan komponen Internet Perindustrian Perkara  dihubungkan dengan sistem 

sistem Kawalan Penyeliaan dan Pemerolehan Data untuk mengesahkan kebolehgunaan di 

dunia sebenar. Keputusan eksperimen mengesahkan keberkesanan metodologi yang 

dicadangkan. Kesimpulannya, metodologi yang dicadangkan berpotensi mengatasi 

halangan pelaksanaan tenaga hijau, sekaligus menyokong pembangunan mampan di 

Sarawak. Penyelidikan ini memberikan pandangan praktikal kepada pembuat dasar, 

pemegang kepentingan tenaga, dan penyelidik dalam memajukan inisiatif tenaga hijau. 

Kata kunci: Kabur, sumber tenaga hijau, sistem maklumat geografi, sistem tenaga hijau 

bersepadu, internet perindustrian perkara  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background 

Sarawak spans 124,450 𝑘𝑚2  with a population of nearly 3 million (Tang et al., 

2023). It has warm, humid climate, with temperatures between 23 ℃ to 32 ℃ (Isia et al., 

2022), offers significant potential for green energy. The state receives abundant solar 

radiation, averaging 4.21 𝑘𝑊ℎ𝑚−2 to 5.56 𝑘𝑊ℎ𝑚−2 (Kee et al., 2022) daily, and about 4.5 

hours of sunshine per day (Arief et al., 2020), making it ideal for solar energy sites. While 

average wind speeds are modest at 2 𝑚𝑠−1 to 3 𝑚𝑠−1, coastal regions experience higher 

velocities during the Northeast Monsoon, reaching up to 10 𝑚𝑠−1  (Lawan et al., 2020). 

Advancements in turbine technology now allow for effective energy capture even at these 

lower wind speeds. Additionally, with annual rainfall around 4,600 𝑚𝑚 (Huang et al., 2023) 

and plentiful rivers, hydroelectric power is a viable energy source for the region. generation. 

Identifying optimal Green Energy Resources (GERs) requires evaluating various 

climatic, technical, accessibility, environmental, and social factors. This comprehensive 

approach ensures thorough assessment of potential sites. Multi-Criteria Decision-Making 

(MCDM) methods are instrumental in this process, offering a structured framework to 

balance conflicting criteria and determine the relative importance of each factor (Shao et al., 

2020). These methods, which have evolved since the 1700s, are now integral across 

disciplines like mathematics, engineering, and economics. Common MCDM techniques 

include the Analytical Hierarchy Process (AHP), Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS), and Preference Ranking Organization Method for 
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Enrichment Evaluation (PROMETHEE), etc. Expert input is crucial in these evaluations to 

accurately weigh the significance of each criterion (Elkadeem et al., 2021). 

 Integrating identified green energy sites offers numerous benefits. Currently, power 

grid combines in Sarawak GERs with fossil fuel-based plants (Durin et al., 2022). 

Transitioning to a system solely powered by green energy is vital for sustainable 

development and achieving a zero-carbon footprint. This shift would reduce maintenance 

associated with combustion processes and eliminate risks tied to flammable materials. 

Moreover, utilizing inexhaustible resources like solar, wind, and hydro can lower operating 

costs and minimize environmental and health impacts due to reduced harmful emissions. 

Given the dispersed nature of GERs in Sarawak, designing optimal electrical power line 

routes is essential (Jong et al., 2022). This challenge parallels the Traveling Salesman 

Problem (TSP), which seeks the shortest path connecting multiple points (Pop et al., 2024). 

Both exact algorithms and approximate methods have been developed to address TSP, each 

with its own advantages and limitations (S. Wang et al., 2020). Comparing and validating 

these approaches is crucial when planning power line routes for GER integration. 

Integrated Green Energy Systems (IGESs) require advanced monitoring, control, and 

automation to manage the variable nature of GERs and fluctuating energy demands (Deng 

& Lv, 2020). The Industrial Internet of Things (IIoT) facilitates real-time tracking of energy 

production and consumption, enabling optimized management strategies. Technologies like 

Supervisory Control and Data Acquisition (SCADA), combined with servers and cloud 

computing, enhance coordination between energy systems and demand, improving the 

reliability and resilience of IGESs (Albogamy et al., 2022). Developing simulation models 

that incorporate real-time data can provide insights into system behavior. Validating these 
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models with hardware prototypes, such as the Raspberry Pi 5 ensures practical applicability 

and effectiveness in real-world scenarios (Eben Upton, 2023).  

The research is conducted systematically, beginning with the identification of GERs, 

integrating them into the system, and proposing effective solutions for real-time monitoring, 

control, and automation for IGESs. The culmination of these efforts results in comprehensive 

research works, wherein the proposed IGESs serve as a valuable asset for long-term energy 

security and accelerate the transition of Sarawak to a greener power provider. 

1.2 Problem Statement  

The transition towards GERs in Sarawak faces significant challenges due to the 

absence of comprehensive spatial information regarding suitable locations. A 

comprehensive assessment framework is essential for systematically identifying potential 

green energy locations in Sarawak (S. F. Shahrom et al., 2023). The absence of a robust and 

effective approach to identify large-scale optimal green energy locations severely limits the 

potential to harness GERs efficiently (Gribiss et al., 2023). This shortfall impedes progress 

and delays the transition towards a greener and more sustainable future for Sarawak (Rajakal 

et al., 2023). 

Once optimal green energy locations are identified, the subsequent task involves 

integrating GERs into a comprehensive system. However, there is a dearth of reliable 

optimization techniques, particularly in designing optimal electrical power lines routing. 

Critical factors such as distance, elevation difference, and lightning severity should be 

considered to optimize electrical power lines routing effectively. For instance, minimizing 

distance reduces costs, while minimizing elevation differences between green energy 

locations reduces construction and installation costs (Jong et al., 2022). Given high lightning 
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occurrence in Sarawak, minimizing Ground Flash Density (GFD) among green energy 

locations effectively mitigate the exposure of electrical power lines to lightning strikes 

(Savira Kamarani et al., 2023).  

Furthermore, IGESs require comprehensive monitoring, control, and automation 

(Prasanna Rani et al., 2023). In fact, the current state-of-the-art research lacks comprehensive 

IIoT-based real-time dynamic data monitoring, control, and automation strategies due to the 

intermittent nature of green energies such as solar and wind. These effective energy 

management practices are crucial for ensuring smooth power delivery and maximizing 

economic benefits (Lei et al., 2021; Rao et al., 2024). Therefore, it is essential to propose 

reliable systems to provide valuable insights for the effective utilization of GERs. 

1.3 Research Questions 

Research questions are listed as follows: 

i. How can large-scale optimal green energy locations in Sarawak State be 

identified using the MCDM method? 

ii. How does the integration of identified green energy locations using 

optimization algorithms enable the design of optimal electrical power lines 

routing in Sarawak State? 

iii. How can effective real-time monitoring, control, and automation strategies 

be established for the IGESs model, and how can they be validated using a 

hardware model? 
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1.4 Research Hypothesis 

Research hypotheses are listed as follows: 

i. An enhanced GIS-based MCDM approach model can efficiently identify 

large-scale optimal green energy locations in Sarawak State.  

ii. An improved GIS-driven Traveling Salesman Problem (TSP) optimization 

algorithm model is capable of effectively integrating the identified green 

energy locations by designing optimal electrical power lines routing in 

Sarawak State. 

iii. An IIoT-based system that utilizes servers, clouds, and SCADA enables real-

time monitoring, control, and automation strategies for the IGESs. The 

development of a hardware model can validate the effectiveness of 

interfacing hardware with SCADA for real-time monitoring, control, and 

automation strategies. 

1.5 Research Objectives 

Research objectives are listed as follows: 

i. To propose a novel GIS-based fuzzy TOPSIS and filtration algorithms for 

identifying large-scale optimal green energy locations in Sarawak State. 

ii. To develop an improved GIS-driven fuzzy TSP-BIP algorithm for integrating 

the identified green energy locations by designing optimal electrical power 

lines routing in Sarawak State. 

iii. To establish an innovative IIoT-based system that utilizes servers, cloud, and 

SCADA for real-time monitoring, control, and automation for the IGESs 
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simulation model, and to validate its effectiveness using a hardware 

prototype. 

1.6 Research Significance 

Research significances are listed as follows: 

i. Meet increasing electricity demand: Growing energy needs require 

sustainable solutions. This research identifies optimal green energy sites to 

ensure a reliable supply. 

ii. Reduce carbon footprint through green energy transition: Transitioning to 

green energy mitigates environmental risks from fossil fuels.  

iii. Facilitate sustainable development and electricity export: Efficient use of 

renewables can meet local power needs and allow surplus export to 

neighboring countries, boosting regional revenue. 

iv. Enhance efficiency and reliability: Integrating intermittent green energy 

resources requires careful planning. Research proposes optimized solutions 

for site selection, considering factors such as minimum distance, minimum 

elevation difference, and minimum GFD. 

v. Establish effective monitoring and control: Implementing IIoT technology 

enables real-time management of the intermittent properties of GERs 

effectively. 

vi. Realize economic benefits: Transitioning to green energy creates jobs, 

attracts investments, and reduces long-term energy costs.  
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1.7 Research Scope 

The research is scoped on identifying influential criteria and collecting their 

corresponding spatial data, which are systematically gathered and stored in a GIS database 

for analysis. A novel GIS-based fuzzy TOPSIS and filtration algorithm is proposed to 

identify optimal green energy locations on a large scale in Sarawak. Using GIS tools, the 

filtration algorithm effectively eliminates unsuitable locations for green energy deployment. 

The top 100 optimal Solar Energy Sites (SES) are then determined through the fuzzy 

TOPSIS algorithm and validated using the Weighted Sum Method. The selection of Wind 

Energy Sites (WES) is based on the filtration process and wind speed assessments, while 

Hydro Energy Sites (HES) are identified through the same filtration methodology. The 

integration of these green energy locations (SES, WES, HES) involves clustering based on 

Sarawak’s divisions. An improved GIS-driven fuzzy TSP-BIP algorithm is developed to 

design optimal electrical power line routing for each cluster, considering three primary 

parameters: distance, elevation difference, and Ground Fault Detection (GFD). The results 

obtained from this algorithm are compared and validated against other optimization 

algorithms. Furthermore, an advanced IIoT-based system is established, incorporating 

servers, cloud infrastructure, and SCADA for the IGESs. A simulation model of the IGESs 

is developed using MATLAB Simulink with a ring system topology. Real-time dynamic data 

are modeled and integrated into the IGESs for continuous monitoring. Manual control of AC 

and DC loads is conducted for maintenance purposes, while automation is implemented to 

manage DC and AC faults using SCADA window scripts. Additionally, a hardware model 

is developed and interfaced with SCADA to validate the effectiveness of the IIoT-based 

IGESs simulation model in real-time monitoring, control, and automation strategies. 
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1.8 Thesis Structure 

The thesis structure consists of five chapters. Chapter 1 introduces the research, 

including the background, problem statements, research questions, hypotheses, objectives, 

significance, and scope. This provides a clear rationale for conducting the research. Chapter 

2 conducts a comprehensive literature review, analyzing state-of-the-art criteria for GERs, 

MCDM methods, optimization algorithms, and IIoT-based systems for effective real-time 

monitoring, control, and automation. Rigorous analysis of state-of-the-art research is crucial 

for identifying research gaps. Chapter 3 presents the methodology, including GIS data 

collection and construction, GIS-based fuzzy TOPSIS and filtration algorithms, GIS-driven 

fuzzy TSP-BIP optimization algorithm, and the establishment of an IIoT-based system for 

effective real-time monitoring, control, and automation strategies with simulation models 

and hardware models. Chapter 4 analyzes the influential criteria, discusses the results of 

developed models, and performs validation to measure the reliability and robustness of the 

models. Finally, Chapter 5 provides the conclusion of the research, summarizing the 

findings, discussing their implications, and offering recommendations for further directions 

and contributions to the overall research work. 
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CHAPTER 2  
 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter offers a comprehensive review of the current state-of-the-art research 

on the identification and integration of GERs in Sarawak, along with methods for 

monitoring, controlling, and automating these resources. Initially, the focus lies on 

harnessing solar, wind, and hydro energy. The review takes into account crucial criteria from 

five perspectives (climatic, technical, accessibility, environmental, and social) when 

identifying a large scale of optimal green energy locations. Following this, an in-depth 

exploration of MCDM methods is conducted, as these techniques are widely employed in 

GERs identification. MCDM methods provide decision-makers with the means to evaluate 

multiple criteria and alternatives, facilitating the identification of optimal green energy 

locations. Subsequently, the chapter delves into the integration of these identified green 

energy locations through optimization algorithms. Both exact and approximate algorithms 

are scrutinized to assess their merits and demerits. Additionally, the applications of TSP 

utilizing these optimization algorithms are studied and analyzed. Furthermore, the chapter 

reviews the current implementation of real-time monitoring, control, and automation for 

IGESs. By synthesizing insights from existing literature, this review aims to discover the 

valuable research gaps in current research works. 

2.2 Components of Influential Criteria for GERs 

The categorization of influential criteria into distinct domains, including climatic, 

technical, accessibility, environmental, and social factors, is widely acknowledged as 

relevant for identifying optimal green energy locations (Shao et al., 2020). Therefore, all the 
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influential criteria within these five domains have been thoroughly discussed and explored. 

Additionally, a summary outlining the necessary criteria for SES, WES and HES has been 

provided. 

Solar radiation is the cornerstone for SES, typically quantified by Global Horizontal 

Irradiance (GHI). GHI reflects the total solar energy incident on photovoltaic arrays and is 

influenced by geographical factors such as longitude and latitude, as well as atmospheric 

conditions including humidity and temperature (Karipoğlu et al., 2022). An economically 

viable solar installation generally requires an average GHI of about 5 𝑘𝑊ℎ𝑚−2𝑑𝑎𝑦−1 

(Ayough et al., 2022), which serves as a key indicator of site potential. Air temperature is 

another critical factor where lower temperatures enhance PV efficiency and prolong panel 

lifespan, while even modest temperature rises (e.g., 1 ℃ ) can reduce power output by 0.5 

% to 0.6 % due to accelerated material degradation (Grubišić-Čabo et al., 2016). Humidity 

is measured as a percentage of maximum moisture content, also plays a significant role. High 

humidity can decrease efficiency by promoting water intrusion between cells and triggering 

corrosion, thereby increasing system failure risk (Günen, 2021). The duration of sunlight 

(typically around 7 hours per day) is essential as it directly correlates with total energy yield 

and is modulated by factors such as altitude and atmospheric clarity (Ruiz et al., 2020). Wind 

speed can influence solar installations by enhancing the cooling of PV modules, although 

excessive wind may also impose mechanical stresses (Ullah et al., 2021). Precipitation and 

cloudiness further affect SES performance; increased rainfall may reduce output by causing 

soiling or shading effects and cloud cover can diminish PV efficiency by 10 % to 25 % 

through scattering and refraction of sunlight (Perveen et al., 2019). Minor factors, including 

variations in air pressure, water vapor, total ozone, and lightning flash density, also 

contribute to the overall performance of solar panels. For WES, wind energy potential is 
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predominantly dictated by wind speed, which is essential for turbine activation and energy 

production. Operational wind speeds typically have a cut-in threshold of around 3 𝑚𝑠−1, 

with optimal performance near 6 𝑚𝑠−1 , and a cut-off limit around 25 𝑚𝑠−1 to prevent 

damage (Saint-Drenan et al., 2020). Alongside wind speed, wind power density is a critical 

metric that represents the average annual power available per unit area of a turbine’s swept 

zone; a minimum threshold of approximately 200 𝑊𝑚−2 is often required for viable energy 

extraction (Asadi & Pourhossein, 2021). Air density, influenced by temperature and altitude, 

affects the mass of air interacting with the turbine blades and thus the energy captured; higher 

air density typically improves power output. Turbulence intensity is another important 

subcriterion, as excessive turbulence can lead to rapid fluctuations in wind speed and 

direction, adversely affecting turbine stability and efficiency (Asadi & Pourhossein, 2021). 

Temperature and atmospheric pressure further modulate air density and wind behavior, 

while relative humidity has a subtler impact by slightly reducing air density. Wind direction 

is also pivotal, as optimal turbine orientation must align with prevailing wind patterns to 

maximize energy capture (Lawan et al., 2020). For HES, climatic factors focus on water 

resource characteristics. The water flow rate is the foremost criterion, as it directly 

determines the kinetic energy available for conversion into electricity and influences both 

turbine efficiency and reservoir management (Temel et al., 2023). Water temperature is also 

critical; colder water is preferred since it sustains optimal turbine performance and 

minimizes adverse impacts on efficiency, whereas higher temperatures can diminish output 

and pose risks to aquatic ecosystems (Simonović et al., 2021). Precipitation patterns are 

essential in ensuring a reliable and steady supply of water, which in turn supports consistent 

flow rates and sustainable energy production. Regions with ample and evenly distributed 
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rainfall are generally more suitable for hydroelectric development, as they facilitate reservoir 

replenishment and stable power generation (Jafari et al., 2021). 

Technical evaluations for SES begin with the slope, a key parameter affecting solar 

panel orientation and performance. Studies indicate that a slope below 11 %  is 

recommended, with an ideal target of less than 1 % to maximize solar radiation capture and 

minimize shading effects (Doorga et al., 2019). In addition, land cover or land use analysis 

using GIS and satellite data helps differentiate between natural and anthropogenic surfaces; 

open fields with minimal obstructions are preferred over urban or densely vegetated areas 

(Rios & Duarte, 2021). Aspect is defined by the latitude of the sites, azimuth, and overall 

orientation relative to the sun, further influences the amount of solar radiation received. 

Elevation is determined via Digital Elevation Models (DEMs), plays a supportive role as 

higher altitudes often experience clearer skies and stronger solar irradiance (Noorollahi et 

al., 2022). Soil type is another critical factor; stable, flat surfaces such as concrete or asphalt 

are ideal for ground-mounted photovoltaic systems, while soils with large pore sizes may 

undermine mounting stability (Deveci et al., 2022). Lastly, technical considerations extend 

to the availability of skilled manpower and technical expertise for the installation, 

maintenance, and optimization of PV systems, ensuring that the chosen sites can be 

effectively developed (C. N. Wang et al., 2022). In the technical assessment of WES, slope 

remains a crucial parameter. A maximum slope of 5  °  is recommended to mitigate 

turbulence, which can disrupt wind flow and reduce turbine efficiency (Effat & El-Zeiny, 

2022). Elevation is equally significant; higher elevations are generally favored as they offer 

reduced obstructions and more stable wind patterns, whereas lower elevation sites tend to 

experience higher turbulence (Asadi & Pourhossein, 2021). Land cover and the overall site 

area are vital; open, unobstructed landscapes enable turbines to harness wind energy more 
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effectively, optimizing power capture (Ullah et al., 2021). The technical viability of WES 

also hinges on the local availability of skilled personnel who can support the installation, 

operation, and routine maintenance of wind turbines, thereby ensuring operational stability 

and reducing downtime (C. N. Wang et al., 2021). Finally, soil conditions including 

drainage, stability, load-bearing capacity, and erosion resistance are essential for designing 

secure and durable turbine foundations, necessitating thorough geotechnical investigations 

(Shorabeh, Firozjaei, et al., 2022). Technical evaluations for HES center on the 

characteristics of water resource and reservoir. Key factors include the size of reservoir, 

shape, and storage capacity, which are critical for ensuring a consistent water supply and 

stable power generation (Haas et al., 2022). An understanding of both upstream water 

availability and downstream environmental impacts is necessary for sustainable reservoir 

management (Marcelino et al., 2021). Water level metrics, such as dead water level, normal 

water level, and initial water level, play important roles in operational planning, while the 

head (the vertical distance between the water source and turbine intake) is directly related to 

the potential energy output; a higher head generally yields greater energy (Urošević & 

Marinović, 2021). The feasibility of hydro implementation is further enhanced by the 

presence and connectivity of significant water bodies, including rivers, streams, or lakes. 

Turbine efficiency, which reflects the conversion of kinetic energy from flowing water into 

electricity, is a crucial indicator of site potential (Xiong et al., 2021). Additional technical 

considerations include assessing the stability of the dam toe, the viability of diversion weirs, 

the reservoir’s pondage capacity, and adequate water depth for turbine installation. Lastly, 

the surrounding land slope, land use patterns, and the characteristics of the river zone 

including sediment transport and flow dynamics are evaluated to address environmental 

impacts and ensure construction feasibility (Kuriqi et al., 2021). 
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Accessibility is a critical factor in the siting and operation of GERs such as solar, 

wind, and hydro installations. Proximity to existing electrical power lines is paramount; 

locations within 50 𝑘𝑚 of power networks tend to reduce transmission losses and lower 

infrastructure costs, enhancing overall efficiency (Karipoğlu et al., 2022). Similarly, access 

to main roads is essential to facilitate the transport of personnel and equipment during 

construction and maintenance, though maintaining a safe distance of around 1 𝑘𝑚 from 

major roads is generally recommended to mitigate associated risks (Saraswat et al., 2021). 

Furthermore, the positioning of GERs relative to residential areas plays a dual role. On one 

hand, proximity can shorten electrical power lines and reduce grid losses, thereby improving 

cost-effectiveness (Ayough et al., 2022). On the other hand, due to the large land 

requirements of green energy installations, a buffer of approximately 0.5 𝑘𝑚 to 1.5 𝑘𝑚 from 

residential zones is advised to balance accessibility with safety considerations (Saraswat et 

al., 2021). Additionally, assessing local electricity demand by examining industrial, 

commercial, residential, and agricultural load pattern, is crucial for determining optimal 

GER locations (Bohra & Anvari-Moghaddam, 2022). Finally, economic factors such as 

construction costs, annual income levels, electricity prices, and governmental subsidy 

policies further influence the feasibility and overall viability of green energy projects 

(Deveci et al., 2022). 

Environmental criteria for green energy systems emphasize minimizing negative 

impacts and safeguarding ecosystems. For solar and wind energy, although these 

technologies generally have minimal adverse effects, careful site selection is necessary. For 

instance, installations near water bodies such as rivers or lakes can risk leakage and runoff 

contamination, potentially harming water quality and aquatic life (Colak et al., 2020). To 

mitigate such risks, a 500 𝑚 buffer zone from water bodies is advised. Moreover, both solar 
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and wind systems generate heat through their materials, which may reach levels of concern 

if not properly managed. The placement of these installations in protected areas, such as 

national parks, wildlife sanctuaries, or other ecologically sensitive zones, should be strictly 

avoided to prevent disruption of natural habitats and endangered species (Zahid et al., 2021). 

Additionally, aesthetic and social factors necessitate a buffer of around 2 𝑘𝑚  from 

residential areas to balance infrastructural benefits with community acceptance. For HES, 

environmental assessments focus on ensuring adequate land area for constructing dams, 

reservoirs, and power plants without encroaching on sensitive ecosystems. Site selection 

must consider the impact on aquatic life, particularly regarding fish migration and spawning 

grounds, with potential mitigation through the incorporation of fish passages or fish-friendly 

turbine designs (Kuriqi et al., 2021). It is also critical to evaluate flood zones and conduct 

geological surveys to assess stability and prevent adverse effects on both the environment 

and nearby communities (Urošević & Marinović, 2021). 

The implementation of green energy systems must prioritize social criteria to ensure 

that projects foster community well-being and social sustainability. Literature indicates that 

social factors such as job creation, community involvement, and the preservation of cultural 

heritage are essential for garnering local support (Y. Wu et al., 2021). Population density 

plays a critical role; higher densities can amplify electricity demand and potentially intensify 

conflicts over energy infrastructure, while lower densities may present fewer social 

disruptions but still require careful evaluation of local values and environmental impacts 

(Deveci et al., 2021). Moreover, establishing clear regulatory boundaries is vital, as national 

and local policies, subsidies, and legal frameworks related to land usage and contractual 

agreements influence the financial and operational viability of these projects (Wolfshohl & 

Sweers, 2021)). Engaging with communities through surveys, interviews, and discussions is 
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imperative to assess public opinion and cultural significance, as resistance from local 

inhabitants can undermine project success (Urošević & Marinović, 2021; C. N. Wang et al., 

2021). Additionally, economic indicators such as annual income levels, electricity prices, 

and governmental subsidy policies also play a role in shaping the social acceptance and 

overall feasibility of green energy initiatives (Deveci et al., 2021). 

2.3 Merits and Demerits of Existing MCDM Methods 

MCDM is an established academic discipline that provides a structured framework 

for making informed decisions involving multiple criteria or objectives. Several factors are 

often considered in many real-world decision-making scenarios, each with varying levels of 

importance or weighting (Emovon & Oghenenyerovwho, 2020). MCDM provides a 

methodological approach to assess and compare options based on multiple criteria and 

identify the optimal alternative. 

Saaty introduced the Analytic Hierarchy Process (AHP) in the 1970s, which is one 

of the most widely recognized approaches in MCDM. AHP decomposes a complex decision 

problem into a structured hierarchy comprising a goal, a set of criteria, and a series of 

alternatives (Mastrocinque et al., 2020). Decision-makers perform pairwise comparisons 

among the criteria and alternatives, and through normalization (Abdul et al., 2022), derive 

relative weights that lead to an overall ranking of options. This method is particularly valued 

for its systematic and transparent framework that simplifies complex decision problems into 

manageable components. However, a significant drawback of AHP is its reliance on 

subjective judgments during the pairwise comparison process. Such subjectivity may 

introduce biases that can affect the consistency and reliability of the outcomes (Colak et al., 

2020). Analytic Network Process (ANP) represents an evolution of AHP by incorporating 

the interdependence among decision elements. Unlike the strictly hierarchical structure of 
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AHP, ANP models the decision problem as a network where goals, criteria, sub-criteria, and 

alternatives are interconnected, allowing for the capture of feedback and interrelationships 

among factors (Ilbahar et al., 2019). This feature makes ANP especially useful in complex 

scenarios where criteria do not operate independently. However, this advantage comes with 

increased computational complexity and reliance on subjective evaluations. The detailed 

pairwise comparisons and construction of a supermatrix can be resource-intensive and may 

complicate the decision process, particularly in cases where interdependencies are not 

pronounced (Alizadeh et al., 2020). 

Benefit, Opportunity, Cost, and Risk (BOCR) framework provides a distinct 

perspective by simultaneously considering four critical aspects of decision-making. In this 

approach, alternatives are evaluated based on current benefits, future opportunities, costs 

incurred, and associated risks (İ. Kaya et al., 2018). BOCR is effective in highlighting the 

trade-offs inherent in any decision, as it explicitly links cause and effect. Despite its ability 

to clarify the decision process, BOCR faces challenges in establishing consensus on the 

weights for each component. Moreover, its focus is sometimes restricted to comparing only 

a couple of dimensions, potentially oversimplifying complex scenarios that require a more 

nuanced analysis (Wei, 2021). Complex Proportional Assessment (COPRAS) method is 

based on the principle of assessing the relative significance of alternatives through the 

normalization of a decision matrix and the integration of weight coefficients (Stefano et al., 

2015). COPRAS offers a systematic procedure that accounts for both beneficial and non-

beneficial criteria, leading to a comprehensive ranking of alternatives. Its strength lies in the 

balanced consideration of multiple factors; however, its reliance on accurately defined 

weights and precise data values can make the computational process quite complex. The 
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sensitivity of the method to these input parameters often poses a challenge in practical 

applications where data uncertainty is prevalent (Mohanrasu et al., 2023; Patil et al., 2022). 

Data Envelopment Analysis (DEA) is primarily employed to evaluate the efficiency 

of comparable decision-making units by analyzing the relationship between inputs and 

outputs (Dutta et al., 2022). The method can be implemented using input-oriented or output-

oriented models, offering flexibility in assessing the relative performance of different units. 

One of the key strengths of DEA is its ability to tailor weight assignments to reflect optimal 

performance for each unit. However, this flexibility can lead to the assignment of overly 

favorable weights, which may result in inflated efficiency scores. Moreover, DEA typically 

focuses on efficient units, thereby limiting its broader applicability in contexts where 

comparative analysis across a wider range of options is required (Fotova Čiković et al., 2022; 

C. N. Wang et al., 2022). ELECTRE family of methods was initially introduced in 1968 and 

subsequently refined by Bernard Roy, is designed to address selection and ranking problems 

using an outranking approach (Mary & Suganya, 2016). ELECTRE employs concordance 

and discordance indices to evaluate and compare alternatives. Among its variants, 

ELECTRE III is particularly noted for its effectiveness in ranking, although other versions 

are more commonly used for selection tasks (Z. S. Chen et al., 2021). Despite its clear 

theoretical basis, the method is sensitive to the assigned weights and can encounter 

ambiguity in determining preference thresholds. Such sensitivity often necessitates careful 

calibration to ensure that the final rankings accurately reflect the intentions of decision-

makers (Z. S. Chen et al., 2021).  

Fuzzy logic operation is based on the fuzzy set theory introduced by Lotfi Zadeh in 

1965 and it is powerful for managing uncertainty and vagueness in decision-making 
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processes (Y. Liu et al., 2020). By utilizing various membership functions, such as 

triangular, trapezoidal, S-shaped, and Gaussian, fuzzy logic enables the incorporation of 

imprecise and qualitative data into quantitative models. Extensions such as Type-2 fuzzy 

sets and Hesitant Fuzzy Sets (Farhadinia & Xu, 2019) further enhance the method’s ability 

to handle ambiguity. While fuzzy logic is particularly advantageous for its capacity to 

manage uncertainty, the challenge remains in defining appropriate linguistic terms and 

membership functions, which can be inherently subjective and difficult to standardize (Lu 

et al., 2022). Geographic Information System (GIS) may not be regarded as an MCDM 

method, but the integration of GIS with decision models has significantly enhanced spatial 

analyses, especially in areas such as renewable energy and land-use planning (Zhou et al., 

2020). GIS platforms combine hardware and software to manage, analyze, and visualize 

spatial data in both vector and raster formats (Zambrano-Asanza et al., 2021). This 

integration allows decision-makers to overlay various criteria on geographic maps, 

facilitating the identification of optimal locations. However, the primary limitation of GIS 

lies in its focus on spatial issues, which restricts its application to non-geographic decision 

problems (Martínez-Martínez et al., 2022; Razeghi et al., 2023). 

Goal Programming was developed by Charnes in 1955, and it offers a strategy for 

tackling decision problems characterized by multiple, often conflicting, objectives. Instead 

of striving solely for maximization or minimization, goal programming is oriented towards 

achieving predefined target values by minimizing the deviations from these targets (Farsi et 

al., 2023). This method is particularly well-suited for situations where a compromise solution 

is necessary. Its structured approach facilitates a balanced evaluation of competing criteria; 

however, the effectiveness of goal programming is highly contingent upon accurately setting 

target values and assigning weights. If not properly calibrated, these factors can lead to 
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unclear utility functions and suboptimal decision outcomes (Arjomandi et al., 2021; Jain & 

Potdar, 2021). The concept of Linguistic Quantifiers was first introduced by Zadeh in 1983, 

offers an innovative approach to integrating qualitative assessments into decision models 

(Genç et al., 2020). Linguistic quantifiers allow decision-makers to express satisfaction 

levels using natural language terms such as “few” or “many,” thereby bridging the gap 

between qualitative judgment and quantitative analysis. Despite the benefits of capturing 

subjective preferences, the absence of a standardized interpretation for these terms poses 

significant challenges, potentially leading to inconsistencies in weight assignment and 

overall evaluation (Yalçin & Pehlivan, 2019; Yu et al., 2022). 

The Ordered Weighted Averaging (OWA) operator was introduced by Yager in 

1988, represents an aggregation method where weights are assigned based on the ordered 

position of individual criterion scores rather than their inherent attributes (Firozjaei et al., 

2019). This operator is particularly useful in balancing conjunctive and disjunctive behaviors 

within a single framework, allowing for compensation between criteria. While OWA 

facilitates a flexible and balanced aggregation of data, determining the appropriate set of 

ordered weights remains a challenging and somewhat subjective process, which can impact 

the reliability of the final evaluation (Z. S. Chen et al., 2019; Csiszar, 2021). The Preference 

Ranking Organization Method for Enrichment Evaluation (PROMETHEE) is a user-friendly 

MCDM approach that employs pairwise comparisons to derive rankings for a set of 

alternatives (T. Chen et al., 2020). PROMETHEE is available in two primary versions: 

PROMETHEE I, which provides partial rankings, and PROMETHEE II, which produces a 

complete ranking of alternatives (Andreopoulou et al., 2018). This method is particularly 

effective when the decision problem involves a limited number of alternatives with 

conflicting criteria. However, the outcomes of PROMETHEE are notably sensitive to the 
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selection of preference functions and weight assignments, which may lead to ambiguity in 

the final rankings unless carefully managed (Karczmarczyk et al., 2018; Y. Wu et al., 2019). 

Rank Correlation Analysis utilizes Spearman’s rank correlation coefficient to 

compare the similarity between rankings generated by different MCDM methods (Zafar et 

al., 2021). This approach is especially useful for evaluating ordinal data and can help in 

assigning weights based on the relative consistency among various methods. Although it 

offers a straightforward means of assessing the comparability of different ranking schemes, 

its applicability may be limited when addressing decision problems that involve more than 

two criteria, thereby constraining its utility in more complex settings (Kou et al., 2020; 

Sałabun & Urbaniak, 2020). One of the earliest and simplest methods in MCDM is Simple 

Additive Weighting (SAW), first proposed by Churchman and Ackoff in 1945 (Vafaei et al., 

2022). SAW involves assigning weights to each criterion and computing an overall score for 

each alternative by summing the products of the criterion weights and the corresponding 

performance ratings. Its ease of implementation and intuitive calculation have ensured its 

continued use in various applications. However, SAW is highly sensitive to the choice of 

weights and may fall short when it comes to handling trade-offs in situations where criteria 

interact in complex or nonlinear ways (Abrams et al., 2018).  

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was 

developed by Yoon and Hwang in 1981, and it is based on the concept that the optimal 

alternative should have the shortest Euclidean distance from the positive ideal solution and 

the longest distance from the negative ideal solution (Alghassab, 2022). TOPSIS provides a 

clear and computationally efficient framework for ranking alternatives by comparing their 

geometric proximity to these idealized benchmarks. Despite its intuitive appeal and ease of 
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use, TOPSIS is significantly dependent on the accuracy of weight assignments and the 

assumption of monotonicity in the utility of each criterion, which can limit its effectiveness 

in certain decision environments (Alghassab, 2022; Bilgili et al., 2022). Multiple Criteria 

Optimization and Compromise Solution (VIKOR) method has gained recognition for its 

ability to derive a compromise solution in situations involving conflicting criteria. VIKOR 

evaluates alternatives based on their closeness to an ideal solution using specific distance 

metrics while considering the trade-offs among criteria (Gul et al., 2016). This method is 

particularly useful in complex decision scenarios where a balance between competing 

objectives is necessary. However, its performance is sensitive to the selection of weights and 

the setting of preference thresholds, which may lead to ambiguity in the final rankings if not 

appropriately managed (Abdul et al., 2022; Akram et al., 2021). 

Lastly, the Weighted Linear Combination (WLC) method provides a straightforward 

approach for multi-criteria assessments, particularly in spatial analyses such as land 

suitability evaluations (Lim & Afifah Basri, 2022). In WLC, each criterion score is 

multiplied by its assigned weight, and the results are summed to yield an overall suitability 

score for each alternative. While this method is simple and easy to implement, its outcomes 

are highly dependent on the predetermined weights and assumptions regarding the 

importance of each criterion. Such sensitivity can sometimes undermine the robustness of 

the evaluation, especially when complex interactions between criteria exist (Barzehkar et al., 

2019; Estelaji et al., 2023). 
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2.4 Deployments of MCDMs Strategies in GERs 

An assessment of green energy technologies for electricity generation in Turkey was 

conducted by Boran et al. (2012) using intuitionistic fuzzy TOPSIS. It highlights the crucial 

role of green energy in reducing greenhouse gas emissions and meeting global energy needs, 

emphasizing Turkey’s favorable geographical position for exploiting renewable resources. 

Specifically, it evaluates green energies (solar, hydro, wind, and geothermal) for their long-

term viability in Turkey’s energy sector. The findings reveal hydropower as the leading 

renewable energy technology in Turkey, followed by wind power, geothermal, and 

photovoltaic. Consequently, the paper suggests that future green energy policies in Turkey 

should prioritize hydropower and wind power based on this assessment. Moreover, the 

research highlighted the suitability of intuitionistic fuzzy TOPSIS for MCDM in evaluating 

green energy technologies, given its ability to accommodate the uncertain perceptions of 

decision-makers. While it examines multiple green energy options, its limitations include a 

lack of validation and analysis and a focus solely on determining types of green energy 

without considering location selections. Şengül et al. (2015) develops a decision support 

framework for ranking green energy supply systems in Turkey. It employs the fuzzy TOPSIS 

method to analyze and rank these systems. Weight values for criteria are determined using 

Interval Shannon’s Entropy methodology, with sensitivity analysis conducted at 0.1, 0.5, and 

0.9 cutting levels. The research finds that HES is the most desirable green energy supply 

system in Turkey, followed by geothermal sites and WES. It discusses the growing demand 

for energy due to population growth, urbanization, and industrialization, emphasizing the 

significance of green energy in meeting this demand. Insights are provided for policymakers 

regarding optimal resource allocation and investment in renewable energy systems. 
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Strengths include sensitivity analysis, while limitations include a focus solely on 

determining green energy types without exploring location selection analysis. 

The selection process for solar panels in PV systems was thoroughly examined by 

Sasikumar & Ayyappan (2019). It proposes an integrated approach that combines fuzzy AHP 

and TOPSIS to balance subjective and objective criteria in panel selection. Previous MCDM 

methods for green energy and solar power selection are reviewed, emphasizing the need to 

address both subjective and objective parameters, while the proposed model integrates fuzzy 

logic with MCDM to handle incomplete data and conflicting goals, enhancing decision-

making accuracy. A case study demonstrates the proposed model’s application in selecting 

the best solar panel based on various criteria, effectively quantifying tangible sub-criteria 

and improving decision-making accuracy. The strengths include consideration of risk 

indices, and limitations involve the sole focus on selecting types of solar panels without 

considering location selections. A novel methodology was introduced by Rani et al. (2020) 

for selecting GERs by integrating fuzzy sets theory and decision-making methods. The 

approach involves developing new divergence measures for fuzzy sets and extending the 

fuzzy TOPSIS method. A detailed step-by-step process of the extended fuzzy TOPSIS 

approach is presented, including criteria weight calculation, alternative estimation, and 

optimal energy source determination based on linguistic assessments from decision experts. 

The research also extends a new fuzzy decision-making method to evaluate and rank 

renewable energy sources, employing a survey to identify nine important criteria. Future 

work includes extending the proposed method to other fuzzy set types and applying it to 

evaluate sustainable ecosystem management strategies, medical treatment assessment, and 

other decision-making problems. The study contributes a novel approach to evaluating and 

ranking GERs under uncertainty, addressing the limitations of subjective decision-making 
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and providing a systematic methodology for assessing and comparing green energy options. 

It also highlights potential future applications of the proposed method in various decision-

making contexts. The limitations involve the concentration on determining the types of 

GERs to be used without analyzing location selections. 

Solangi et al. (2021) considers the identification and overcoming of obstacles 

hindering the adoption of green energy technologies in Pakistan. Emphasizing the 

importance of green energy technologies for sustainable development, particularly in rural 

areas, the paper suggests green energy technologies as a solution to reduce energy import 

dependency. Strategies like capital subsidies and green energy targets are evaluated to 

overcome barriers. The research guides future efforts in deploying green energy technologies 

for sustainable energy planning in Pakistan, utilizing a comprehensive methodology to 

assess and prioritize barriers, sub-barriers, and strategies. The insights are applicable not 

only to Pakistan but also to other developing countries facing similar challenges in green 

energy technology development. Strengths include comparative validation of results, while 

limitations lie in the focus on highlighting barriers without exploring location selection 

analysis. An intuitionistic fuzzy TOPSIS methodology was employed by Bilgili et al. (2022) 

to analyze sustainable green energy options within the constraints of sustainable growth and 

established criteria in Turkey. Assessing seven options including wind, solar, geothermal, 

biomass, wave hydro, and hydrogen, against 25 criteria, it endeavors to rank the optimal 

level for selecting green energy sources in Turkey. The research findings indicate that solar 

energy emerges as the most suitable GERs for sustainable growth in Turkey, with the 

evaluation of capital or investment cost emerging as a crucial criterion. These outcomes offer 

valuable guidance for Turkey’s green energy choices amidst considerations of economic 

growth and environmental concerns. A key contribution of this study lies in its provision of 
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a flexible and effective approach to navigating complexity and uncertainty in green energy 

selection, offering vital perspective into optimal green energy choices for sustainable 

development in Turkey. A limitation is its primary focus on determining specific types of 

GERs without exploring location selections. 

A rising demand for electrical energy was addressed by Ponce et al. (2022) in 

manufacturing, driven by market shifts and population growth, with a focus on leveraging 

solar energy to meet these needs. Introducing a fuzzy TOPSIS approach, it evaluates solar 

panel companies within a manufacturing context using the S4 framework, encompassing 

sensing, smart, sustainable, and social aspects. The application of the proposed fuzzy 

TOPSIS method in a case study involving three decision-makers and solar panel companies 

demonstrates its efficiency in selecting the most suitable solar panel company. The authors 

stress the importance of decision-making in solar energy deployment and operation, 

highlighting the significance of selecting S4 features and employing a multi-criteria 

methodology to comprehensively evaluate solar energy systems based on specific company 

requirements. Furthermore, the paper discusses prospects, including automating the method 

through computational programs to aid manufacturing companies in selecting the best-suited 

solar panel company. The strength of the research lies in its evaluation of solar panel 

companies, while limitations include a lack of location selection analysis and results 

validation. Hasti et al. (2023) explores the PV farm potential in Kurdistan Province, Iran, 

employing GIS-based site-selection methods. It utilizes the ANP, AHP, and TOPSIS to 

assess spatial suitability. Results indicate 11.19 % of the region is suitable for PV farms, 

with 10.05 % having medium suitability and 1.14 % highly suitable. These areas could 

generate 3.2 % of Iran’s total electricity consumption and meet Kurdistan’s demand entirely. 

Additionally, the construction and operation of these farms could create significant job 
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opportunities and reduce carbon emissions. Despite strengths like utilizing multiple MCDM 

methods, limitations include the absence of a fuzzy logic comparison, and no exact solar site 

locations are provided. 

Suitable SES in Tehran province, Iran, was evaluated by Saeidi et al. (2023) using 

TOPSIS decision analysis and fuzzy Boolean logic based on GIS. Utilizing GIS for data 

processing, the study collected essential information for effective resource assessment. 

Through MCDM, approximately 95 %  of the region was deemed unsuitable for SES 

construction, while 5 % was identified as suitable. Nine locations totaling 22 𝑘𝑚2  were 

selected for SES construction, with Ghiyeh Naserieh in the southern part of the province 

chosen as the preferred location using the fuzzy TOPSIS method. The research addressed 

Tehran’s pollution issues, utilizing GIS-generated thematic maps to identify and prioritize 

potential SES based on various criteria including geographical, environmental, economic, 

social, technical, safety, and infrastructure factors. However, limitations were noted 

regarding data accuracy and completeness, as well as potential drawbacks of the methods 

used, and it is only focused on specific location analysis. Almasad et al. (2023) presents a 

site suitability analysis for implementing SES in Saudi Arabia using a fuzzy MCDM-based 

approach. The research identifies suitable sites by combining fuzzy AHP and PROMETHEE 

II. The model considers 12 factors divided into technical and economic criteria to minimize 

construction costs and maximize power output. The resulting suitability map indicates that 

65.1 % of the studied area is “most to highly suitable” for solar power projects. Validation 

of the model’s predictivity shows that 90.6 % of future projects fall within these suitable 

areas. The paper also includes a sensitivity analysis to examine the effect of economic factors 

on the suitability results. The paper details the process of criteria selection, weighting, and 

alternatives evaluation, highlighting the impact of climatic and economic factors on 
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suitability. Fuzzy AHP and PROMETHEE II are used to generate the final suitability map, 

with validation showing high prediction accuracy for future PV projects. The strengths 

include determining exact locations for solar sites and conducting validation and analysis, 

while the limitation is the consideration of a low number of solar sites and the absence of a 

filtration framework. 

Overall, the research studies addressing green energy technologies and decision 

support frameworks, multiple GERs are prioritized, and sensitivity analysis is incorporated. 

However, both Boran et al. (2012) and Şengül et al. (2015) are limited by a lack of validation 

and the omission of location selection analysis. In the realm of solar panel selection for PV 

systems, integration of fuzzy logic with MCDM techniques is a key strength as shown by 

Sasikumar & Ayyappan (2019), while Rani et al. (2020) introduces an extended fuzzy 

TOPSIS approach to rank GERs under uncertainty, yet both studies focus solely on selecting 

types rather than considering geographic factors. Comprehensive methodologies for 

assessing green energy adoption and providing flexible selection strategies are further 

highlighted by Solangi et al. (2021) and Bilgili et al. (2022), respectively, though they too 

overlook location analysis. On the other hand, practical applications such as the efficient 

selection of solar panel companies via a fuzzy TOPSIS approach was developed by Ponce 

et al. (2022), the evaluation of PV farm potential using multiple MCDM methods was 

designed by Hasti et al. (2023), and the use of GIS to address pollution issues in specific 

regions performed by Saeidi et al. (2023) demonstrate innovative approaches but are 

constrained by limitations including data accuracy, absence of fuzzy logic comparisons, and 

a narrow focus on location-specific analyses. 
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2.5 Strengths and Limitations of Current Optimization Algorithms 

Optimization algorithms are essential in modern applications like routing, energy 

management, scheduling, logistics, and manufacturing. They aim to find optimal or near-

optimal solutions for specific objectives. The two main types are exact and approximate 

algorithms. Exact algorithms tackle NP-hard problems to determine the best solution, while 

approximation algorithms quickly identify near-optimal solutions for computationally 

challenging NP-hard problems. Figure 2.1 illustrates an overview of these algorithms. 

 

Figure 2.1: Overview of Optimization Algorithms 
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One of the classical approaches, Branch and Bound (BB) was developed in the mid‐

1960s, where it partitions a complex problem into several independent subproblems using a 

bounding function (Narendra & Fukunaga, 1977). By iteratively exploring promising 

branches while discarding regions that cannot yield better solutions, BB efficiently addresses 

discrete and combinatorial optimization challenges such as crew scheduling and network 

flow. Its strength lies in the rapid verification of bounds that often preclude further 

partitioning, though its performance is heavily dependent on the quality of the bounding 

function (S. Wang et al., 2020). Brute Force (BF) algorithm is an exhaustive search technique 

that sequentially compares a target pattern against every possible substring in a text (Heule 

& Kullmann, 2017). Its straightforward approach guarantees that every occurrence of the 

pattern is found, which is beneficial for small-scale problems and educational purposes. 

However, due to its complete enumeration of possibilities, BF suffers from severe 

computational inefficiency in large texts or complex pattern searches (Ptaszynski et al., 

2019). Dynamic Programming (DP) leverages the optimal substructure property of problems 

by breaking them into overlapping subproblems and solving each recursively in a bottom-

up manner. This method, which efficiently reuses computed results through memorization, 

is widely used in combinatorial optimization (D. Wang et al., 2024). Despite its elegance 

and power, DP can face challenges such as high memory consumption and potential stack 

overflow issues when dealing with large-scale problems (D. Liu et al., 2021). Integer 

Programming (IP) is a form of linear programming where decision variables are constrained 

to integer values. This formulation, especially in its binary (BIP) (Akay et al., 2021) and 

mixed (MILP) (C. Li et al., 2022) variants, is inherently NP-hard, making it suitable for 

problems where only discrete decisions are acceptable. While IP offers guaranteed 
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convergence and global optimality under well-defined conditions, its inability to naturally 

incorporate nonlinear variables can limit its applicability (Mansini et al., 2015).  

Simulated Annealing (SA) was inspired by the metallurgical process of annealing, as 

it probabilistically accepts not only improvements but also occasional degradations in 

solution quality to escape local optima (Delahaye et al., 2019). By gradually lowering a 

“temperature” parameter, SA transitions from exploration to exploitation. Its adaptability to 

both discrete and continuous problems is a major asset, though the need for careful 

calibration of its cooling schedule and high computational time may restrict its use in time-

critical applications (İLHAN, 2021). Tabu Search (TS) enhances traditional local search 

methods by incorporating adaptive memory structures (tabu lists) that record previously 

visited solutions to prevent cycling. This mechanism encourages the exploration of new 

regions in the solution space and aids in overcoming local optima (Chou et al., 2021). Its 

effectiveness depends on carefully tuning its parameters (e.g., memory length and aspiration 

criteria) to balance intensification and diversification within the search (Gmira et al., 2021). 

Differential Evolution (DE) is a population-based, stochastic optimization algorithm 

that is particularly effective for continuous, high-dimensional problems (W. Deng et al., 

2021). It utilizes mutation and crossover operators to iteratively improve candidate solutions, 

with its performance critically dependent on the choice of control parameters such as 

mutation and crossover rates . Although DE is robust in exploring the search space, it is 

vulnerable to premature convergence if these parameters are not optimally set (S. Li et al., 

2020). Evolutionary Programming (EP) simulates the evolution of numerical parameters 

within fixed program structures, rather than evolving the structure itself (Zhan et al., 2022). 

Originally used for evolving finite-state machines, EP now addresses a variety of 

optimization tasks by iteratively mutating and selecting candidate solutions. Its simplicity 



32 

and ability to handle diverse data representations make it versatile (Slowik & Kwasnicka, 

2020), though it typically demands high computational resources and careful 

experimentation to refine parameters. Evolutionary Strategies (ES) apply principles of 

natural selection and self-adaptation to iteratively refine candidate solutions (Slowik & 

Kwasnicka, 2020). ES focuses on mutation and selection to adjust distribution parameters 

dynamically, which makes it well-suited for black-box optimization problems where 

gradient information is unavailable (Y. Wang et al., 2021). However, the method is 

computationally intensive and sensitive to parameter tuning, with some variants (like 

Covariance Matrix Adaptation) still lacking a complete theoretical foundation. Genetic 

Algorithms (GA) mimic biological evolution through operations such as selection, 

crossover, and mutation applied to a population of candidate solutions (Katoch et al., 2021). 

Widely used in both single- and multi-objective optimization, GA effectively explores large 

and complex search spaces. Despite its flexibility and robustness, GA can suffer from slow 

convergence in high-dimensional spaces and may require additional strategies (e.g., 

tournament or ranking selection, elitism) to mitigate premature convergence and handle 

constraints (Z. Wang & Sobey, 2020). Genetic Programming (GP) extends the GA 

framework to evolve entire computer programs or tree-like structures, which enhances its 

capability to handle problems with undefined or highly complex solution spaces (Lin et al., 

2020). By evolving the structure of candidate solutions rather than merely adjusting 

parameters, GP automatically detects features and models of nonlinear relationships. 

However, the increased flexibility comes at the cost of higher computational demands and 

sensitivity to parameter settings, which can lead to convergence on suboptimal solutions 

(Zhang et al., 2021). 
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Ant Colony Optimization (ACO) is inspired by the foraging behavior of ants, which 

deposit pheromone trails to communicate and reinforce promising paths (Fidanova, 2021). 

In ACO, solutions are constructed based on pheromone intensity and heuristic information, 

making it particularly effective for discrete problems such as routing and scheduling. The 

algorithm’s performance is contingent on meticulous parameter tuning to balance 

exploration and exploitation, and it may require significant computational resources for large 

problem instances (Skinderowicz, 2022). Artificial Bee Colony (ABC) algorithm models the 

cooperative foraging behavior of honeybees by dividing the swarm into employed, onlooker, 

and scout bees (Alaidi et al., 2021). Each bee explores potential solutions and shares 

information about high-quality regions in the search space. While the algorithm is relatively 

simple to implement and effective for both continuous and combinatorial problems, its 

success is sensitive to parameter settings and may require numerous iterations to converge, 

especially in rugged landscapes (Kaya et al., 2022). Artificial Fish Swarm Algorithm 

(AFSA) is a swarm intelligence method that simulates the social behaviors of fish, such as 

foraging, swarming, and trailing, to navigate the search space. Each artificial “fish” evaluates 

its position and moves toward areas of higher “food concentration” (i.e., better solutions) 

(Pourpanah et al., 2023). AFSA is noted for its fast convergence and robustness across 

various domains, yet it can be prone to premature convergence and high computational 

complexity when dealing with very complex optimization problems (Zhao et al., 2023). 

Bacteria Foraging Optimization Algorithm (BFOA) draws inspiration from the chemotactic 

behavior of bacteria like E. coli. It simulates processes such as swimming, tumbling, 

reproduction, and elimination-dispersal to explore the search space (Guo et al., 2021). 

BFOA’s biologically motivated framework provides a unique approach to global 

optimization, often outperforming traditional methods in certain applications. However, its 
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performance is highly dependent on parameter settings, and like many bio-inspired methods, 

it may require hybridization with other techniques to enhance its robustness and convergence 

speed (Rahkar Farshi & Orujpour, 2021). Bat Algorithm (BA) is a nature-inspired 

metaheuristic that simulates the echolocation behavior of bats. Bats adjust their positions 

based on echo feedback while searching for the solution space. The algorithm initializes bat 

parameters, updates the best global solution, and incorporates randomness to balance 

exploration and local exploitation (Agarwal & Kumar, 2022). Its straightforward 

implementation and adaptability to both continuous and binary problems have led to 

applications in feature selection, fault diagnosis, and antenna positioning . However, BA 

may experience slow convergence and can become trapped in local optima if not properly 

enhanced through adaptive strategies (Cui et al., 2019). 

Cuckoo Search (CS) is a metaheuristic inspired by the brood parasitism of cuckoo 

birds. Each solution is analogous to a cuckoo egg, and the algorithm relies on three main 

rules: egg laying (generating new solutions), nest selection (choosing higher-quality 

solutions), and nest abandonment (replacing poor solutions) (Cuong-Le et al., 2021). This 

process allows CS to explore the search space effectively. Although it has proven versatile 

in applications ranging from scheduling to structural design, CS is sensitive to parameter 

settings, which can affect its ability to consistently locate the global optimum (Jawad et al., 

2023). Firefly Algorithm (FA) mimics the flashing behavior of fireflies, where the brightness 

of each firefly represents the quality of the solution. Fireflies are attracted to brighter peers, 

and their movement is influenced by both the attractiveness (a function of distance and light 

intensity) and random perturbations (Kumar & Kumar, 2021). This dual mechanism 

facilitates both exploitation and exploration in the search space. FA has been successfully 

applied in engineering design, neural network training, and feature selection; however, it 
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may face challenges with scalability and convergence speed on large, complex problems (J. 

Wu et al., 2020). Glowworm Swarm Optimization (GSO) is based on the luminescence 

behavior of glowworms. Each agent (glowworm) carries a luciferin value that quantifies its 

fitness. Glowworms dynamically adjust their decision range toward neighbors with higher 

luciferin levels, leading to the formation of clusters around multiple optima (Cao et al., 

2021). This makes GSO particularly useful for multimodal optimization problems. 

Nonetheless, the algorithm requires careful calibration of its parameters (e.g., luciferin decay 

and neighborhood range) to ensure robust performance across different problem domains 

(M. A. S. M. Shahrom et al., 2023). Grey Wolf Optimizer (GWO) is inspired by the social 

hierarchy and hunting strategies of grey wolves. The algorithm models the leadership 

hierarchy with alpha, beta, delta, and omega wolves, using mechanisms that simulate 

encircling and attacking prey to guide the search (Al-Tashi et al., 2020). With only a few 

tunable parameters, GWO effectively balances exploration and exploitation. It has been 

applied to diverse problems such as neural network training and economic dispatch in power 

systems (Seyyedabbasi & Kiani, 2021). Despite its simplicity, the optimizer may encounter 

difficulties in highly complex or multimodal landscapes, where additional mechanisms 

might be necessary to avoid local optima (Nadimi-Shahraki et al., 2021). 

Lion Optimization Algorithm (LOA) is inspired by the social behavior and territorial 

dynamics of lions. The algorithm partitions the population into prides and nomads, 

mimicking real-world behaviors like cooperative hunting, mating, and cub rearing (Yazdani 

& Jolai, 2016). Through iterative processes involving fitness evaluation, crossover, 

mutation, and territorial shifts, LOA maintains diversity and explores the solution space 

comprehensively. While its natural metaphor offers innovative search mechanisms, the 

algorithm’s convergence speed and sensitivity to parameter tuning remain areas that require 
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careful attention for optimal performance (J. Liu et al., 2020). Monkey Algorithm (MA) is 

modeled on the behavior of monkeys navigating rugged terrain. It begins with a random 

population of solutions and employs a multi-phase strategy: climbing to improve local 

solutions, “Watch-Jump” to escape stagnation, and “Somersault” to introduce diversity by 

pivoting around a reference point (Y. Li et al., 2022). This combination of intensification 

and diversification enables MA to escape local optima. However, the algorithm may become 

computationally expensive in high-dimensional settings and typically demand meticulous 

parameter tuning to achieve robust performance (Zedan Shaban & Natheer Alkallak, 2021). 

Particle Swarm Optimization (PSO) is inspired by the collective behavior observed in flocks 

of birds and schools of fish. Each particle represents a potential solution that adjusts its 

velocity based on its own best experience (cognitive component) and the swarm’s best-

known position (social component) (Gad, 2022). Variants of PSO have been developed to 

address challenges such as premature convergence and to adapt to multi-objective contexts. 

While PSO is noted for its fast convergence and simplicity, its heavy reliance on information 

exchange can lead to stagnation in local optima, particularly in complex or high-dimensional 

problems (Shami et al., 2022). Shuffled Frog Leaping Algorithm (SFLA) combines the 

benefits of local search with global information exchange. The algorithm partitions a 

population of “frogs” into memeplexes, each conducting local searches by leaping toward 

better solutions (Y. Liu et al., 2022). Periodic shuffling among memeplexes enables global 

sharing of information, which enhances overall search performance. SFLA has proven 

effective in combinatorial and continuous optimization problems, but its performance is 

sensitive to the tuning of its parameters, and achieving an ideal balance between local 

intensification and global diversification can be challenging (Maaroof et al., 2022). 
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2.6 Applications of TSP-Optimization Algorithms in Recent Years 

S. Wang et al. (2020) focuses on addressing the energy minimization TSP by 

developing the precise and verifiable methods for its solution. It examines control factors 

essential for developing new methods and compares them to existing approaches. The study 

demonstrates the superiority of exact methods over other relaxation methods in tackling the 

TSP. It also introduces a new method based on Lagrangean relaxation for constructing 

solution objectives in the energy minimization TSP. The results reveal the difficulty of 

solving the energy minimization TSP, with Constraint Programming Linear Programming 

with Extensions (CPLEX) failing to complete cases for all points, while a BB algorithm 

shows promise in achieving solutions within a shorter runtime. However, even with BB, 

reaching a satisfactory solution remains challenging due to the significant gap between the 

best solution found and the optimal solution. The paper highlights the potential impact of 

additional decision variables and constraints on the energy minimization TSP problem. It 

suggests that implementing the latest BB algorithm could reduce calculation times for 

factory processes, thereby improving efficiency. Baniasadi et al. (2020) employed on the 

Clustered Generalized Traveling Salesman Problem (CGTSP), an extension of the classical 

TSP that involves dividing nodes into clusters and subclusters. It aims to provide an efficient 

solution method for CGTSP to make it applicable in practical scenarios, particularly in 

modern logistics like Automated Storage and Retrieval Systems (ASRS) and drone-assisted 

Parcel Delivery Services (PDS). The paper introduces a transformation process that converts 

CGTSP into a constrained TSP and then into a classical TSP, highlighting the flexibility of 

CGTSP in modeling compared to traditional TSP. This transformation is crucial in 

demonstrating the potential of CGTSP in addressing real-world logistics challenges. An 

efficient solution method for CGTSP is meticulously developed, showcasing its superiority 
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over existing methods in terms of solution quality and scalability. Comparative analyses 

between exact and heuristic solutions obtained through the proposed transformation 

technique and an IP formulation of CGTSP provide insights into the effectiveness of the 

proposed method relative to other solution approaches. The paper also outlines potential 

future research directions for CGTSP, including exploring other cluster-based variations of 

TSP, investigating constrained TSP formulations, and refining TSP heuristics tailored to the 

transformed problem structure. 

Panwar & Deep (2021) introduces a novel discrete GWO algorithm designed to solve 

complex discrete TSP. This algorithm integrates the 2-opt algorithm to enhance its 

performance. The results indicate that the discrete GWO algorithm significantly outperforms 

alternative approaches. The significance of combinatorial optimization problems is 

discussed, emphasizing their prevalence and applicability across diverse fields. The TSP is 

highlighted as a particularly challenging combinatorial optimization problem and a 

benchmark for algorithm testing. The paper provides an overview of metaheuristic methods 

and their advantages in addressing combinatorial optimization problems efficiently. 

Experimental results of the discrete GWO algorithm across different TSP instances are 

presented, demonstrating its superior performance. Statistical analysis, comparative 

evaluations with other algorithms, and visualization of results support the effectiveness of 

the discrete GWO algorithm. The paper highlights its potential for efficiently solving routing 

problems and complex discrete optimization problems in the future. Additionally, related 

work is discussed, including applications of the GWO algorithm in engineering problems. 

Jong et al. (2022) focuses on identifying potential HES in Sarawak and proposes a hybrid 

AI approach for optimizing transmission line routing to these sites. Using raw data from 

Sarawak Energy Berhad (SEB), 155 HES are identified and categorized into six districts. A 
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two-stage complex data management approach, including a new spatial mapping technique 

using GIS spatial tools, is employed to accurately map the data. The proposed hybrid AI 

approach consists of two parts: the first part employs TSP-GA, while the second part 

integrates improved fuzzy logic with TSP-GA. The research demonstrates that this hybrid 

approach significantly improves transmission line routing efficiency compared to 

conventional methods. Specifically, it achieves improvements ranging from 1.54 % to 18.01 

% across different districts in Sarawak. By integrating new HES locations into the system, 

the research aims to enhance electricity accessibility in remote areas. 

Di Placido et al. (2022) explores the Close-Enough TSP (CETSP), a variant of the 

classical TSP focusing on finding the shortest tour traversing all neighborhoods of a given 

set of targets. It introduces a novel approach utilizing a GA enhanced with two local search 

techniques and a mathematical model to address this challenge. A notable feature of this GA 

is its incorporation of dynamic population sizing and elitism, tailored specifically for the 

CETSP. Through a comprehensive performance comparison against state-of-the-art 

heuristics commonly used for similar optimization tasks, the research demonstrates that the 

GA consistently outperforms existing methods, achieving the smallest percentage gap with 

respect to the best-known solution. The paper introduces two innovative metrics for 

classifying problem instances based on their characteristics and their impact on the difficulty 

of solving the problem. Additionally, it showcases a real-world application of the proposed 

GA in solar panel diagnostic reconnaissance. Specifically, the GA is used to identify optimal 

routes for drones conducting reconnaissance flights over photovoltaic fields. By minimizing 

route length, the GA facilitates more efficient detection of solar panel performance issues, 

highlighting its practical relevance in addressing complex routing problems in the context of 

solar panel maintenance. Furthermore, the paper contextualizes its contribution within the 
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broader landscape of research on the TSP and its variants. It emphasizes the significance of 

the CETSP and the relevance of the proposed GA in advancing solutions for such complex 

optimization problems. A critical issue of dynamic vehicle shadows disrupting pavement PV 

arrays, leading to power losses and complex output characteristics was addressed by Mao et 

al. (2023). To tackle this challenge, it introduces a novel reconfiguration strategy grounded 

in the TSP framework and SA algorithm. Implementing this strategy results in significant 

improvements in pavement PV array performance metrics, including reducing local 

maximum power points, enhancing global maximum power output, and increasing overall 

power generation efficiency despite real-world shading complexities. A comprehensive 

comparison with existing techniques highlights the superiority of the TSP-based approach 

in maximizing output power and achieving irradiance equalization across the PV array. 

Experimental validation confirms the efficacy of the proposed approach in enhancing 

maximum power output and mitigating multiple peaks in PV curves, particularly under 

dynamic vehicle shadowing conditions. Comparative assessments between traditional and 

proposed configurations under diverse shading scenarios provide compelling evidence of the 

latter achieving superior performance in optimizing output power. 

A novel labeling method was introduced by Tawanda et al. (2023), aimed at solving 

the TSP, a classic optimization challenge where a finite set of nodes must be visited exactly 

once, minimizing the total weight of connecting arcs. This method is designed to find the 

optimal solution within a predetermined number of iterations, tailored to networks of known 

sizes. It offers flexibility by addressing both symmetric and asymmetric TSP variants and 

demonstrates computational efficiency, with complexity decreasing as iterations progress. 

The labeling algorithm allows for the determination of alternative tours within a TSP 

network, terminating after a fixed number of iterations proportional to the total number of 
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nodes. Numerical analysis has showcased the labeling method outperforming existing 

algorithms in finding optimal tours within a reduced number of iterations. Future studies 

outlined by the authors include the development of software to facilitate computational 

experiments on large-scale TSP instances and comparative analyses with existing methods. 

This comprehensive approach aims to further validate the effectiveness of the proposed 

method and its potential applications in real-world optimization problems. Mahmoudinazlou 

& Kwon (2024) proposes a hybrid GA to address the min-max multiple TSP. The hybrid 

GA integrates TSP sequences and a DP algorithm to find optimal solutions. It introduces a 

novel crossover operator aimed at combining similar tours from parent solutions while 

addressing intersections between tours. Experimental results show that the hybrid GA 

outperforms existing algorithms, matching, or surpassing best-known solutions in most 

cases. It particularly improves best-known solutions in several instances and consistently 

demonstrates equal or superior average performance across a wide range of problems. The 

paper suggests potential extensions of the hybrid GA to handle multi-depot multiple TSP 

and explore the integration of drones as agents in the multiple TSP. Additionally, it 

highlights the importance of heuristic algorithms like GA for addressing NP-hard problems 

such as the multiple TSP due to the impracticality of exact solutions. 

A novel solution was developed by Parlangeli et al. (2024) for the shortest Dubins 

path problem, specifically focusing on finding the shortest TSP path between three 

consecutive via-points with prescribed initial and final orientations, and no prescribed 

orientation at the intermediate point. The solution utilizes simple tools from analytic 

geometry and presents an efficient algorithm for real-time path planning, which is validated 

through extensive simulations. The paper emphasizes the importance of robust algorithms 

for autonomous navigation, particularly in marine environments, and highlights the 
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significance of the Dubins vehicle model for describing vessel motion constraints. It 

provides a detailed mathematical formulation of the problem and the solution approach, 

including the computation of tangent points and the derivation of the optimal path length 

and heading at the via-point. The proposed method outperforms existing approaches in terms 

of computational complexity and solution accuracy, as demonstrated through comparative 

analysis and performance evaluation metrics. The paper concludes by discussing the 

potential applications of the proposed method in autonomous marine or underwater vehicles 

and dynamic scenarios requiring real-time path planning. Chaves et al. (2024) addresses the 

Family Traveling Salesman Problem (FTSP) and proposes two methods for its solution: a 

parallel BB algorithm with efficient local search and an adaptive metaheuristic combining 

the Biased Random-Key GA with Q-Learning (BRKGA-QL) algorithm. Computational 

experiments on a benchmark dataset of 185 instances reveal that the BB algorithm with 

efficient local search was optimal for 179 instances and improved upper bounds in 19 open 

instances, while BRKGA-QL found optimal solutions in 131 instances and improved upper 

bounds in 21 open instances. The paper emphasizes the robustness and efficiency of both 

methods, comparing them with existing literature and introducing the concept of using 

reinforcement learning to control BRKGA parameters. Computational experiments were 

conducted on a system with specific configurations and solver settings, showcasing the 

performance profiles of the methods. Additionally, the paper discusses local search 

heuristics, their computational efficiency, and the impact of various method components. 

Future research directions include addressing variant FTSP and analyzing solutions in new 

instances, potentially from e-commerce data. 

A prevalent limitation across multiple works (Baniasadi et al., 2020; Chaves et al., 

2024; Di Placido et al., 2022; Mahmoudinazlou & Kwon, 2024; Mao et al., 2023; Panwar & 
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Deep, 2021; Parlangeli et al., 2024; Tawanda et al., 2023) is their restriction to singular 

objective functions, limiting applicability to real-world multi-criteria problems. Exceptions 

such as Jong et al. (2022), which integrated multi-objective optimization for energy systems, 

still face critiques for omitting critical parameters (e.g., lightning resilience). Strengths 

include metaheuristic advancements to escape local optima (Di Placido et al., 2022; Mao et 

al., 2023), flexibility in handling symmetric/asymmetric TSP (Baniasadi et al., 2020; 

Tawanda et al., 2023), and scalability for large instances (Baniasadi et al., 2020; Chaves et 

al., 2024). However, gaps persist in cross-algorithm benchmarking, swarm intelligence 

integration, and validation on ultra-large-scale problems. Technical innovations, such as 

novel crossover operators (Mahmoudinazlou & Kwon, 2024) and geometric path 

simplifications (Parlangeli et al., 2024), remain niche due to limited comparative analyses. 

Collectively, literature highlights the need for frameworks that harmonize multi-objective 

optimization, scalability, and robust empirical validation to address complex, real-world TSP 

variants. 

2.7 Establishments of Real-Time Monitoring and Control Using IIoT 

Chinomi et al. (2017) proposes the design and implementation of a smart monitoring 

system tailored for modern renewable energy micro-grid systems, employing a low-cost data 

acquisition system and LabVIEW program. This prototype facilitates the monitoring, 

analysis, and communication with devices within the micro-grid, measuring diverse 

parameters including voltage, current, power, power factor, and harmonics distortion. It 

addresses the limitations of traditional measuring instruments, which are deemed inadequate 

for remote monitoring and fault detection. The proposed system endeavors to overcome 

these shortcomings by automatically storing data, enabling remote control, and providing 

qualitative data display alongside quantitative measurements. LabVIEW software serves as 
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the backbone of the system, featuring a front panel for user interaction and a block diagram 

for program control. National Instruments (NI) compact Data Acquisition (DAQ) hardware 

interfaces with external signals, constituting the hardware configuration. The hardware 

configuration encompasses sensors and DAQ devices for monitoring solar and wind plants, 

as well as load and storage systems. The LabVIEW program is engineered to measure, 

monitor, analyze, and display data from these renewable energy systems, offering signal 

simulation, recording, and real-time fault detection capabilities. Experimental findings 

validate the accuracy and efficiency of the proposed system in measuring and analyzing 

renewable energy system parameters. Verification processes include tests for tolerances, 

phase angle calibration, and total harmonic distortion analysis. Demonstrating proficiency 

under both normal and fault conditions, the system enables remote monitoring and control. 

Emphasized advantages include automatic parameter recording, accurate measurement and 

analysis, and remote-control capabilities, rendering it more cost-effective and efficient 

compared to traditional devices. However, the proposed system utilized a radial network 

simulation model, and it has limited control. A thorough investigation into an IIoT-based 

energy monitoring system tailored for real-time control and surveillance of energy 

consumption within a switchgear industry was presented by Mudaliar & Sivakumar (2020). 

Central to this system is the utilization of Raspberry Pi, programmed with Node.js, to gather 

data from energy meters and store it locally, enabling access through Grafana. A comparison 

of various IIoT devices has been made, ultimately favoring Raspberry Pi and Arduino due 

to their simplicity, user-friendliness, and cost-effectiveness. Technical specifics of the 

system setup, including the utilization of Raspbian OS, InfluxDB for local and cloud-based 

data storage, and Grafana for data visualization, are applied. Furthermore, the findings 

through graphical representations of various electrical parameters obtained from existing 
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energy meters are displayed using Grafana. These results provide tangible evidence of the 

efficiency of the system in facilitating the understanding of day-to-day energy consumption 

patterns and enabling effective energy conservation measures. Additionally, it provides 

detailed guidance on the setup procedures for implementing a Raspberry Pi-based 

monitoring system and acknowledges the invaluable support received from industry 

personnel in obtaining operational data for the study. However, it lacks a simulation model, 

and the system is used for monitoring purposes only. 

Md Liton Hossain et al. (2020) introduces advancements in Wind Energy Conversion 

Systems (WECS) utilizing Multi-Level Inverters (MLI), introducing a simplified 

Proportional Integral-based Space Vector Pulse Width Modulation (PI-SVPWM) to address 

output waveform ripples and voltage balancing issues. Additionally, a real-time fault 

detection algorithm integrated into the PI-SVPWM controller is proposed, using an 

industrial IIoT algorithm and hardware prototype for real-time condition monitoring of 

WECS. The proposed simplified PI-SVPWM aims to mitigate output waveform ripples and 

voltage imbalances, while the embedded fault detection algorithm enhances converter 

reliability. The IIoT algorithm and hardware prototype enable real-time condition 

monitoring of WECS, emphasizing fault diagnosis, condition assessment, and asset 

management. Through remote access and periodic assessments, the proposed algorithm 

facilitates reliable condition monitoring. Contributions include the development of the PI-

SVPWM controller, the embedded fault detection algorithm, and the IIoT algorithm and 

hardware prototype. These advancements are poised to enhance efficiency, reliability, and 

real-time monitoring of wind energy conversion systems. However, the development of PI-

SVPWM is complex, and there is an absence of a simulation model. Gupta et al. (2021) 

introduces a low-cost, IIoT-enabled data acquisition system designed for monitoring solar 
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PV systems in harsh environments. It addresses the limitations of existing wired and wireless 

systems, emphasizing their high cost and limited accessibility. The proposed system utilizes 

open-access software and cloud services, enabling remote monitoring and data gathering of 

PV systems. After testing over 28 days in harsh conditions, the system proves to be reliable, 

cost-effective, and energy-saving. It offers a 58 % energy saving, and increased sensor life 

compared to traditional systems. The remote accessibility facilitates monitoring from any 

location, making it suitable for real-time performance optimization. The paper highlights the 

significance of cost-effective monitoring systems for PV systems and real-time data 

acquisition for performance evaluation. The proposed system provides a platform for long-

term data collection and analysis, contributing to the advancement of IIoT technology in the 

solar energy sector. The IIoT-enabled data acquisition system offers an economical and 

efficient solution for monitoring and optimizing PV system performance. It presents a 

valuable tool for researchers and academia, providing a more affordable and reliable option 

for sensing and monitoring PV systems in diverse environments. However, the paper is 

limited to hardware development with monitoring features only, and a simulation model is 

absent. 

A practical implementation of IoT technology in managing household electricity, 

specifically focusing on the creation of an IoT Smart Household Distribution Board 

(ISHDB) for monitoring and controlling various smart appliances was introduced by Ahmed 

et al. (2021). The ISHDB collects and stores voltage, current, and power data, presenting 

them in a user-friendly manner. It utilizes an Arduino-based prototype, Wi-Fi connectivity 

to the ThingSpeak cloud, and the Blynk mobile application for real-time monitoring. Cost 

and time comparisons with existing techniques reveal the superiority of ISHDB in terms of 

cost-effectiveness and execution time. The paper highlights the growing need for smart home 
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systems to manage electrical energy efficiently, especially with the rising energy demand 

and transition to prosumer-oriented markets. It emphasizes the significance of cost-effective 

prototypes for distribution boards, an aspect often overlooked in existing literature. The 

ISHDB system comprises two core modules: a hardware interface module and a software 

communication module, utilizing an Arduino Uno microcontroller. Testing with household 

appliances demonstrates its effectiveness in monitoring electricity usage and controlling 

power consumption. Safety and protection measures integrated into the system ensure 

compliance with regulations and accurate signal measurement. The paper suggests further 

research to extend the functionalities of the system, such as incorporating IoT-aided AI 

methods for security purposes. Overall, it demonstrates the technical soundness and cost-

effectiveness of the ISHDB system for household applications, enabling real-time 

monitoring of appliance performance from anywhere. However, the developed application 

is only suitable for household use. Ali et al. (2021) proposes the monitoring, evaluation, and 

management of the operational performance of an existing micro-grid comprising grid PV 

systems and the main grid supply. It introduces a customized web-based SCADA system 

designed to assess the performance of the micro-grid in terms of energy consumption, power 

quality indices, and energy cost based on the energy tariff in Egypt. The designed system 

facilitates micro-grid monitoring and load sharing between the main grid supply and the off-

grid PV energy system, with online data access and analysis from the inverter web server, 

multi-level security authentication, and data encryption. Smart wired and wireless 

technology are utilized for integrated sensing devices and validate the collected data from 

the SCADA system through performance characterization of the on-grid PV system. 

Furthermore, other research works based on monitoring and analyzing the collected data in 

a centralized manner where the operator should exist in front of the SCADA master station, 
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typically in the control room, are analyzed. The developed platform emphasizes the key 

advantages including cost-saving, operational sustainability, convenience, security, 

extendibility, and safe resource management. However, the proposed system lacks a 

simulation model with limited control functionalities. 

A development and implementation of an advanced energy management strategy for 

a hybrid microgrid, aiming to address challenges posed by intermittent GERs was proposed 

by Ullah et al. (2022). It introduces an energy management system with a real-time 

monitoring interface to efficiently manage the hybrid microgrid, comprising solar and wind 

power sources, Li-ion battery storage, backup electrical grids, and AC or DC loads. The 

energy management system ensures balanced power supply, stable frequency, and voltage 

profiles, utilizing efficiency control for battery charging and discharging. Simulation results 

using MATLAB Simulink and Python platforms validate the effectiveness of the proposed 

energy management system and monitoring interface for stable microgrid operation. It 

categorizes microgrid control systems into centralized and decentralized models for optimal 

operation. The proposed energy management system model and real-time monitoring 

interface aim to optimize energy management, ensure stability, and enhance reliability under 

varying meteorological conditions and load fluctuations. Performance evaluations 

demonstrate the effectiveness of energy management systems in managing power balance, 

frequency regulation, and voltage control within the microgrid. However, the simulation 

model used a radial network simulation model and lacked validation of the proposed system. 

Qays et al. (2022) introduces a novel application of SCADA systems using IIoT technology 

for monitoring hybrid renewable energy systems, which include photovoltaic, wind, and 

battery energy storage systems. It emphasizes the increasing demand for real-time 

monitoring in remote and offshore locations. The proposed SCADA system enables real-
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time monitoring of electrical parameters and remote control of system components. To 

develop the hardware prototype, the authors utilize low-cost electronic components and an 

Arduino Integrated Development Environment ATMEGA2560 remote terminal unit. 

Simulation and experimental results demonstrate the feasibility, reliability, and cost-

effectiveness of the proposed system compared to existing techniques. The proposed IIoT-

aided SCADA system is shown to be a novel and effective solution, validated through 

simulation and experimental analyses. Structural diagrams of the hybrid power system, 

interfacing of the SCADA system with MATLAB Simulink, and the experimental prototype 

are presented. Comparison with existing models indicates the novelty and potential of the 

proposed system for remote renewable energy management. However, the proposed 

simulation model is in a radial topology network and lacks integration of dynamic inputs. 

Melo et al. (2023) focuses on designing and assessing a standalone microgrid for San 

Andres, Colombia, aiming to provide low-cost clean electricity using renewable resources. 

It addresses challenges related to regulating frequency and voltage within the microgrid due 

to the intermittent nature of GERs and presents a dispatch strategy-based control system. A 

24.57 kW peak load microgrid composed of a PV-wind-storage system is designed and 

assessed using MATLAB Simulink. Additionally, a Programmable Logic Controller-

SCADA (PLC-SCADA) system with a Human-Machine Interface (HMI) in C# is developed 

for real-time monitoring and automatic data uploading to a cloud database. The paper 

highlights the negative effects of fossil fuel consumption on the environment and human 

health, advocating for the replacement of conventional energy sources with renewable ones. 

A comparative study of five dispatch strategies evaluates their performance based on cost, 

energy consumption, and emissions, finding the Load Following (LF) strategy optimal for 

the microgrid. Findings include optimal component sizes, microgrid system stability, and 
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voltage, power, and frequency responses under different dispatch strategies. Development 

and testing of PLC-SCADA system, SCADA HMI, and cloud database for data storage and 

analysis are also presented. However, it lacks hardware validation, and only a radial network 

is used in the simulation model. The challenges in power distribution networks with the rise 

of renewable energy-based microgrids and substations lacking real-time monitoring was 

investigated by Ullah et al. (2023). It proposes an IIoT-based monitoring and control system 

for power substations and distributed smart grids to tackle suboptimal resource allocation, 

poor load management, grid instability, and lack of real-time decision-making capabilities. 

By exploring IIoT technology for power parameter monitoring and load management across 

various sectors, including industrial, domestic, commercial, and electric vehicles, it can 

mitigate power fluctuations and contingencies. Using HOMER Grid, it analyzes the 

annualized power production pattern of smart grids and the power consumption pattern of 

integrated loads for proactive energy management decisions, ultimately aiming to reduce 

energy costs and carbon emissions. The proposed model is validated through a constructed 

prototype, demonstrating real-time monitoring and control capabilities to enhance grid 

stability and energy efficiency. An IIoT-based monitoring and control system for power 

substations and associated smart grids is introduced to facilitate effective segregation 

decisions into the power distribution network. By segregating smart grids and managing 

loads, the proposed system mitigates suboptimal resource allocation and grid instability. 

Through HOMER Grid analysis, the research investigates power production and 

consumption patterns, enabling proactive energy management decisions. IIoT technology is 

leveraged for power parameter monitoring across substations and smart grids, ensuring 

stable operation and contingency mitigation. Validation through a prototype demonstrates 
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real-time monitoring and control capabilities for effective energy and load management 

decisions. However, the system lacks a simulation model for further planning and evaluation. 

The integration of smart grid technology with renewable energy resources using 

IIoT, emphasizing the use of Wireless Sensor Network (WSN) for power grid monitoring 

and control was explored by Murugan & Vijayarajan (2023). It addresses issues such as 

voltage violation and grid instability by proposing a hybrid approach of encryption methods 

and algorithms for secured data transmission. The research utilizes Advanced Encryption 

Standard (AES) and Rivest Cipher 4 (RC4) for encryption, coupled with the Pulse Coupled 

Neural Network (PCNN) algorithm for high-speed data transmission. Hardware 

implementation involves Arduino controllers, facilitating efficient smart grid parameter 

monitoring for uninterrupted power availability. Addressing the limitations of traditional 

microgrid systems, it highlights the significance of integrating renewables to enhance system 

efficiency. The Remora Optimization algorithm is introduced for efficient selection of neural 

network hyperparameters, ensuring global optimal solutions for identifying the shortest path. 

It demonstrates a hybrid encryption technique, PCNN algorithm, and Remora Optimization 

algorithm for secured and high-speed data transmission. Hardware implementation using 

Arduino controllers and MATLAB Simulink assesses system performance, indicating 

improved efficiency and secure data transmission. The research emphasizes the potential of 

the proposed IIoT-based secure data monitoring system for renewable energy-fed 

microgrids, offering valuable perspective into the development of efficient and secure smart 

grid technologies. Nonetheless, there is an absence of a simulation model for the proposed 

system. Krishna Rao et al. (2024) explores the utilization of IIoT and smart energy 

management systems for forecasting solar power generation. It emphasizes the significance 

of PV forecasting in enhancing real-time control systems, mitigating the impact of 
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uncertainty on PV energy generation, and increasing solar power output. The integration of 

IIoT with a solar PV system shows potential for remote and in-person monitoring. The 

hardware and software components for monitoring and controlling solar power systems are 

provided, including microcontrollers, sensors, and IIoT for data transmission. 

Implementation of the smart energy monitoring system focusing on real-time data collection 

from remote locations and its implications for data analysis and system maintenance are 

analyzed. However, the system lacks a simulation model for further analysis.  

2.8 Research Gap 

Sarawak faces significant challenges in transitioning from fossil fuels to GERs. A 

crucial research gap exists due to the absence of a comprehensive assessment framework 

model for identifying optimal large-scale green energy locations across the state (Almasad 

et al., 2023). While existing studies focus on determining suitable GER types (Bilgili et al., 

2022; Hasti et al., 2023; Sasikumar & Ayyappan, 2019) for specific regions or small areas, 

none offer a method to thoroughly evaluate potential GERs on a statewide scale (Jong & 

Ahmed, 2024). The scattered distribution of GERs in Sarawak highlights the significance of 

harnessing these resources on a large scale to foster sustainable energy development. To 

address this gap, a novel GIS-based approach integrating fuzzy TOPSIS, and filtration 

algorithms is proposed.  One notable feature of the proposed model is the integration of 

novel filtration algorithms. These algorithms seamlessly interact with polygon layers and 

raster maps, facilitating the identification of optimal green energy locations based on 

decision-maker’s preferences. This enhancement ensures the adaptability of the proposed 

model to real-world scenarios. 

Efficient integration of green energy locations into a bulk power system generation 

is essential for achieving a zero-carbon footprint and energy sustainability (Jong & Ahmed, 
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2024). However, reliable methods for GER integration are lacking, indicating another 

research gap. Robust methods are needed to integrate GERs efficiently, with a preference 

for the ring topology due to its resilience against power disruptions (Shakil et al., 2020). 

Three key parameters (distance, elevation difference, and average ground flash density) 

should be considered. Minimizing the distance between all green energy locations is able to 

reduce installation, operation, and maintenance costs (Jong et al., 2022). A minimal elevation 

difference is necessary, as flat or gently sloping terrain is preferred, simplifying the 

construction process and reducing the need for complex engineering solutions (Jong et al., 

2022). Considering the average ground flash density is crucial for mitigating the risk of 

power line and equipment destruction, thus minimizing downtime and costly repairs. In 

2021, lightning strikes on the 275kV Murum Junction transmission line resulted in a double-

circuit tripping. This event had significant consequences, causing outages from Miri in the 

north to Kuching in the south (Sarawak Energy, 2021). Another incident unfolded in 2023 

when an unexpected power interruption triggered by lightning strikes affected residents in 

Sibu (MARILYN TEN, 2023). To address these challenges, an improved GIS-driven fuzzy 

TSP-BIP algorithm model is proposed. This model designs the optimal power line routing 

for the identified green energy locations integration with minimum distance, elevation 

difference, and average ground flash density. 

Furthermore, despite state-of-the-art research focused on monitoring, control, and 

automation for IGESs, a significant research gap remains in developing a comprehensive 

simulation and hardware model. Many researchers have proposed solutions using hardware 

without the simulation model (Krishna Rao et al., 2024; Murugan & Vijayarajan, 2023; 

Ullah et al., 2023). Some researchers have proposed the simulation models (Melo et al., 

2023; Qays et al., 2022) but without incorporating dynamic real-time data from actual power 
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utility companies and precipitation data to model the real behavior of power systems. 

Besides, none of them have considered a ring topology network for IGESs simulation 

modeling. Bridging this gap is crucial as it provides a more realistic, dynamic, and robust 

IGESs model, thereby enhancing planning, and management practices in the field. Table 2.1 

highlights comparisons of the proposed innovative IIoT-based monitoring, control, and 

automation system for IGESs against other existing systems. 
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Table 2.1: Comparisons of the Proposed IIoT-based System with Existing Systems 

Source 

Simulation Model Hardware Model 

Real-Time 

Dynamic 

Data 

Model 

IGESs 

Model 

Model 

Topology 

Real-Time 

Dynamic 

Input to 

Model 

Monitoring 
Manual 

Control 
Automation 

SCADA 

Interfacing 

Hardware 

Monitoring 

Manual 

Control 

from 

SCADA 

Automation 

(Chinomi et al., 2017) No Yes Radial No Yes No No Yes Yes No No 

(Mudaliar & Sivakumar, 2020) No No No No No No No Yes Yes No No 

(Md Liton Hossain et al., 2020) No No No No No No No Yes Yes No Yes 

(Gupta et al., 2021) No No No No No No No Yes Yes No No 

(Ahmed et al., 2021) No No No No No No No No Yes No Yes 

(Ali et al., 2021) No No No No No No No Yes Yes No Yes 

(Ullah et al., 2022) No Yes Radial No Yes No No No No No No 

(Qays et al., 2022) No Yes Radial No Yes Yes No Yes Yes Yes No 

(Melo et al., 2023) No Yes Radial No Yes Yes Yes No No No No 

(Ullah et al., 2023) No No No No No No No Yes Yes No Yes 

(Murugan & Vijayarajan, 2023) No No No No No No No Yes Yes No Yes 

(Krishna Rao et al., 2024) No No No No No No No Yes Yes No No 

Proposed System Yes Yes Ring Yes Yes Yes Yes Yes Yes Yes Yes 
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2.9 Chapter Summary 

The chapter has examined significant criteria encompassing climatic, technical, 

accessibility, environmental, and social considerations for GERs. The review also analyzed 

the utilization of MCDM methods to identify optimal green energy locations. Subsequently, 

existing optimization algorithms used to integrate the identified green energy locations by 

designing optimal power line routing have been reviewed and evaluated. Additionally, state-

of-the-art research works regarding real-time monitoring, control, and automation for IGESs 

have been explored. Comprehensive literature reviews have been conducted to determine 

existing research gaps that need to be addressed to ensure the successful implementation of 

effective green energy infrastructure in the region. 
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CHAPTER 3  
 

 

METHODOLOGY 

3.1 Introduction 

This chapter begins by analyzing the influential criteria of SES, WES and HES. 

Influential criteria for identifying green energy locations from recent years (starting from 

2020) are gathered and ordered based on the number of publications from reputable IEEE 

and Elsevier high-impact journals. This collection of criteria serves as the groundwork for 

identifying optimal green energy locations. The research then proposes a novel GIS-based 

fuzzy TOPSIS and filtration algorithms for identifying large-scale GERs in Sarawak. The 

GERs identification process comprises two layers. In the first layer, a filtration framework 

is employed, consisting of two phases. Initially, potential SES and WES from the DIVA-

GIS database, and potential HES from the SEB database are gathered. These undergo the 

first filtration process to exclude locations overlapping with structured data. The optimal 

HES are then determined, and WES are selected with a minimum wind speed of 3 𝑚𝑠−1. 

Subsequently, the second phase of filtration employs criteria constraints and raster maps to 

further refine potential SES locations. In the second layer, a proposed fuzzy TOPSIS 

algorithm is utilized to identify and rank the top 100 optimal SES. Validation against the 

weighted sum method is performed to determine its alignment level.  

Following GERs identification, optimal power line routing is designed to integrate 

these green energy locations. Initially, these locations are clustered into 12 divisions. Three 

influential factors (distance, elevation difference, and average ground flash density) are 

considered to achieve overall minimal values using a fuzzy TSP-BIP algorithm. Validation 

is conducted to compare results between fuzzy TSP-BIP and ordinary TSP-BIP algorithms 
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to demonstrate the advantages of fuzzy logic operation. Additionally, fuzzy TSP-BIP is 

compared with other fuzzy optimization algorithms to validate its superior performance. 

Subsequently, IIoT-based real-time monitoring, control, and automation strategies 

for IGESs are proposed. Real-time dynamic data modeling incorporates load demand data 

from the grid system operator and solar radiation and temperature data from Solcast. IGESs 

sizing is based on load demand, and the ring topology network of the IGESs model is 

designed in MATLAB Simulink. The proposed IGESs model interfaces with dynamic input 

data, and the SCADA system communicates with MATLAB through a server for effective 

real-time monitoring, control, and automation. To validate the practical application of real-

time monitoring, control, and automation strategies via SCADA in real-world scenarios, a 

hardware model utilizing Raspberry Pi alongside IIoT components has been interfaced with 

the SCADA system. This integration serves to demonstrate the effectiveness of SCADA by 

enabling real-time monitoring, control, and automation functionalities. 

3.2 Research Framework 

This research framework is organized into three principal sections. The first section 

focuses on the development of innovative GIS-based fuzzy TOPSIS and filtration algorithms 

designed to identify large-scale green energy locations. This section is structured into two 

distinct layers: the first layer is responsible for managing GIS data and implementing a 

double-phase filtration process, while the subsequent layer employs the proposed fuzzy 

TOPSIS algorithm to identify the optimal sites. The results derived from this approach are 

validated against the WSM. The second section introduces a novel GIS-driven fuzzy TSP-

BIP algorithm aimed at effectively integrating the identified green energy sites. The 

performance of this algorithm is rigorously compared and validated against the conventional 
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TSP-BIP and other fuzzy TSP algorithms. The final section is dedicated to the establishment 

of an IIoT-based framework for real-time monitoring, control, and automation. This involves 

the development of dynamic input mechanisms, the formulation of an IGESs model, and the 

design of robust communication strategies. The practical applicability of these strategies is 

confirmed through validation with a hardware prototype, thereby demonstrating their 

potential in real-world scenarios. Figure 3.1 provides a visual representation of the overall 

research framework. 

 

Figure 3.1: Schematic Overview of the Proposed Research Framework  

3.3 Proposed GIS-based fuzzy TOPSIS and Filtration Algorithms 

The research proposes a novel GIS-based fuzzy TOPSIS and filtration algorithms to 

identify the green energy locations. This method can effectively screen a large scale of 

potential green energy sites within a region.  Figure 3.2 illustrates the complete flowchart of 

the proposed model for determining optimal green energy locations.  
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Figure 3.2: Flowchart of Proposed GIS-based Fuzzy TOPSIS and Filtration Algorithms 
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3.3.1 GIS Data Integration and Filtration Process 

In the initial phase of the first layer, a comprehensive dataset comprising 19,237 

coordinate-formatted locations is extracted from the DIVA-GIS database (DIVA-GIS, 

2023). These locations encompass various small administrative units, including divisions, 

villages, towns, mukim, and others, which are all considered potential sites for SES and 

WES. Furthermore, data pertaining to HES is extracted from SEB mapping, yielding a total 

of 155 potential HES (Jong et al., 2022). Figure 3.3 illustrates the distribution of all SES and 

WES, while Figure 3.4 displays the potential HES across the Sarawak region. 

 

Figure 3.3: Potential SES and WES in Sarawak (DIVA-GIS, 2023) 

 

Figure 3.4: Potential HES in Sarawak (Jong et al., 2022) 
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To address the scattered distribution of potential green energy locations across the 

Sarawak region, structured data play a crucial role in excluding locations within protected 

areas, points of interest, settlements, parking zones, surfaces, vegetation, land use zones, 

buildings, airports, and bodies of water. The description of this structured data is provided 

in Table 3.1, while Figures 3.5 (a) to (k) visualize the mapping of each data category. By 

excluding coordinates within these designated areas, it ensures that identified green energy 

locations are not situated in restricted or prohibited zones. Conversely, a specific polygon 

layer named “island” is employed for the filtration process, eliminating coordinates outside 

this polygon. This measure confines green energy locations within Sarawak’s boundaries, 

thus mitigating potential land controversy issues. These data are then classified into two 

categories: exclusion and inclusion areas. Exclusion areas denote regions with restrictions 

or prohibitions on green energy development, while inclusion areas permit such installations. 

The utilization of structured data is essential in the first phase of the filtration process for 

refining and filtering the large scale of 19,237 potential SES and WES, and 155 potential 

HES within the region. 

Table 3.1: Structured Data (NextGIS, 2023) 

Structure Description 

Protected 

Areas 

Reserved areas for recreational activities, such as parks, gardens, and 

beaches, protected from further development. 

Point of 

Interest 

Noteworthy locations including amenities, offices, shops, tourist 

attractions, and sports facilities. 

Settlement Inhabited areas where people reside and engage in various activities, 

including cities, towns, villages, and hamlets. 

Parking Diverse parking facilities, such as multi-story, park-and-ride, surface, 

underground, private, and designated for customers or official use. 
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Table 3.1 continued 

Surface The uppermost layer of any object or land, encompassing natural 

surfaces. 

Vegetation Areas characterized by natural plant growth or intentional cultivation, 

including residential areas, farmland, forests, and grasslands. 

Land Use Classification of land based on human activities and purposes, such as 

residential, commercial, industrial, agricultural, recreational, and 

conservation. 

Island The delineation of Borneo Island's boundary. 

Building Constructed structures like houses, apartments, churches, warehouses, 

and kiosks. 

Airport Facilities designated for public, military, and other purposes related to air 

transportation. 

Water Areas of water within the boundaries of the local state. 

 

 

(a) Protected Area 

 

(b) Point of Interest 
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(c) Settlement 
 

(d) Parking 

(e) Surface 
 

(f) Vegetation 

(g) Land Use 

 

 

(h) Island 
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(i) Building 
 

(j) Airport 

 

(k) Water 

Figure 3.5 (a) to (k): Mapping of Structured Data (NextGIS, 2023)  

The first filtration process involves two inputs: the coordinates of green energy 

locations in the point shapefile layer and the multi-structured data in the polygon shapefile 

layers. The polygon layers of structured data are attributed as either “inside” or “outside”. 

The “inside” attribute denotes that points located within a polygon are removed, whereas the 

“outside” attribute specifies the removal of points situated outside a polygon. The 

pseudocode algorithm for the initial phase of alternatives filtration, as illustrated in Figure 

B-1 (Appendix), has been developed and is executable within the ArcGIS Pro Python 

window. The remaining points after the first filtration are presented in the content layer of 

ArcGIS Pro. This initial filtration phase yields optimal HES. The optimal WES are obtained 

from the remaining coordinates out of 19,237, with wind speeds greater than 3 𝑚𝑠−1. 
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To initiate the second phased of filtration process for identifying SES, all the criteria 

as outlined in Table 3.2 are utilized to assess and rank potential SES. Among these criteria, 

solar radiation holds significant importance. Hence, a matured long-term annual average 

GHI in 𝑘𝑊ℎ 𝑚−2 𝑦𝑒𝑎𝑟−1 , spanning from 2007 to 2018 (11 years), is considered. 

Temperature is also a crucial criterion as it affects the efficiency of solar panels. The slope 

of the land impacts the installation angle of PV panels, thereby influencing sunlight 

exposure. Elevation contributes to atmospheric conditions affecting solar radiation levels. 

Proximity to power transmission lines, roads, residential areas, and urban facilities is vital 

due to associated costs, installation complexities, and logistical challenges. The distance 

from water sources is considered as water serves as a cooling agent in solar systems. 

Similarly, the distance from protected areas is significant to prevent SES installations near 

prohibited zones, thus averting potential land disputes and environmental impacts. 

Furthermore, the distance from settlements and population density is crucial to ensure 

proximity to areas with high power demand. These criteria collectively establish a 

comprehensive framework for identifying optimal SES, encompassing climatic, technical, 

accessibility, environmental, and social factors. Each criterion is assigned a unique identifier, 

ranging from 𝐶1 to 𝐶12, for distinction. These criteria data are sourced and extracted from 

various outlets in raster maps, including Solargis, DIVA-GIS, and NextGIS. Proximity 

analysis tools in ArcGIS Pro are employed for criteria 𝐶5 to 𝐶11 to generate necessary spatial 

raster mapping data. This comprehensive approach ensures the consideration and integration 

of all relevant criteria into the analysis process. The remaining potential SES from the first 

phase of filtration must extract their associated values from all the raster maps, as depicted 

in Figures 3.6 (a) to (l). 
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Table 3.2: Influential Criteria 

ID Aspect Criteria Source of Raster 

Map 

𝐶1 

Climatic 

Solar Radiation (𝑘𝑊ℎ 𝑚−2 𝑦𝑒𝑎𝑟−1) (Solargis, 2023) 

𝐶2 Temperature (℃) (Solargis, 2023) 

𝐶3 

Technical 

Slope (°) (DIVA-GIS, 2023) 

𝐶4 Elevation (𝑚) (DIVA-GIS, 2023) 

𝐶5 

Accessibility 

Proximity to Power Transmission Lines (𝑘𝑚) (NextGIS, 2023) 

𝐶6 Proximity to Roads (𝑘𝑚) (DIVA-GIS, 2023) 

𝐶7 Proximity to Residential Areas (𝑘𝑚) (NextGIS, 2023) 

𝐶8 Proximity to Urban Facilities (𝑘𝑚) (NextGIS, 2023) 

𝐶9 

Environmental 

Distance from Water (𝑘𝑚) (NextGIS, 2023) 

𝐶10 Distance from Protected Areas (𝑘𝑚) (NextGIS, 2023) 

𝐶11 Distance from Settlement (𝑘𝑚) (NextGIS, 2023) 

𝐶12 Social Population Density (
𝑃𝑒𝑜𝑝𝑙𝑒

𝑘𝑚2 ) (DIVA-GIS, 2023) 

 

 
(a) Solar Radiation (b) Temperature 
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(c) Slope 

 

 
(d) Elevation 

 
(e) Proximity to Power Transmission Lines 

 

 
(f) Proxmity to Road 

 
(g) Proximity to Residential Areas  

  
(h) Proximity to Urban Facilities 
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(i) Distance from Water 

 

 
(j) Distance from Protected Areas 

 
(k) Distance from Settlement 

 
(l) Population Density  

Figure 3.6 (a) to (l): Mapping of Influential Criteria (NextGIS, 2023) 

The input point layer containing the remaining SES from the first filtration process, 

along with the 12 criteria raster layers in either “tif” or “vrt” format as highlighted in Figures 

3.6 (a) to (l), are employed to extract numerical raster values using the pseudocode algorithm 

depicted in Figure B-2 (Appendix). Once all the remaining SES have acquired their 

respective raster values based on the influential criteria, the subsequent step is to develop 

criteria constraints in preparation for the second phase of SES filtration. 

The second filtration process relies on defined criteria constraints, providing a basis 

for preserving SES that meet acceptable criteria values amidst the vast array of filtered SES 

in the pursuit of optimal SES. It is essential to acknowledge that there are no universally 
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perfect values when establishing criteria constraints. Therefore, these constraints are derived 

from reputable high-impact journals, offering valuable guidelines. Efficient solar energy 

generation necessitates high solar radiation levels (≥ 1200 𝑘𝑊ℎ 𝑚−2 𝑦𝑒𝑎𝑟−1). To ensure 

optimal solar panel operation, a minimum temperature of 15  ℃  is set for locations in 

relatively warm climates, with an upper limit of 28 ℃ to avoid detrimental effects on panel 

performance and lifespan due to excessive heat. Slopes beyond 25  °  are considered 

unacceptable as they significantly impact solar shading and pose challenges in construction 

and maintenance. Although high elevation is desirable for receiving more sunlight, locations 

above 2200 𝑚  are excluded due to accessibility concerns, while areas below sea level 

(elevation < 0 𝑚) are also disregarded. For safety measures and to minimize power losses, 

installation costs, and difficulties, there is a mandated minimum distance from power 

transmission lines, roads, residential, and urban areas. Additionally, a minimum distance of 

0.1 𝑘𝑚 from water bodies is set to prevent environmental impact, with an upper limit of 20 

𝑘𝑚 to ensure proximity to potential water sources as a cooling agent for solar panels. A 

minimum distance of 0.1 𝑘𝑚 from protected areas is established to minimize environmental 

impact and adhere to conservation regulations. Similarly, a minimum distance of 0.1 𝑘𝑚 

from settlements is imposed to address safety concerns and reduce potential disruptions to 

local communities. A population density greater than zero is required to ensure that the SES 

is in areas with a residential presence, reflecting the demand for power (Deveci et al., 2021; 

Tercan et al., 2021). Table 3.3 demonstrates the criteria constraints, and the second filtration 

process is partitioned into 19 rounds. During this process, points that fall outside the interval 

defined by the criteria constraints are eliminated using the pseudocode algorithm depicted 

in Figure B-3 (Appendix). Following the completion of the second filtration process, the 
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further filtered SES are then passed on to the second layer for execution using fuzzy TOPSIS, 

where their rankings are determined. 

Table 3.3: Criteria Constraints (Deveci et al., 2021; Tercan et al., 2021) 

Criteria Round Criteria Constraint 

Solar Radiation (𝑘𝑊ℎ 𝑚−2 𝑦𝑒𝑎𝑟−1) 1 𝐶1 ≥ 1200 

Temperature (℃) 
2 𝐶2 ≥ 15 

3 𝐶2 < 28 

Slope (°) 4 𝐶3 < 25 

Elevation (𝑚) 
5 𝐶4 < 2200 

6 𝐶4 ≥ 0 

Proximity to Power Transmission Lines (𝑘𝑚) 
7 𝐶5 ≥ 0.01 

8 𝐶5 < 50 

Proximity to Roads (𝑘𝑚) 
9 𝐶6 ≥ 0.1 

10 𝐶6 < 50 

Proximity to Residential Areas (𝑘𝑚) 
11 𝐶7 ≥ 0.3 

12 𝐶7 < 45 

Proximity to Urban Facilities (𝑘𝑚) 
13 𝐶8 ≥ 0.3 

14 𝐶8 < 45 

Distance from Water (𝑘𝑚) 
15 𝐶9 ≥ 0.1 

16 𝐶9 < 20 

Distance from Protected Areas (𝑘𝑚) 17 𝐶10 ≥ 0.1 

Distance from Settlement (𝑘𝑚) 18 𝐶11 ≥ 0.1 

Population Density (
𝑃𝑒𝑜𝑝𝑙𝑒

𝑘𝑚2 ) 19 𝐶12 > 0 
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3.3.2 Proposed Fuzzy TOPSIS Algorithm 

The second layer develops fuzzy TOPSIS algorithm to identify and rank the top 100 

optimal SES from the outputs of the first layer. Fuzzy logic operations are utilized due to 

their proven effectiveness across various problem domains, including decision-making 

analysis, pattern recognition, control systems, robotic automation, artificial intelligence, and 

even medical applications. The integration of fuzzy to the MCDM method is a strategic 

choice driven by its effectiveness in managing vagueness and imprecision. Unlike 

conventional MCDM methods, which are limited to handling crisp values (0 and 1), this 

approach is particularly crucial given that traditional methods tend to be highly sensitive to 

alterations in input data. Even minor adjustments to the input data can impact the results. 

Therefore, fuzzy operations offer enhanced adaptability by incorporating a degree of 

membership. This feature empowers decision-makers to assess the extent to which each 

alternative or criterion aligns with a specific category, providing a more realistic depiction 

of ambiguity within decision-making scenarios. Various fuzzy membership functions are 

available, including triangular, Gaussian, trapezoidal, sigmoidal, and bell-shaped. The 

triangular membership function is selected for its notable advantages, including 

straightforward interpretation, simplicity, and intuitive representation, making it well-suited 

for the proposed model. Moreover, TOPSIS is preferred over other MCDM methods for 

integration with fuzzy algorithms due to its adeptness in handling multiple criteria by 

assessing both ideal and anti-ideal solutions. This makes it particularly suitable for 

identifying SES, where influential criteria encompass both benefit and cost attributes. 

Additionally, TOPSIS implementation is characterized by its simplicity and transparency, 

ensuring that the reliability and interpretability of results are not compromised. Therefore, a 

fuzzy TOPSIS algorithm is proposed, which not only identifies promising courses of action 
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but also considers and accommodates the inherent complexity and uncertainty associated 

with decision-making processes related to SES identification. The implementation of the 

fuzzy TOPSIS algorithm entails seven steps, denoted as (i), (ii), (iii), (iv), (v), (vi), and (vii). 

(i) Define Inputs 

Five elements are designated as inputs for the fuzzy TOPSIS algorithm. 

(a) Alternatives: These are the remaining alternatives following the second filtration 

process. They are structured in a matrix format (𝑚 × 𝑛) , with 𝑚  denotes the 

alternatives and 𝑛 represents the corresponding raster values for criteria. 

(b) Criteria: Designated as 𝐶1 to 𝐶12, they integrate fuzzy linguistic parameters within 

predefined intervals, as demonstrated in Table 3.4. 

Table 3.4: Criteria Parameters (Deveci et al., 2021; Tercan et al., 2021) 

Very Low Low Medium High Very High 

1200 < 𝐶1 ≤ 1400 1400 < 𝐶1 ≤ 1600 1600 < 𝐶1 ≤ 1700 1700 < 𝐶1 ≤ 1800 𝐶1 > 1800 

27 <  𝐶2 ≤  28 26 <  𝐶2 ≤  27 25 <  𝐶2 ≤  26 24 <  𝐶2 ≤  25 15 < 𝐶2 ≤ 24 

15 <  𝐶3 ≤  25 10 <  𝐶3 ≤  15 5 <  𝐶3 ≤  10 2 <  𝐶3 ≤  5 𝐶3 ≤ 2 

0 <  𝐶4 ≤  200 200 <  𝐶4 ≤  450 450 <  𝐶4 ≤  750 750 <  𝐶4 ≤  1200 1200 < 𝐶4 ≤ 2200 

20 <  𝐶5 ≤  50 15 <  𝐶5 ≤  20 10 <  𝐶5 ≤  15 5 <  𝐶5 ≤  10 0.01 <  𝐶5 ≤  5 

30 <  𝐶6 ≤  50 20 <  𝐶6 ≤  30 10 <  𝐶6 ≤  20 5 <  𝐶6 ≤  10 0.1 <  𝐶6 ≤  5 

30 <  𝐶7 ≤  45 20 <  𝐶7 ≤  30 15 <  𝐶7 ≤  20 10 <  𝐶7 ≤  15 0.3 <  𝐶7 ≤  10 

30 <  𝐶8 ≤  45 20 <  𝐶8 ≤  30 15 <  𝐶8 ≤  20 10 <  𝐶8 ≤  15 0.3 <  𝐶8 ≤  10 

16 <  𝐶9 ≤ 20 12 <  𝐶9 ≤ 16 8 <  𝐶9 ≤  12 4 < 𝐶9 ≤  8 0.1 <  𝐶9 ≤  4 

0.1 <  𝐶10 ≤ 1 1 <  𝐶10 ≤ 2 2 <  𝐶10 ≤ 3 3 <  𝐶10 ≤ 4 𝐶10 > 4 

30 <  𝐶11 20 <  𝐶11 ≤  30 10 <  𝐶11 ≤  20 5 <  𝐶11 ≤  10 0.1 <  𝐶11 ≤  5 

0 <  𝐶12 ≤  100 100 <  𝐶12 ≤  200 200 <  𝐶12 ≤  300 300 <  𝐶12 ≤  400 𝐶12 > 400 
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(c) Criteria Attributes: They are categorized as either benefit or cost. Benefit criteria 

signify a preference for higher values, while cost criteria indicate a preference for 

lower values. Table 3.5 presents all 12 criteria attributes along with their respective 

IDs. 

Table 3.5: Criteria Attributes (Deveci et al., 2021) 

ID Criteria Attribute 

𝐶1 Benefit 

𝐶2 Cost 

𝐶3 Cost 

𝐶4 Benefit 

𝐶5 Cost 

𝐶6 Cost 

𝐶7 Cost 

𝐶8 Cost 

𝐶9 Cost 

𝐶10 Benefit 

𝐶11 Cost 

𝐶12 Benefit 

 

(d) Fuzzy Membership Functions: Triangular membership functions are constructed, 

encompassing Very Low (VL), Low (L), Medium (M), High (H), and Very High 

(VH), as depicted in Figure 3.7. 
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Figure 3.7: Triangular Fuzzy Membership Functions (Fu & Tzeng, 2016) 

 

(e) Fuzzy Criteria Weights: They are divided into lower, median, and upper sections as 

highlighted in Table 3.6. 

Table 3.6: Fuzzy Criteria Weight (Deveci et al., 2021) 

ID 

Fuzzy Weight 

Lower Median Upper 

𝐶1 8.43 12.12 17.65 

𝐶2 6.87 10.85 16.06 

𝐶3 6.57 9.88 14.85 

𝐶4 5.56 10.48 15.61 

𝐶5 7.02 10.42 15.53 

𝐶6 5.81 9.58 14.47 

𝐶7 5.76 9.21 14.02 

𝐶8 5.76 9.21 14.02 

𝐶9 5.76 9.21 14.02 

𝐶10 7.27 11.03 16.29 

𝐶11 5.76 9.21 14.02 

𝐶12 6.21 9.76 14.70 
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The alternatives that remain after the second filtration process are organized into an 

input decision matrix, which is stored in an excel file named filename.xlsx. All these inputs 

are then integrated into the fuzzy TOPSIS algorithm as illustrated in Figure B-4 (Appendix) 

and subsequently executed within MATLAB. 

(ii) Decision Matrix with Fuzzy Triangular Membership Values 

All values within the decision matrix are initially transformed into fuzzy linguistic 

values to create matrix 𝐵, comprising VL, L, M, H, and VH. Subsequently, each fuzzy 

linguistic parameter is assigned its corresponding numerical values (1, 3, 5, 7, and 9), and 

these values are stored within matrix 𝐵_𝑛𝑢𝑚. Following this stage, the numerical values (1, 

3, 5, 7, and 9) are further mapped into fuzzy triangular membership values, specifically [(1, 

1, 3), (1, 3, 5), (3, 5, 7), (5, 7, 9), and (7, 9, 9)], respectively. These matrices, containing the 

fuzzy triangular membership values, are then stored in 𝐵_𝑐𝑒𝑙𝑙. The conversion of decision 

matrix values into fuzzy triangular membership values is outlined in Figure B-5 (Appendix). 

(iii) Normalize Fuzzy Decision Matrix 

The normalization of a fuzzy decision matrix commonly employs four main methods: 

max, max-min, sum, and vector normalization. Among these, the “max method” is preferred 

for its simplicity and effectiveness when integrated with fuzzy algorithms, as formulated in 

Equations 3.1 to 3.4. However, it may exhibit sensitivity issues in the presence of outliers, 

particularly when the difference between the minimum and maximum values in the decision 

matrix is significant. To mitigate this, fuzzy logic is introduced to categorize decision matrix 

values into predefined sets of {Very Low (L) = [1, 1, 3]}, {Low (L) = [1, 3, 5]}, {Medium 

= [3, 5, 7]}, {High = [5, 7, 9]}, and {Very High = [7, 9, 9]}. This classification constrains 

the range of values within the decision matrix, rendering the “max method” highly suitable 
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for normalization in this context. Let 𝐵_𝑐𝑒𝑙𝑙𝑖𝑗 denotes the fuzzy decision matrix and 𝐶_𝑐𝑒𝑙𝑙𝑖𝑗 

denotes the normalized fuzzy decision matrix, where 𝑖 = 1,2, . . . , 𝑚 (number of alternatives) 

and 𝑗 = 1,2, . . . , 𝑛  (number of criteria). The parameters 𝑎 , 𝑏,  and 𝑐  represent elements 

within the cell array of the fuzzy decision matrix 𝐵_𝑐𝑒𝑙𝑙𝑖𝑗  and 𝐶_𝑐𝑒𝑙𝑙𝑖𝑗 . Furthermore, 

𝐶_𝑐𝑒𝑙𝑙𝑖𝑗
∗  denotes the normalized fuzzy decision matrix for benefit criteria, while 𝐶_𝑐𝑒𝑙𝑙𝑖𝑗

−  

represents the normalized fuzzy decision matrix for cost criteria. Pseudocode outlining the 

algorithm for executing this process is provided in Figure B-6 (Appendix). 

𝐵_𝑐𝑒𝑙𝑙𝑖𝑗𝑐
∗ = 𝑚𝑎𝑥𝑖{𝐵_𝑐𝑒𝑙𝑙𝑖𝑗𝑐} Equation 3.1 

𝐶_𝑐𝑒𝑙𝑙𝑖𝑗
∗ =

[
 
 
 
 
 (
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑎
 𝐵_𝑐𝑒𝑙𝑙𝑖1𝑐

∗ ,
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑏
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑐

∗ ,
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑐
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑐

∗ ) ,

… ,

(
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑎
 𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑐

∗ ,
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑏
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑐

∗ ,
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑐
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑐

∗ ) 
]
 
 
 
 
 

 Equation 3.2 

𝐵_𝑐𝑒𝑙𝑙𝑖𝑗𝑎
− = 𝑚𝑖𝑛𝑖{𝐵_𝑐𝑒𝑙𝑙𝑖𝑗𝑎} Equation 3.3 

𝐶_𝑐𝑒𝑙𝑙𝑖𝑗
− =

[
 
 
 
 
 (
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑎
 𝐵_𝑐𝑒𝑙𝑙𝑖1𝑎

− ,
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑏
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑎

− ,
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑐
𝐵_𝑐𝑒𝑙𝑙𝑖1𝑎

− ) ,

… ,

(
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑎
 𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑎

− ,
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑏
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑎

− ,
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑐
𝐵_𝑐𝑒𝑙𝑙𝑖𝑛𝑎

− ) 
]
 
 
 
 
 

 Equation 3.4 

(iv) Normalize Fuzzy Criteria Weight 

Let 𝐹𝐶𝑊𝑖𝑗 denote the fuzzy criteria weights, representing the intensity of importance 

for each criterion, where 𝑖 = 1,2, . . . , 𝑚 (number of alternatives) and 𝑗 = 1,2, . . . , 𝑛 (number 

of criteria). The fuzzy criteria weight is computed within 𝐷_𝑐𝑒𝑙𝑙𝑖𝑗. The parameters 𝑎, 𝑏, and 

𝑐 represent the elements in cell arrays in both 𝐶_𝑐𝑒𝑙𝑙𝑖𝑗 and 𝐹𝐶𝑊𝑖𝑗. Figure B-7 (Appendix) 

outlines the algorithmic procedure for computing the normalized fuzzy criteria weight. 



78 

𝐷𝑐𝑒𝑙𝑙𝑖𝑗 = [(𝐶_𝑐𝑒𝑙𝑙𝑖1𝑎 . 𝐹𝐶𝑊𝑖1𝑎 ,  𝐶_𝑐𝑒𝑙𝑙𝑖1𝑏 . 𝐹𝐶𝑊𝑖1𝑏 , 𝐶_𝑐𝑒𝑙𝑙𝑖1𝑐 . 𝐹𝐶𝑊𝑖1𝑐), 

… , (𝐶_𝑐𝑒𝑙𝑙𝑖𝑛𝑎 . 𝐹𝐶𝑊𝑖𝑛𝑎 ,  𝐶_𝑐𝑒𝑙𝑙𝑖𝑛𝑏 . 𝐹𝐶𝑊𝑖𝑛𝑏 , 𝐶_𝑐𝑒𝑙𝑙𝑖𝑛𝑐 . 𝐹𝐶𝑊𝑖𝑛𝑐)] 

Equation 3.5 

(v) Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS) 

Equations 3.6 to 3.15 are formulated to calculate the FPIS and FNIS, which are then 

used to compute the Euclidean distance for each SES. 

Let 𝐹𝑃𝐼𝑆𝑗 = {𝐷𝑐𝑒𝑙𝑙1
∗ , . . . , 𝐷𝑐𝑒𝑙𝑙𝑛

∗ } for 𝑛 criteria, 

If 𝑠𝑖𝑧𝑒 [𝑚𝑎𝑥𝑖 {𝐷𝑐𝑒𝑙𝑙𝑖𝑗𝑐}]
 ≤ 1, select 𝐷𝑐𝑒𝑙𝑙𝑖𝑗

∗ = 𝑚𝑎𝑥𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑐} Equation 3.6 

If 𝑠𝑖𝑧𝑒 [𝑚𝑎𝑥𝑖 {𝐷𝑐𝑒𝑙𝑙𝑖𝑗𝑐}]
> 1, select 𝐷𝑐𝑒𝑙𝑙𝑖𝑗

∗ = 𝑚𝑎𝑥𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑏𝑐} Equation 3.7 

If 𝑠𝑖𝑧𝑒 [𝑚𝑎𝑥𝑖 {𝐷𝑐𝑒𝑙𝑙𝑖𝑗𝑏𝑐}
] > 1, select 𝐷𝑐𝑒𝑙𝑙𝑖𝑗

∗ = 𝑚𝑎𝑥𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎𝑏𝑐} Equation 3.8 

𝑚𝑎𝑥𝑖 {𝐷𝑐𝑒𝑙𝑙𝑖𝑗𝑏𝑐}
= 𝑚𝑎𝑥𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑐} , 𝑚𝑎𝑥𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑏} Equation 3.9 

𝑚𝑎𝑥𝑖 {𝐷𝑐𝑒𝑙𝑙𝑖𝑗𝑎𝑏𝑐}
= 𝑚𝑎𝑥𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑐} , 𝑚𝑎𝑥𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑏}, 𝑚𝑎𝑥𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎} Equation 3.10 

Let 𝐹𝑁𝐼𝑆𝑗 = {𝐷_𝑐𝑒𝑙𝑙1
−, . . . , 𝐷_𝑐𝑒𝑙𝑙𝑛

−} for 𝑛 criteria, 

If 𝑠𝑖𝑧𝑒 [𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎}] ≤ 1, select 𝐷_𝑐𝑒𝑙𝑙𝑖𝑗
−  = 𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎} Equation 3.11 

If 𝑠𝑖𝑧𝑒 [𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎}] > 1, select 𝐷_𝑐𝑒𝑙𝑙𝑖𝑗
−  = 𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎𝑏} Equation 3.12 

If 𝑠𝑖𝑧𝑒 [𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎𝑏}] > 1, select 𝐷_𝑐𝑒𝑙𝑙𝑖𝑗
−  = 𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎𝑏𝑐} Equation 3.13 

𝑚𝑖𝑛𝑖 {𝐷𝑐𝑒𝑙𝑙𝑖𝑗𝑎𝑏}
=  𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎} , 𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑏} Equation 3.14 

𝑚𝑖𝑛𝑖 {𝐷𝑐𝑒𝑙𝑙𝑖𝑗𝑎𝑏𝑐
} =  𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑎} , 𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑏} , 𝑚𝑖𝑛𝑖{𝐷_𝑐𝑒𝑙𝑙𝑖𝑗𝑐} Equation 3.15 

(vi) Determine Euclidean Distance for FPIS and FNIS 
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The 𝐷_𝐹𝑃𝐼𝑆𝑖𝑗 and 𝐷_𝐹𝑁𝐼𝑆𝑖𝑗 are the Euclidean distances for benefit and cost criteria 

respectively, where 𝑖 denotes the SES index and 𝑗 represents the criteria index ranging from 

1 to 𝑛 (the total number of criteria). The summation of these Euclidean distances is denoted 

as 𝑆𝑢𝑚𝐷𝑖𝑠_𝐹𝑃𝐼𝑆𝑖 and 𝑆𝑢𝑚𝐷𝑖𝑠_𝐹𝑁𝐼𝑆𝑖, as expressed in Equations 3.16 to 3.19. The process 

of generating these Euclidean distances is depicted in Figure B-9 (Appendix). 

Summation of Euclidean distance for 𝐷_𝐹𝑃𝐼𝑆𝑖𝑗, 

𝐷_𝐹𝑃𝐼𝑆𝑖𝑗

=

{
  
 

  
 
√
1

3
[(𝐷_𝑐𝑒𝑙𝑙𝑖1𝑎 − 𝐹𝑃𝐼𝑆1𝑎)

2
+ (𝐷_𝑐𝑒𝑙𝑙𝑖1𝑏 − 𝐹𝑃𝐼𝑆1𝑏)

2
+ (𝐷_𝑐𝑒𝑙𝑙𝑖1𝑐 − 𝐹𝑃𝐼𝑆1𝑐)

2
] ,

… ,

√
1

3
[(𝐷_𝑐𝑒𝑙𝑙𝑖𝑛𝑎 − 𝐹𝑃𝐼𝑆𝑛𝑎)

2
+ (𝐷_𝑐𝑒𝑙𝑙𝑖𝑛𝑏 − 𝐹𝑃𝐼𝑆𝑛𝑏)

2
+ (𝐷_𝑐𝑒𝑙𝑙𝑖𝑛𝑐 − 𝐹𝑃𝐼𝑆𝑛𝑐)

2
]
}
  
 

  
 

 

Equation 3.16 

𝑆𝑢𝑚𝐷𝑖𝑠_𝐹𝑃𝐼𝑆𝑖 = {∑{𝐷_𝐹𝑃𝐼𝑆1𝑗}

𝑛

𝑗

, … ,∑{𝐷_𝐹𝑃𝐼𝑆𝑚𝑗}

𝑛

𝑗

} Equation 3.17 

Summation of Euclidean distance for 𝐷_𝐹𝑁𝐼𝑆𝑖𝑗, 

𝐷_𝐹𝑁𝐼𝑆𝑖𝑗

=

{
  
 

  
 
√
1

3
[(𝐷_𝑐𝑒𝑙𝑙𝑖1𝑎 − 𝐹𝑁𝐼𝑆1𝑎)

2
+ (𝐷_𝑐𝑒𝑙𝑙𝑖1𝑏 − 𝐹𝑁𝐼𝑆1𝑏)

2
+ (𝐷_𝑐𝑒𝑙𝑙𝑖1𝑐 − 𝐹𝑁𝐼𝑆1𝑐)

2
] ,

… ,

√
1

3
[(𝐷_𝑐𝑒𝑙𝑙𝑖𝑛𝑎 − 𝐹𝑁𝐼𝑆𝑛𝑎)

2
+ (𝐷_𝑐𝑒𝑙𝑙𝑖𝑛𝑏 − 𝐹𝑁𝐼𝑆𝑛𝑏)

2
+ (𝐷_𝑐𝑒𝑙𝑙𝑖𝑛𝑐 − 𝐹𝑁𝐼𝑆𝑛𝑐)

2
]
}
  
 

  
 

 

Equation 3.18 

𝑆𝑢𝑚𝐷𝑖𝑠_𝐹𝑁𝐼𝑆𝑖 = {∑{𝐷_𝐹𝑁𝐼𝑆1𝑗}

𝑛

𝑗

, … ,∑{𝐷_𝐹𝑁𝐼𝑆𝑚𝑗}

𝑛

𝑗

} Equation 3.19 

(vii) Calculate Closeness Coefficient for SES Ranking 
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The Closeness Coefficient,𝐶𝐶𝑖 is formulated according to Equation 3.20. Figure B-

10 (Appendix) depicts the pseudocode that facilitates the generation of 𝐶𝐶𝑖. These closeness 

coefficients are utilized to assign rankings for SES. Rankings are determined based on the 

value of 𝐶𝐶𝑖, with higher values indicating preferable choices among the filtered SES. 

𝐶𝐶𝑖𝑗 =

{
 
 
 
 

 
 
 
 

𝐷𝑠𝑢𝑚1𝑗
−

𝐷𝑠𝑢𝑚1𝑗
− + 𝐷𝑠𝑢𝑚1𝑗

∗ ,

𝐷𝑠𝑢𝑚2𝑗
−

𝐷𝑠𝑢𝑚2𝑗
− + 𝐷𝑠𝑢𝑚2𝑗

∗  ,

… ,
𝐷𝑠𝑢𝑚𝑚𝑗

−

𝐷𝑠𝑢𝑚𝑚𝑗
− + 𝐷𝑠𝑢𝑚𝑚𝑗

∗
}
 
 
 
 

 
 
 
 

 Equation 3.20 

3.3.3 Validation Method for Green Energy Locations Identification 

The validation process began with the reclassification of 12 criteria raster layers, 

followed by weighted sum analyses carried out using ArcGIS Pro to validate the results of 

optimal SES derived from the proposed methodology. The reclassification of criteria raster 

maps is necessary due to the presence of dissimilar units in each layer. Specifically, each 

individual raster map underwent reclassification within the reclassify window, utilizing the 

“Equal interval function” method to establish classes. The preference for the “Equal interval 

function” method over alternative approaches was chosen to uphold consistent class widths, 

thereby ensuring uniform intervals across varying frequencies to mitigate potential biases in 

result generation. The maximum frequency (𝑓 = 32) within the “Equal interval function” 

method was chosen to enhance result sensitivity. The input parameters for the reclassify tool 

concerning the benefit criteria, 𝐶𝑏 and cost criteria, 𝐶𝑐 are detailed in Tables 3.7 and 3.8, 

respectively. In these tables, the “Start and End” columns indicate the regular intervals for 

each class, with 𝑣0 representing the minimum value of raster data and 𝑣32 representing the 
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maximum values of raster data. The “new” column indicates a scale ranging from 1 

(indicating the least suitable) to 32 (indicating the most suitable). 

Table 3.7: Benefit Criteria Input for Reclassify Tool 

Criteria 

Equal interval (𝒇 = 𝟑𝟐) 

Start End New 

𝐶𝑏 

𝑣0 𝑣1 1 

𝑣1 𝑣2 2 

𝑣2 𝑣3 3 

… … … 

𝑣31 𝑣32 32 

 

Table 3.8: Cost Criteria Input for Reclassify Tool 

Criteria 

Equal interval (𝒇 = 𝟑𝟐) 

Start End New 

𝐶𝑐 

𝑣0 𝑣1 32 

𝑣1 𝑣2 31 

𝑣2 𝑣3 30 

… … … 

𝑣31 𝑣32 1 

 

As a result, all criteria raster maps are standardized to utilize a uniform scale, ranging 

from 1 to 32. This standardization allows the utilization of weighted sum analysis. Following 

this, the fuzzy criteria weights outlined in Table 3.6 are applied as the weights for creating 

the solar suitability map. However, since the weighted sum analysis tool exclusively accepts 
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crisp weights, the weighted average method, known for its simplicity and efficiency, is 

employed to convert the symmetrical fuzzy weights into crisp values (Mustapha et al., 2023). 

𝐶𝑟𝑖𝑠𝑝 𝑊𝑒𝑖𝑔ℎ𝑡 =
∑ 𝜇𝑐𝑖̅
𝑛
𝑖=1 (𝑥𝑖). (𝑥𝑖)

∑ 𝜇𝑐𝑖̅
𝑛
𝑖=1 (𝑥𝑖)

 Equation 3.21 

Within the interface of the weighted sum tool, two input fields outlined in Table 3.9 

necessitate completion: (a) The raster layer generated via the reclassify tool and (b) The crisp 

weight derived from Equation 3.21. Here, 𝑛 represents the count of elements in the set, 

𝜇𝑐𝑖̅(𝑥𝑖) denotes the degree of fuzzy weight, which can be lower, median, or upper and all set 

to 1/3, with (𝑥𝑖) representing the fuzzy weight. 

Table 3.9: Criteria Weights for Weighted Sum Analysis Tool (Deveci et al., 2021) 

Raster Layer Crisp Weight 

Solar Radiation  12.7333 

Temperature  11.2600 

Slope  10.4333 

Elevation  10.5500 

Proximity to Power Transmission Lines  10.9900 

Proximity to Roads 9.9533 

Proximity to Residential Areas  9.6633 

Proximity to Urban Facilities  9.6633 

Distance from Water  9.6633 

Distance from Protected Areas  11.5300 

Distance from Settlement  9.6633 

Population Density 10.2233 
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The solar suitability map is created using the weighted sum tool, with the maximum 

weight derived from the map serving as a reference value representing the most optimal SES 

location for solar energy utilization. This reference point acted as a benchmark for evaluating 

the suitability of other locations relative to the most favorable site. To perform this 

evaluation, the raster values of the identified SES locations are extracted from the solar 

suitability raster map. These extracted values are then systematically compared to the 

maximum value of the solar suitability map using Equation 3.22.  

𝑟 =
𝑊𝑆𝐸𝑆 −𝑊𝑚𝑖𝑛

𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛
× 100 % Equation 3.22 

Equation 3.22 provides a relative percentage, 𝑟 (%), quantifying the proximity of the 

selected SES locations to the optimal site. By incorporating this metric, the methodology 

facilitated a structured comparison of the results generated by the GIS-based fuzzy TOPSIS 

and filtration algorithms with the most suitable location for solar energy deployment. 

Moreover, Equation 3.22 ensures data consistency by standardizing the weight values 

assigned to each SES location. This consistency is crucial for maintaining the robustness and 

reproducibility of the model, ensuring that SES locations are evaluated using a uniform and 

reliable metric. This approach validates the methodology by ensuring the selected SES 

locations aligned with the most suitable conditions for solar energy deployment. 
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3.4 Proposed GIS-driven Fuzzy TSP-BIP Algorithm 

Figure 3.8 illustrates the flowchart for the integration process of identified sites. 

 

Figure 3.8: Flowchart of Proposed GIS-driven Fuzzy TSP-BIP Algorithm 
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3.4.1 GIS Input Data 

The proposed method takes into account the identified green energy locations, 

including solar, wind, and hydro, along with three key parameters: distance, elevation 

difference, and average ground flash density. The objective is to minimize overall values 

while striking an optimal balance among these variables. Initially, the green energy locations 

are divided into clusters to facilitate better management. The chosen network topology for 

integration is the ring topology, renowned for its resilience against power disruptions. This 

topology provides multiple pathways for power delivery, ensuring continuity even if one 

section of the network fails. 

Distance emerges as a critical parameter in the integration of green energy locations. 

It is imperative to minimize the total distance (𝑑) of the ring network to reduce electrical 

power line costs and mitigate power loss over extended distances. Consequently, a distance 

matrix is compiled, capturing all possible route permutations among green energy locations 

within each cluster. The integration process prioritizes achieving minimal total distances 

within the ring system. Figure 3.9 depicts the potential routes of the typical configuration of 

green energy locations, with 𝐺𝐸𝑖 representing individual green energy locations. 

 

Figure 3.9: Possible Routes for Typical Green Energy Locations Configuration  

𝑑23/32 

𝑑45/54 

𝑑35/53 

𝑑34/43 𝑑25/52 

𝑑24/42 𝑑15/51 𝑑14/41 

𝑑13/31 𝑑12/21 
𝐺𝐸1 

𝐺𝐸2 𝐺𝐸3 

𝐺𝐸4 𝐺𝐸5 
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All identified green energy locations are organized into 12 clusters, and the 

coordinates of each cluster are extracted into ArcGIS Pro in the form of a shapefile. Figure 

C-1 (Appendix) outlines the algorithm in pseudocode utilized in the ArcGIS Pro Python 

window to generate the distance matrix data for each cluster. 

The elevation difference (∆𝑒) signifies the steepness between two green energy 

locations. Typically, a high steepness between them increases installation difficulty and 

subsequent maintenance needs, leading to escalated costs such as labor expenses and 

extended power line costs. Therefore, the integration of green energy locations must 

prioritize minimizing the total elevation difference. As each cluster comprises numerous 

green energy locations in a ring topology, the elevation difference between each pair of green 

energy locations is determined using the ArcGIS Pro tool to generate the elevation difference 

matrix data. Figure 3.10 illustrates the approach to consider the measurement of elevation 

difference for each pair. 

 

Figure 3.10: Measurement of Elevation Difference  

To obtain the elevation difference for each cluster, the elevation raster map for 

Sarawak is retrieved from DIVA-GIS (DIVA-GIS, 2023), as illustrated in Figure 3.11. 

Subsequently, green energy locations within each cluster acquire their respective elevation 

values by extracting values from the elevation raster map. A pairwise matrix is then 

∆𝑒 
𝑒2 

𝑒1 

𝐺𝐸2 

𝐺𝐸1 



87 

generated to determine the elevation difference for each pair. The complete algorithm in 

pseudocode to obtain the elevation difference matrix data for each cluster is presented in 

Figure C-2 (Appendix). 

 

Figure 3.11: Elevation Raster Map (DIVA-GIS, 2023) 

 Additionally, an innovative methodology is employed to consider the severity of 

lightning. GFD data source serves as a crucial parameter in calculating the Average Ground 

Flash Density (𝐺𝐹𝐷̅̅ ̅̅ ̅̅ ) along the power line connecting two green energy locations. The 

occurrence of lightning striking the power line escalates the risks of power line failure, 

blackout, and potential system damage. Therefore, the integration of green energy locations 

must strive to minimize the total average ground flash density. Figure 3.12 elucidates the 

approach to determining the 𝐺𝐹𝐷̅̅ ̅̅ ̅̅  by employing a significant number of regular intervals, 

specifically 100, to enhance the sensitivity of input data. 

 

Figure 3.12: Measurement of Average Ground Flash Density  
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The GFD raster map is acquired from EARTHDATA (EARTHDATA, 2024). 

Similarly, within each cluster, green energy locations are tasked with extracting their 

respective GFD values from the ground flash density raster map, as depicted in Figure 3.13. 

Subsequently, a pairwise matrix is generated to ascertain the average GFD for each pair. The 

comprehensive algorithm in pseudocode for obtaining the average matrix data for each 

cluster is elucidated in Figure C-3 (Appendix). 

 

Figure 3.13: GFD Raster Map (EARTHDATA, 2024) 

With the aggregation of all GIS input data, the 12 clusters are equipped to generate 

their respective distance matrix data, elevation matrix data, and average ground flash density 

matrix data. The ensuing critical phase involves the transmission of these matrices to the 

fuzzy TSP-BIP algorithm for the integration of green energy locations. This pivotal phase 

utilizes the fuzzy TSP-BIP algorithm to optimize power line routing design, minimizing 

distance, elevation differences, and average GFD to enhance the efficient integration of 

green energy locations. 
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3.4.2 Proposed Fuzzy TSP-BIP Algorithm 

As the matrix data, including distance, elevation difference and average ground flash 

density are generated, it is essential to determine the minimal values of these three key 

parameters. These parameters play a critical role in identifying optimal green energy 

locations. However, traditional TSP solutions are limited to optimizing a single objective 

function. Therefore, incorporating the TSP model with fuzzy logic operations enables the 

handling of multi-objective functions, specifically in discerning the best trade-offs among 

these parameters to derive optimal solutions. The singular objective functions for each 

parameter are represented by Equations 3.23 to 3.25. 

𝑓(𝑑) = 𝑚𝑖𝑛 ∑ ∑ (𝑑𝑖𝑗 . 𝑥𝑖𝑗)

𝑛

𝑗=1,𝑗≠1

𝑛

𝑖=1

 Equation 3.23 

𝑓(∆𝑒) =  𝑚𝑖𝑛∑ ∑ (∆𝑒𝑖𝑗 . 𝑥𝑖𝑗)

𝑛

𝑗=1,𝑗≠1

𝑛

𝑖=1

 Equation 3.24 

𝑓(𝐺𝐹𝐷̅̅ ̅̅ ̅̅ ) =  𝑚𝑖𝑛∑ ∑ (𝐺𝐹𝐷̅̅ ̅̅ ̅̅
𝑖𝑗 . 𝑥𝑖𝑗)

𝑛

𝑗=1,𝑗≠1

𝑛

𝑖=1

 Equation 3.25 

Where 𝑛 = Number of Green Energy Locations (GEs) 

         𝑑𝑖𝑗 = Distance between 𝐺𝐸𝑖 and 𝐺𝐸𝑗 

       ∆𝑒𝑖𝑗 = Elevation difference between 𝐺𝐸𝑖 and 𝐺𝐸𝑗 

    𝐺𝐹𝐷̅̅ ̅̅ ̅̅
𝑖𝑗 = Average GFD between 𝐺𝐸𝑖 and 𝐺𝐸𝑗 

   𝑥𝑖𝑗 = Binary decision variables equal to 0 or 1 
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𝑥𝑖𝑗 = {
0, 𝑖 = 𝑗
 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Equation 3.26 

Prior to applying fuzzy logic operations, these singular objective functions in 

Equation 3.23 to 3.25 are integrated to formulate the core multi-objective function, as 

depicted in Equation 3.27.  

𝑓(𝑥) = 𝑚𝑖𝑛

{
 
 
 
 

 
 
 
 ∑ ∑ (𝑑𝑖𝑗 . 𝑥𝑖𝑗)

𝑛

𝑗=1,𝑗≠1

𝑛

𝑖=1

∑ ∑ (∆𝑒𝑖𝑗 . 𝑥𝑖𝑗)

𝑛

𝑗=1,𝑗≠1

𝑛

𝑖=1

∑ ∑ (𝐺𝐹𝐷̅̅ ̅̅ ̅̅
𝑖𝑗 . 𝑥𝑖𝑗)

𝑛

𝑗=1,𝑗≠1

𝑛

𝑖=1

 Equation 3.27 

Once the multi-objective function is established, the focus shifts towards configuring 

fuzzy logic operations, involving: (i) Defining fuzzy inputs and outputs, (ii) Constructing 

fuzzy membership functions, and (iii) Developing fuzzy rules tailored to address challenges 

in multi-objective optimization. The fuzzy inputs encompass distance, elevation difference, 

and average GFD, which are carefully considered within the framework of fuzzy logic 

operations. This process culminates in the creation of a fuzzy matrix that comprehensively 

incorporates and integrates influences from all input parameters. Subsequent stages in the 

fuzzy logic operations play a pivotal role in determining optimal solutions and trade-offs 

within the multi-objective optimization landscape for integrating green energy locations. 

(i) Definition of Fuzzy Inputs and Output 

In the model, three inputs (distance, elevation difference, and average ground flash 

density) are meticulously defined and integrated to constitute a comprehensive input set. 

Moreover, a singular fuzzy output containing the fuzzy value is incorporated. The interplay 

among these inputs and the resulting output is visually represented in Figure 3.14. This 
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graphical depiction offers a broad illustration of the fluctuations in distance, elevation 

difference, and average ground flash density, which collectively influence and contribute to 

the overall fuzzy output via the Fuzzy Inference System (FIS). 

 

Figure 3.14: Correlation of Inputs and Output  

(ii) Creation of Fuzzy Membership Functions 

Triangular membership functions are utilized in fuzzy logic to represent linguistic 

variables and membership degrees for inputs and outputs due to their simplicity and 

effectiveness. The triangular membership function, denoted as 𝜇(𝑥),  is expressed as 

Equation 3.28. 

𝜇(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

0, 𝑐 ≤ 𝑥

 Equation 3.28 

For each input, five regular membership functions are employed, with each featuring 

five linguistic variables: Very Low (VL), Low (L), Medium (M), High (H), and Very High 

(VH). The range of these membership functions is determined by the minimum and 

maximum values of their respective matrix data. A total of 9 membership functions are 

utilized for the fuzzy output, encompassing Extremely Low (EL), Very Low (VL), Low (L), 

Fuzzy 

Output, 𝑓 
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System 

Elevation 

Difference, ∆𝑒 

Distance, 𝑑 

Average 

Ground Flash 

Density, 𝐺𝐹𝐷̅̅ ̅̅ ̅̅  
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Medium Low (ML), Medium (M), Medium High (MH), High (H), Very High (VH), and 

Extremely High (EH). The range of the membership function for the fuzzy output is set from 

0.1 to 0.9. A greater number of fuzzy linguistics are employed for the fuzzy output to 

enhance data sensitivity. Figures 3.15 (a) to (c) depict the fuzzy membership functions for 

the inputs, while Figure 3.15 (d) illustrates the fuzzy membership function for the output. 

 

(a) Distance  
 

(b) Elevation Difference  
 

 

(c) Average GFD 
 

(d) Fuzzy Output 

Figure 3.15 (a) to (d): Fuzzy Membership Functions for Inputs and Output  

(iii) Fuzzy Rules Setting in FIS 

Upon constructing the membership functions for both inputs and output, fuzzy rules 

in the FIS  are established. The total number of fuzzy rules, denoted as R, can be determined 

using the formula 𝜌𝑛, where 𝜌 represents the number of linguistic variables in each input 

and 𝑛 denotes the number of inputs. Given that there are five linguistic variables (VL, L, M, 
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H, VH) and three inputs, the formula yields 𝜌𝑛 = 53, resulting in a total of 125 fuzzy rules. 

Table C-1 outlines the fuzzy rules in the FIS. 

With all input matrix data, membership functions, and the FIS equipped with fuzzy 

rules prepared, the production of fuzzy matrix data based on fuzzy output data ensues. Figure 

C-4 (Appendix) portrays the algorithm in pseudocode for generating the fuzzy matrix data 

for each cluster. The three inputs previously generated using the ArcGIS Pro tool, along with 

the FIS fuzzy rule system, are employed to generate fuzzy matrix data, 𝑓𝑚  for TSP 

optimization. It is noteworthy that each cluster (1 to 12) must execute this algorithm 

individually to produce 12 fuzzy matrix datasets corresponding to the 12 clusters. 

BIP emerges as a superior method for optimizing the TSP problem due to its exact 

nature compared to other approximate algorithms such as GA, NN, TS, GWO, ACO, and 

more. While dynamic programming is the preferred choice for obtaining reliable TSP results, 

its efficiency diminishes as the number of green energy locations exceeds 15, resulting in 

exponential increases in computational time. BIP formulations find widespread application 

in optimization problems, including TSP, where the objective is to identify the optimal 

solution using binary decision variables. The implementation of BIP using MATLAB entails 

four main steps: (i), (ii), (iii) and (iv). 

(i) Create Pairs and Distance Vector 

The initiation of the TSP-BIP algorithm involves scrutinizing pairs of green energy 

locations extracted from a fuzzy matrix dataset. In a fuzzy matrix dataset sized 𝑛 × 𝑛, each 

pair is defined as per Equation 3.29. Following this, Equation 3.30 delineates the process of 

obtaining a distance vector containing the distances between corresponding pairs of green 

energy locations. Figure C-5 (Appendix) provides visual representation of the 12-input 
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matrix dataset generated earlier, facilitating the creation of pairs. Subsequently, the distance 

square matrix is converted into a column distance vector. 

𝐺𝐸𝑝𝑖𝑗 = {(𝑖, 𝑗)|𝑖 ∈  {1,2,3, … , 𝑛}, 𝑗 ∈  {1,2,3, … , 𝑛}} Equation 3.29 

𝑑𝑣𝑖𝑗 = {(𝑓𝑚𝑖
)|𝑖 ∈  {1,2,3, … , 𝑛}, 𝑗 ∈  {1,2,3, … , 𝑛}} Equation 3.30 

Where  𝐺𝐸𝑝 = Pairs of green energy locations  

                 𝑛 = Number of GEs 

                𝑑𝑣 = Distance vector 

                𝑓𝑚 = Fuzzy matrix data 

(ii) Equality Constraints and Binary Bounds 

Each pair of existing routes should have precisely one input and one output. The 

responsibility of the 𝑠𝑝𝑎𝑙𝑙𝑜𝑐 function lies in allocating space for a sparse matrix. 

𝐴𝑒𝑞  =  [𝐴𝑒𝑞  ;  𝑠𝑝𝑎𝑙𝑙𝑜𝑐(2𝑛, 𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝐸𝑝 ), 2𝑛(2𝑛 −  1))] Equation 3.31 

𝐵𝑒𝑞  =  [𝐵𝑒𝑞  ;  𝑜𝑛𝑒𝑠(2𝑛, 1)] Equation 3.32 

Where     𝐴𝑒𝑞 = Matrix embodying the equality constraints 

                𝐵𝑒𝑞 = Column vector encapsulating the right-hand side of equality constraints 

𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝐸𝑝) = Total Count of 𝐺𝐸𝑝 

In practical terms, the 𝐴𝑒𝑞 constraint plays a pivotal role in guaranteeing that every GE is 

precisely traversed once, adhering to the specifications outlined in Figure 3.16. 
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Figure 3.16: In-Out for Each Pair  

To eliminate all non-existing routes, represented by 𝑅𝑛𝑜𝑛 in the fuzzy matrix dataset, it is 

imperative to enforce the constraint delineated in Equation 3.33. Specifically for these non-

existing routes, the matrices 𝐴𝑒𝑞  and 𝐵𝑒𝑞  are formulated as per Equations 3.34 and 3.35, 

respectively. 

𝑅𝑛𝑜𝑛 = 𝐺𝐸𝑝𝑖𝑗 , (𝑖 = 𝑗), 𝑑𝑣𝑖𝑗 = 0 Equation 3.33 

𝐴𝑒𝑞(2𝑛, ∶)  =  𝑅𝑛𝑜𝑛 Equation 3.34 

𝐵𝑒𝑞  =  [𝐵𝑒𝑞  ;  0] Equation 3.35 

Moreover, the integer constraint, denoted as 𝑖𝑛𝑡𝑐𝑜𝑛, along with the lower-bound (𝑙𝑏) and 

upper-bound (𝑢𝑏), are configured in binary representations, employing values of 0 and 1. 

Figure C-6 (Appendix) provides a depiction of the algorithms utilized for generating equality 

constraints and defining binary bounds. 

𝑖𝑛𝑡𝑐𝑜𝑛 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑑𝑣) Equation 3.36 

𝑙𝑏  =  𝑧𝑒𝑟𝑜 (𝑙𝑒𝑛𝑔𝑡ℎ(𝑑𝑣), 1) Equation 3.37 

𝑢𝑏  =  𝑜𝑛𝑒𝑠 (𝑙𝑒𝑛𝑔𝑡ℎ(𝑑𝑣), 1) Equation 3.38 

(iii) Optimization with Subtour Detection and Constraints 

Upon configuring all parameters, the optimization process commences utilizing the 

𝑖𝑛𝑡𝑙𝑖𝑛𝑝𝑟𝑜𝑔  function from the MATLAB optimization toolbox. The determination of 

minimum value within fuzzy matrix data is achieved by integrating 𝑓𝑚 into Equation 3.39. 

Out In 
𝐺𝐸𝑖 
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min 𝑓𝑚 =

{
 

 
𝑥 (𝑖𝑛𝑡𝑐𝑜𝑛) ∈ 𝐼
𝐴𝑖𝑛𝑒𝑞 . 𝑥 ≤ 𝐵𝑖𝑛𝑒𝑞   

𝐴𝑒𝑞 . 𝑥 =  𝐵𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤  𝑢𝑏

 Equation 3.40 

Where 𝑥 = Decision variable 

   𝑖𝑛𝑡𝑐𝑜𝑛 = Integer constraint 

            𝐼 = Integer number  

     𝐴𝑖𝑛𝑒𝑞 = Inequality matrices 

        𝐴𝑒𝑞 = Equality matrices 

     𝐵𝑖𝑛𝑒𝑞 = Inequality vector 

        𝐵𝑒𝑞 = Equality vector 

     𝑙𝑏 = Lower-bound 

          𝑢𝑏 = Upper-bound 

Equation 3.40 is formulated for decision variable, 𝑥𝑖𝑗, which stipulates assigning a 

value of 0 to decision variables if their magnitude is less than 0.001. Furthermore, Equation 

3.41 extracts the relevant pairs, 𝑟𝑝, comprising the indices of non-zero elements from the 

processed decision variables. Subsequently, Equation 3.42 delineates the representation of 

subpairs, 𝑠𝑝, which correspond to GEs associated with the non-zero decision variables. 

𝑥𝑖𝑗 = {
0, 𝑥𝑖𝑗 < 0.001

𝑥𝑖𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Equation 3.40 

𝑟𝑝  = {𝑖|𝑥𝑖𝑗 ≠ 0} Equation 3.41 

𝑠𝑝 = {𝐺𝐸𝑝𝑖𝑗[𝑟𝑝, ; ]} Equation 3.42 
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To incorporate constraints for eliminating subtours, a sparse matrix A is initialized 

as empty, along with an empty vector B. When multiple subtours are detected, a column 

vector of zeros, with a length equivalent to the number of subtours, 𝑠𝑛, is appended to 𝐵. 

Additionally, a sparse matrix 𝐴 is augmented with a number of rows equal to the total 

number of subtours 𝑡𝑛, and several columns equal to the length of the distance vector. An 

estimated count of non-zero elements equal to 𝑛. 

𝐴 = [𝐴; 𝑠𝑝𝑎𝑙𝑙𝑜𝑐(𝑡𝑛, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑑𝑟), 𝑛)] Equation 3.43 

𝐵 = [𝐵; 𝑧𝑒𝑟𝑜𝑠(𝑠𝑛, 1)] Equation 3.44 

To address each subtour, the index for the subsequent inequality constraint is 

computed. This involves retrieving the nodes within the current subtour and generating all 

possible pairs of nodes contained within it. Subsequently, for each pair of nodes within the 

subtour, a binary variable is defined to signify the existence of the current edge within the 

subtour. This subtour variable, denoted as 𝑠𝑣, is mathematically expressed in Equation 3.45. 

𝑠𝑣𝑖𝑗 = (𝐺𝐸𝑝 = 𝑠𝑡𝐼𝐷(𝑠𝑡𝑝(𝑗𝑗, 1))) ∧ (𝐺𝐸𝑝 = 𝑠𝑡𝐼𝐷(𝑠𝑡𝑝(𝑗𝑗, 2))) Equation 3.45 

Where 𝑠𝑡𝐼𝐷 = Subtour ID 

             𝑠𝑡𝑝 = Subtour pair 

               𝑗𝑗 = Variable index from 1 to size of 𝑠𝑡𝑝 

Following this, inequality matrix, 𝐴𝑖𝑛𝑒𝑞  is incorporating these binary values, 

whereby elements are set to 1 where the pair exists within the subtour. Concomitantly, the 

right-hand side inequality vector, 𝐵𝑖𝑛𝑒𝑞, is updated by assigning the length of the current 

subtour “minus 1”, adhering to the standard formulation for subtour elimination constraints. 
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Figure C-7 (Appendix) delineates the algorithms devised for optimization employing the 

intlinprog function, integrating subtour detection and its associated constraints.  

𝐴𝑖𝑛𝑒𝑞  (𝑖𝑛𝑡𝑐𝑜𝑛, 𝑠𝑣𝑖𝑗) = 1 Equation 3.46 

𝐵𝑖𝑛𝑒𝑞 (𝑖𝑛𝑡𝑐𝑜𝑛) = 𝑙𝑒𝑛𝑔𝑡ℎ (𝑠𝑡𝐼𝐷) −  1 Equation 3.47 

(iv) Re-optimization and Subtour Elimination Loop 

The TSP-BIP optimization process iteratively proceeds to eliminate subtours until 

only one subtour persists. Figure 3.17 provides a graphical depiction of the TSP operation, 

ultimately unveiling the optimal power line routing design for green energy locations. 

Additionally, Figure C-8 (Appendix) delineates the algorithm in pseudocode for the iterative 

re-optimization and subtour elimination looping process. 

 

Figure 3.17: Subtour Eliminations for Optimal TSP Configuration  

 

3.4.3 Validation Method for Green Energy Location Integration 

During first phase, the validation is made between the optimal results generated by 

the proposed fuzzy TSP-BIP algorithm and a conventional TSP-BIP algorithm. Two MCDM 

algorithms  (TOPSIS and COPRAS) (Irik Mukhametzyanov, 2024) are employed to evaluate 

the results, yielding respective rankings. In the subsequent phase, the performance of the 

proposed fuzzy TSP-BIP algorithm is scrutinized against 7 alternative fuzzy TSP algorithms 
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to determine their performances in terms of optimal solution values and computational 

efficiency. Fuzzy values generated are integrated into these 7 TSP algorithms and computed 

utilizing MATLAB. The parameter configurations for each TSP algorithm are delineated in 

Table 3.10, where adjustments have been made to optimize the probability of obtaining 

optimal results. Notably, fuzzy TSP-NN does not necessitate specific parameter values due 

to its inherent coding nature. 

Table 3.10: Setting Values for Fuzzy TSP Algorithms 

Source Algorithm Setting Value 

(Yarpiz / Mostapha 

Heris, 2024a) 
TSP-ACO Number of iterations = 5,000 

(hossein, 2024) TSP-GA 

Population size = 5,000 

Generation = 5,000 

(Seyedali Mirjalili, 

2024) 
TSP-GWO 

Number of iterations = 5,000 

Number of search agents = 50 

Lower bound = −5 

Upper bound = 5 

(ajevtic, 2024) TSP-NN N/A 

(Aravind Seshadri, 

2024) 
TSP-SA 

Number of iterations = 5,000 

Initial temperature = 1 

Cooling factor = 0.99 

(S. Muhammad 

Hossein Mousavi, 

2024) 

TSP-TLBO 

Number of iterations = 5,000 

Population size = 5,000 

(Yarpiz / Mostapha 

Heris, 2024b) 
TSP-TS Number of iterations = 5,000 
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3.5 Proposed IIoT-based System for IGESs 

The IIoT-based real-time monitoring and control strategies methodology is 

structured into four primary sections. The framework depicted in Figure 3.18 illustrates the 

establishment of IIoT technology in real-time monitoring, control and automation. 

 

Figure 3.18: Block Diagram of Proposed IIoT-based System for IGESs 

The initial section focuses on modeling dynamic input data IGESs. Following this, 

the second section illustrates the modeling of IGESs while considering load demand. This 

involves determining the appropriate generation sizing and integrating these dynamic inputs 

into the IGESs framework. Moving forward, the third section introduces a communication 

framework tailored for IGESs modeling, incorporating servers, and SCADA systems. Lastly, 
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the fourth section is dedicated to validating the effectiveness of monitoring and control 

application strategies through experimental prototyping.  

3.5.1 Real-Time Dynamic Data Modeling 

To commence the modeling of dynamic input data, the process entails acquiring 24-

hour historical data pertinent to input variables. Specifically, load demand data (Grid System 

Operator, 2024), along with solar radiation and temperature data (Solcast, 2024) are obtained 

in CSV format. These CSV files are subsequently imported into the ThingSpeak channel, 

with the time zone configured to GMT + 08:00 (Kuala Lumpur). Within the ThingSpeak 

channel, three distinct fields are designated to store the 24-hour historical data, as depicted 

in Figures 3.19 (a) to (c). 

 

(a) Load Demand Data 
 

 

(b) Solar Radiation Data 
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(c) Temperature Data 

Figure 3.19: Historical Data (Grid System Operator, 2024; Solcast, 2024) 

Following the upload of the 24-hour historical load demand, solar radiation, and 

temperature data to the ThingSpeak cloud, the MATLAB workspace serves as the platform 

for streaming historical data based on the current time. The historical load demand data 

readings are refreshed at 10-minute intervals, while updates for solar radiation and 

temperature occur at 30-minute intervals. To retrieve the respective historical data based on 

the current time, 𝑡𝑚 is defined as the lower bound of historical time (e.g., 00:00), while 𝑡𝑛 

represents the upper bound of historical time (e.g., 00:10). The 𝑡𝑐 refers to the current time 

(e.g., 00:08). In this context, the data value corresponding to 𝑡𝑚 is selected, as expressed by 

Equation 3.48. 

𝐹𝑜𝑟 𝑡𝑚 ≤ 𝑡𝑐 < 𝑡𝑛, 𝑠𝑒𝑙𝑒𝑐𝑡 𝑡𝑚  Equation 3.48 

Figure D-1 (Appendix) presents the algorithm implemented in pseudocode for 

extracting and uploading historical data to ThingSpeak, facilitating dynamic modeling. The 

extraction of historical data necessitates the utilization of an Application Programming 

Interface (API) key, serving as the authentication token. Essential parameters such as the 

channel ID, read API key, and fields must be specified according to the user’s ThingSpeak 

channel settings to extract the historical data. The fields are restricted to values 1, 2, and 3, 
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corresponding to the three considered data types. Moreover, the start and end times are 

provided in the timestamp format “YYYY-MM-DD HH:MM:SS” for accurate recognition 

of their associated data. Following extraction, the retrieved data is uploaded or written to 

another channel to serve as current real-time data. Consequently, the new channel ID and 

write API key must also be specified to model the current real-time data on the ThingSpeak 

cloud. The purpose of uploading real-time data to ThingSpeak is to seamlessly integrate 

these data into the IGESs. Additionally, given that the historical demand data exhibits an 

average of 15,695 𝑀𝑊, and each AC and DC load is constrained within the range of 1 𝑀𝑊 

to 2 𝑀𝑊, the historical load demand data is multiplied by 100 to represent the output value 

in 𝑊, as stipulated in Equation 3.49. 

𝐿𝑟 = 𝐿ℎ  ×  100   Equation 3.49 

Where 𝐿ℎ = Historical load demand in 𝑀𝑊  

            𝐿𝑟 = Real-time load demand in 𝑊 

3.5.2 IGESs Modeling 

The modeling of IGESs initiates with the determination of their total generation 

capacity. This capacity can be computed employing Equation 3.50. 

𝑃𝐺 = 𝑃𝐿 + ∆𝑙 Equation 3.50 

Where 𝑃𝐺  = Total generation power  

           𝑃𝐿 = Total load power  

           ∆𝑙 = Power loss 

Before determining the generation capacity, the load demand is assessed as emphasized in 

Equation 3.51. Accordingly, hourly load demand data (Grid System Operator, 2024) are 
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provided in Table 3.11. The daily average load demand, 𝐿𝑎𝑣𝑔 in 𝑀𝑊 is calculated using 

Equation 3.51. 

𝐿𝑎𝑣𝑔 =
∑ 𝑃ℎ−1
24
ℎ=1

24
 Equation 3.51 

Where 𝑃ℎ−1 = hourly load demand data ranging from hour 0 to 23.  

Table 3.11: Hourly Load Demand Data 

Hour Load (𝑴𝑾) Hour Load (𝑴𝑾) 

0 15,107 12 16,653 

1 14,387 13 16,376 

2 13,961 14 17,094 

3 13,569 15 17,813 

4 13,286 16 17,947 

5 13,143 17 17,671 

6 13,470 18 16,573 

7 13,777 19 16,410 

8 14,291 20 17,136 

9 15,641 21 16,881 

10 16,304 22 16,339 

11 16,884 23 15,968 

𝐿𝑎𝑣𝑔 15,695 𝑀𝑊 

 

In this model, the size of each load (2 AC loads and 2 DC loads) is determined based 

on  𝐿𝑎𝑣𝑔 as tabulated in Table 3.11. However, 𝐿𝑎𝑣𝑔 It is exceptionally high (15,695 𝑀𝑊), 

making it unsuitable for modeling purposes. Therefore, the AC loads and DC loads are 
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rescaled based on 𝐿𝑎𝑣𝑔 using Equation 3.52 , ensuring that their active powers fall within 

the range of 1 𝑀𝑊 to 2 𝑀𝑊 for simulation purposes. Additionally, a load demand scaling 

of 30 %  is considered when designing the generation capacity. The 𝐿𝑑  represents the 

capacity of load demand for each AC and DC load. Table 3.12 presents the load demand of 

each load (2 AC loads and 2 DC loads) for both baseline and scaled 30 % scenarios. 

𝐿𝑑 =
𝐿𝑎𝑣𝑔
104

, 1 ≤  𝐿𝐴𝐶/𝐷𝐶 ≤  2 Equation 3.52 

Table 3.12: Load Parameters 

Load Demand Value  

Baseline Average (𝑘𝑊) 1,569.5 

Average (𝑘𝑊ℎ/𝑑𝑎𝑦) 37,668 

Peak (𝑘𝑊) 1,794.7 

Load Factor 0.87 

Scaled (30 %) Average (𝑘𝑊) 470.85 

Average (𝑘𝑊ℎ/𝑑𝑎𝑦) 11,300.4 

Peak (𝑘𝑊) 538.41 

Load Factor 0.87 

 

The IGESs consider three primary resources: solar, wind, and hydro, along with 

energy storage. Data pertaining to these green energy resources are acquired from the NASA 

Prediction of Worldwide Energy Resource (POWER) database. Subsequently, the sizing of 

generation capacity can be determined and optimized through grid search algorithms within 

HOMER Pro software. Table 3.13 presents the capacity of the generations. 
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Table 3.13: Green Energy Parameters 

Type Capacity 

Solar 9,614 𝑘𝑊 

Wind 10 𝑘𝑊 

Hydro 1,000 𝑘𝑊 

Energy Storage 32,943 𝑘𝑊ℎ 

 

Figure 3.20 depicts the developed IGESs model for IIoT-based real-time monitoring, 

control and automation. The topology employed in the system is the ring network, chosen 

for its superior performance in comparison to radial and parallel systems. The ring system is 

deemed more suitable due to the intermittent nature of GERs, as it allows loads to be supplied 

from two directions. In the event that one of the power suppliers fails to deliver power to the 

loads, the other side’s terminal can still transmit power to the load. This integrated green 

energy system operates at 15 kV for its ring system. 

 

Figure 3.20: Developed IGESs Modeling 

The SPR-415E-WHT-D solar panel type is chosen for the solar configuration due to 

its availability on the market. Each module has a maximum power output of 414.801 𝑊. 
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Based on the solar PV capacity specified in Table 3.13, an approximate capacity of 10,000 

𝑘𝑊 is required. The series-connected modules per string are adjusted to achieve a voltage 

level of 5 𝑘𝑉. The capacity of solar generation is determined using Equation 3.53. 

𝐶𝑠 = 𝑃𝑚 × 𝑆𝑝 × 𝑆𝑠  Equation 3.53 

Where 𝐶𝑠 = Solar generation capacity 

           𝑃𝑚 = PV module power 

            𝑆𝑝 = Number of parallel strings of PV modules  

            𝑆𝑠 = Number of series strings of PV modules  

The solar PV modules are configured with a nominal voltage of 5 𝑘𝑉, as is the energy 

storage system. For AC generation, hydro generation operates with a nominal power of 1 

𝑀𝑉𝐴 at 5 𝑘𝑉, while wind generation is set at 10 𝑘𝑊 with 5 𝑘𝑉, based on the capacities 

specified in Table 3.13. Consequently, both transformers 1 and 2 step up the voltage from 5 

𝑘𝑉𝐴𝐶 to 11 𝑘𝑉𝐴𝐶 from the generation sides. Additionally, both voltage source converters 

rectify 11 𝑘𝑉𝐴𝐶  to 15 𝑘𝑉𝐴𝐶 . Furthermore, both DC-DC boost converters increase the 

voltage from 5 𝑘𝑉𝐴𝐶 to 15 𝑘𝑉𝐴𝐶 from the generation sides to the ring systems. Both AC 

and DC loads are configured at 1,569.50 𝑘𝑊, as per Table 3.12. Following the establishment 

of the IGESs model, the dynamic inputs of load demand, solar radiation, and temperature 

data from the ThingSpeak cloud are integrated to the IGESs model. This integration is 

facilitated using the “Read Block” of the ThingSpeak input channel to stream the data, which 

is subsequently routed to the “Goto Block” in MATLAB. Prior to this, the setup of channel 

ID, read API key, and field is necessary. Figure 3.21 illustrates the process of data 

transmission from the ThingSpeak cloud to MATLAB Simulink. 
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Figure 3.21: Data Transmission from ThingSpeak Cloud to MATLAB Simulink  

Within MATLAB Simulink, the dynamic three-phase load block is equipped with an 

external port to receive active power and retrieve dynamic load demand data for the AC load. 

The “From Block” is employed to obtain data from its preceding “Goto Block” and transmit 

it to the dynamic load. Figure 3.22 exemplifies the setup of the dynamic AC load 

configuration. 

 

Figure 3.22: Dynamic AC Load Modeling 

Figure 3.23 illustrates the configuration of the dynamic DC load. As MATLAB 

Simulink lacks a predefined DC dynamic load block, the dynamic DC load is devised using 

Ohm’s Law, as outlined in Equation 3.54. Initially, the dynamic DC load modeling is 

 Dynamic Input 
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conducted independently, without connecting it to the IGESs model. This approach ensures 

validation, confirming that the value of the dynamic input load demand from the “From 

Block” corresponds precisely to the output power scope. Following validation, the dynamic 

DC load is integrated into the IGESs. Notably, the designed MATLAB function block 

necessitates two inputs: Voltage, 𝑉, and Power, 𝑃. These input parameters are directed to 

the input port of the MATLAB function block, while the resistor, 𝑅 corresponds to the value 

from the output port of the MATLAB function block. 

𝑅 = 𝑓(𝑉, 𝑃) =
𝑉2

𝑃
 Equation 3.54 

 

Figure 3.23: Dynamic DC Load Modeling 

MATLAB includes the PV panel Simulink block, which features external ports 

designed to receive dynamic solar radiation and temperature data. The process of feeding 

solar radiation and temperature data to the PV panel is depicted in Figure 3.24. 
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Input 
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Figure 3.24: Dynamic PV Panel Modeling 

3.5.3 Communication Framework of MATLAB Simulink and SCADA 

This subsection showcases the detailed communication framework between 

MATLAB Simulink and SCADA for real-time monitoring and control. Facilitating the data 

transfer between MATLAB Simulink and Wonderware InTouch SCADA requires the 

intermediary server cloud KEPServerEX. The data transfer can occur bidirectionally, either 

from MATLAB to SCADA or vice versa, as illustrated in Figure 3.25. 

 

Figure 3.25: Data Transfer between MATLAB Simulink and SCADA  

In the initial setup, establishing the communication channel is crucial. The channel 

type “Simulator” is assigned to “C1” upon adding a channel in KEPServerEX. Subsequently, 

the device wizard is configured with the name “D1”. Additionally, an alias “C1D1” is 
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declared to facilitate connection from the client computer to the server. Table 3.14 provides 

an overview of the server settings utilized in KEPServerEX. 

Table 3.14: Server Settings 

Item Details 

Channel Name C1 

Device Name D1 

Alias Name C1D1 

Driver Simulator 

Model 16 Bit Device 

ID Format Decimal 

Mapped to C1.D1 

 

The primary procedure involves adding tags to the server, where each tag represents 

a unique parameter for real-time monitoring, control, and automation. Firstly, each tag 

possesses a distinct name for differentiation purposes. Secondly, the available data type 

options include string, boolean, char, bytes, short, word, long, float, double, and more, 

depending on the specific data type being utilized. Furthermore, an address must be assigned 

to each tag, with formats varying depending on the data type. Lastly, the user selects the 

client access functionality, thereby allowing the client computer to either read or write data 

exclusively. Figure 3.26 provides an overview of the characteristics of the server tag. 
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Figure 3.26: Characteristics of Server Tag  

After establishing the server configuration, a monitoring framework is devised to 

collect crucial data from the IGESs model. This framework encompasses the readings of 

various components including DC solar generation, DC energy storage, DC load 1, DC load 

2, AC wind generation, AC hydro generation, AC load 1, and AC load 2, as illustrated in 

Figure D-2 (Appendix). The Root Mean Square (RMS) values of voltage and current from 

the monitoring framework are calculated using Equations 3.55 and 3.56, respectively. These 

“Goto Blocks” containing the reading data within the monitoring framework are now 

prepared to be integrated into the server for further processing and analysis. 

𝑉𝑟𝑚𝑠 =
𝑉𝑝𝑒𝑎𝑘

√2
 Equation 3.55 

𝐼𝑟𝑚𝑠 =
𝐼𝑝𝑒𝑎𝑘

√2
 Equation 3.56 

Manual and automatic switches, along with their corresponding signal tags, have 

been integrated into the sub-models of green energy generations, energy storage, AC and 

DC loads, and AC and DC faults within the IGESs model. This integration facilitates both 

manual control and automation functionalities. Manual control allows for switching 

operations triggered by signals, particularly for electrical power lines maintenance. 

Conversely, the automatic switch serves as an overcurrent relay, ensuring the safety of the 

Tag

Name

Address

Client Access

Data Type
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IGESs by opening the switch or circuit breaker in case of a fault. The integration of manual 

and automatic switches, along with their respective signal tags, into the sub-models is 

visually depicted in Figures D-3 (a) to (d) and Figures D-4 (a) to (f). In these representations, 

“MS” denotes the Manual Switch, while “AS” represents the Automatic Switch. The 

subsequent step involves utilizing OPC to establish a connection with the server. The 

channel C1, and its corresponding device D1, store all the necessary tags for communication 

during the data transfer process within the server cloud. The readings parameters from the 

“From Block” in Figure D-2 (Appendix) are then transmitted to the OPC Write block with 

unique tags from T1 to T55. This facilitates data transfer to the SCADA system via the server 

for real-time monitoring. The data type used for monitoring purposes is “double”, accurately 

representing the reading value. Furthermore, the OPC Read block is connected to unique 

tags from TA to TL to enable manual and automation control within the SCADA system. 

These tags are then linked to the “Goto Block” to receive control signals from the SCADA 

system via the server. The data type associated with these tags in the OPC Read block is 

logical, allowing for toggling between 0 and 1 for control purposes. Figure 3.27 illustrates 

the configuration framework for OPC setup in MATLAB Simulink. 
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Figure 3.27: OPC Framework in MATLAB Simulink  

The SCADA interface is constructed using Wonderware InTouch Maker. In the 

initial setup, the “Access Names” from the “Special” section are incorporated into the 

settings as delineated in Table 3.15. To ensure recognition of the channel from the server by 

the SCADA platform, the topic name is configured to match the alias name (as referenced 

in Table 3.14). To facilitate communication over the network, the SuiteLink protocol is 

employed. The application name must be set as “server_runtime” when establishing a 

connection to KEPServerEX via SuiteLink.  

 

Write Data to Server  Read Server Data  

OPC Configuration 
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Table 3.15: Access Names Settings 

Item Details 

Access Name C1D1 

Application Name server_runtime 

Topic Name C1D1 

Protocol SuiteLink 

 

Subsequently, the tags (T1 to T55) and (TA to TL) retrieved from the server are 

specified in the “Tagname Dictionary” within the “Special” section. Within the “Tagname 

Dictionary”, each tag is allocated a unique tag name. The tag type is designated as “I/O Real” 

for monitoring purposes, while for controlling purposes, the tag type is specified as “I/O 

Discrete”, representing discrete data. All these tags have the Access Name “C1D1”. Figure 

3.28 illustrates the definition of all the tags utilized in the SCADA system. 

 

Figure 3.28: Tags Definition 

Once all tags have been set up, the system proceeds to design the user interface. The 

Wonderware InTouch SCADA system provides flexibility, allowing users to create 

interfaces featuring embedded industrial graphics. The SCADA energy management system 



116 

dashboard has been developed, comprising three main sections: monitoring, manual control, 

and automation. For each monitoring screen, the display color, maximum value, minimum 

value, and tag number have been configured. The tag number precisely follows the OPC 

configuration. Notably, only tags containing crucial parameters have been added to the 

SCADA energy management system dashboard panel, as depicted in Figure 3.29. 

 

Figure 3.29: SCADA Energy Management System Dashboard  

In the manual control segment, specific tags (TA to TH) have been designated to 

manual switches, each paired with corresponding light indicators. A green light signifies a 

closed switch, while a red light indicates an open switch. For automation, tags ranging from 

T52 to T55 have been incorporated into the monitoring screen to denote AC fault 1, AC fault 

2, DC fault 1, and DC fault 2, respectively. Moreover, tags TI to TL have been assigned for 

the light indicators of AC breaker 1, AC breaker 2, DC switch 1, and DC switch 2. In this 

context, a green-light indicator implies that the breaker is open, while a red-light indicator 

denotes that the breaker is closed. The Wonderware Intouch SCADA system offers an 

additional advantage with its capability to utilize window scripts for automation. Preceding 

and succeeding a fault occurrence, the steady-state current flow behavior has been 

meticulously analyzed to establish the optimal current limits for the breakers and switches. 

Monitoring 

Automation 

Manual 

Control 
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The window script acts as an overcurrent relay to activate the breaker, with its parameters 

determined by Equations 3.57 to 3.60. According to these equations, if the current reading 

of the tag is 200 𝐴 or lower, the breaker remains closed. However, if it exceeds 200 𝐴, the 

breaker is opened. 

𝐼𝑓 𝑇52 ≤ 200;  𝑡ℎ𝑒𝑛 𝑇𝐼 = 1;  𝑒𝑙𝑠𝑒 𝑇𝐼 = 0; Equation 3.57 

𝐼𝑓 𝑇53 ≤ 200;  𝑡ℎ𝑒𝑛 𝑇𝐼 = 1;  𝑒𝑙𝑠𝑒 𝑇𝐼 = 0; Equation 3.58 

𝐼𝑓 𝑇54 ≤ 200;  𝑡ℎ𝑒𝑛 𝑇𝐾 = 1;  𝑒𝑙𝑠𝑒 𝑇𝐾 = 0; Equation 3.59 

𝐼𝑓 𝑇55 ≤ 200;  𝑡ℎ𝑒𝑛 𝑇𝐾 = 1;  𝑒𝑙𝑠𝑒 𝑇𝐾 = 0; Equation 3.60 

3.5.4 Validation using Hardware Prototype 

The proposed hardware prototype integrates with the SCADA system is proposed for 

experimental validation of real-time monitoring, control, and automation. A conceptual 

representation of the hardware prototype’s operational workflow is illustrated in Figure 3.30. 

 

Figure 3.30: Operational Workflow of Hardware Prototype  
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Figure 3.31 illustrates the development of the hardware prototype in block diagram, 

which comprises several components: Raspberry Pi 4 model B, a Wi-Fi adapter to facilitate 

internet connectivity for the Raspberry Pi, a PZEM-016 AC meter, a table fan serving as the 

AC load (220 𝑉), an AC switch, a 3.3 𝑉 AC relay, an AC supply (220 𝑉), a PZEM-017 DC 

meter, a bulb acting as the DC load (12 𝑉), a DC switch, a 3.3 𝑉 DC relay, a DC battery (12 

𝑉), and a DC shunt. It is worth noting that the relays utilized are 3.3 𝑉, as the maximum 

voltage permitted for GPIO pins in the Raspberry Pi is 3.3 𝑉 . Subsequently, real-time 

measurement data for both AC and DC loads can be streamed to the ThingSpeak cloud using 

Python code executed on the Raspberry Pi. 

 

Figure 3.31: Hardware Prototype Development 

The communication system in MATLAB Simulink is configured as depicted in 

Figure D-5 (Appendix). Monitoring data sourced from ThingSpeak is collected and 

transmitted to the SCADA system through an OPC server. Communication systems for both 

Manual Switch (MS) and Automatic Switch (AS) for AC and DC loads are devised within 

MATLAB Simulink. The NOT gate is employed to invert the signal because the relay closes 

the circuit when it equals 0 and opens when it equals 1. Furthermore, the AND gate is utilized 

to minimize the number of relays, ensuring that the relay only closes the circuit when both 
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“MS” and “AS” are equal to 1. A delay block is incorporated into the “AS” to ensure that 

the relay recloses the circuit after 1 second when the system encounters a fault. 

The SCADA energy management system dashboard is designed as illustrated in 

Figure 3.32. This dashboard presents monitoring data for both AC and DC loads. For manual 

control, the maintenance mode must be selected to enable the switching of the AC and DC 

loads. Transitioning to automation mode is achieved by toggling the maintenance mode 

button. During automation mode, manual switches are disabled, and the relay automatically 

closes the circuit when the system current falls below the set threshold current. These 

functionalities are executed using the SCADA system’s condition and application scripts. 

Tag T2 represents the DC current reading, while tag T6 represents the AC current reading. 

Boolean tags TA, TB, TC, and TD are assigned for DC manual switch, DC automatic switch, 

AC manual switch, and AC automatic switch, respectively. Tag TE is set to 1 when 

maintenance mode is activated and 0 when maintenance mode is deactivated. Additionally, 

tag TF equals 1 when automation mode is enabled and 0 when automation mode is disabled.  

The current threshold is established based on the predetermined normal behavior of 

current flow, as described in Equations 3.61 to 3.64. The current thresholds for both AC and 

DC maintenance switches (TA and TB) are set to a high value (20 𝐴) as these switches are 

manual and should not operate automatically. Conversely, the current thresholds for both 

AC and DC automatic switches are set to 2 𝐴 and 0.2 𝐴, respectively, reflecting the typical 

steady-state DC current of approximately 1.2 𝐴 and AC current of approximately 0.17 𝐴. 

𝐼𝑓 𝑇2 ≤ 20;  𝑡ℎ𝑒𝑛 𝑇𝐴 = 1;  𝑒𝑙𝑠𝑒 𝑇𝐴 = 0; Equation 3.61 

𝐼𝑓 𝑇6 ≤ 20;  𝑡ℎ𝑒𝑛 𝑇𝐵 = 1;  𝑒𝑙𝑠𝑒 𝑇𝐵 = 0;  Equation 3.62 
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𝐼𝑓 𝑇2 ≤ 2;  𝑡ℎ𝑒𝑛 𝑇𝐶 = 1;  𝑒𝑙𝑠𝑒 𝑇𝐶 = 0; Equation 3.63 

𝐼𝑓 𝑇6 ≤ 0.2;  𝑡ℎ𝑒𝑛 𝑇𝐷 = 1;  𝑒𝑙𝑠𝑒 𝑇𝐷 = 0; Equation 3.64 

 

Figure 3.32: SCADA Dashboard Settings and Configurations  

 

3.6 Chapter Summary 

This chapter presents the proposed GIS-based fuzzy TOPSIS and filtration 

algorithms for identifying green energy locations. It further details the development of a 

GIS-driven fuzzy TSP-BIP algorithm for integrating these locations and the establishment 

of an IIoT-based system for real-time monitoring, control, and automation of IGESs using 

MATLAB Simulink, a server, and a SCADA system. All key models, mathematical 

equations, and formulations are thoroughly presented and discussed. The modeling for 

identification and integration of green energy locations is compared and validated against 

state-of-the-art research, while the IIoT-based system is validated through hardware 

prototypes. These evaluations confirm the reliability and robustness of the proposed 

methods. 
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CHAPTER 4  
 

 

RESULTS AND DISCUSSION 

4.1 Introduction 

This research findings are categorized into three main sections. The first section 

demonstrates the results of identifying optimal green energy locations for SES, WES, and 

HES. The process begins with the first layer of filtration, where optimal HES are obtained, 

and WES with wind speeds greater than 3 𝑚𝑠−1 are considered optimal. All optimal WES 

and HES are then presented on maps. The second phase of filtration, using criteria 

constraints, further refines the potential SES. The second layer applies a novel GIS-based 

fuzzy TOPSIS algorithm model to rank the SES, revealing the top 100 optimal SES 

coordinates. These optimal SES are then validated using a weighted sum method, and the 

agreement level of the results is determined and discussed. 

Once optimal green energy locations have been identified, they are clustered into 12 

divisions and an improved GIS-driven fuzzy TSP-BIP algorithm model is utilized to 

integrate them by designing optimal power lines routing. The outcomes of this optimal 

electrical power line routing for each division are presented and compared with those of the 

conventional TSP-BIP algorithm. These results are then ranked to ascertain the superiority 

of fuzzy logic operations in TSP algorithms. Additionally, the performance results of TSP-

BIP algorithm against other TSP algorithms are evaluated by comparing the fuzzy values of 

each method and considering computational time. This validation aims to discover the 

effectiveness of fuzzy TSP-BIP algorithm in comparison to existing TSP algorithms. 
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The last section presents the successful modeling of real-time dynamic data initially. 

Subsequently, these real-time dynamic data were integrated into the IGESs model to 

facilitate comprehensive real-time monitoring, control, and automation using simulation 

models. The monitoring results from MATLAB Simulink were then compared with those of 

the SCADA system, with manual control and automation strategies executed to demonstrate 

the robustness of the proposed model. To validate the simulation model’s applicability in 

real world scenarios, Raspberry Pi and IIoT components were incorporated and integrated 

with the SCADA systems to achieve real-time monitoring, control, and automation 

strategies. The monitoring data results were presented, manual control functionality was 

demonstrated, and automation operations were tested for fault clearance. All these results 

are presented and discussed accordingly. Consequently, the research findings, from 

identification through integration to real-time monitoring, control, and automation for 

IGESs, stand as valuable assets for decision-makers or stakeholders aiming to efficiently 

harness and manage IGESs. 

4.2 Results of Green Energy Locations Identification  

This section presents the results derived from three pivotal phases: the first layer, 

second layer, and ensuing validation procedure. Initially, 19,237 coordinates for SES and 

WES, along with 155 coordinates for HES, served as inputs. These coordinates underwent a 

systematic sequential filtration process, which is meticulously detailed and scrutinized for 

both the first and second filtration phases. Post-filtration, the refined set of options 

underwent evaluation utilizing the fuzzy TOPSIS algorithm. This algorithm facilitated the 

establishment of a comprehensive ranking for the top 100 optimal SES. A comparison 

ensued against the solar suitability map generated using weighted sum methods within 

ArcGIS Pro. The validation process primarily ensures the reliability of the results, with 
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researchers employing the developed algorithm to conduct analyses aimed at identifying 

green energy locations. 

4.2.1 First Phase of Filtration 

The initial filtration process commenced by segregating 11 polygon shapefiles 

sourced from the NextGIS database into two principal categories: exclusion areas and 

inclusion areas. Exclusion areas encompassed various features such as protected areas, 

points of interest, settlements, parking areas, surface features, vegetation, land use, 

buildings, airports, and bodies of water. Conversely, there was only one inclusion area, 

denoting an island. Python-based filtration techniques were systematically applied in 11 

consecutive iterations to eliminate potential SES and WES associated with either exclusion 

or inclusion areas from the initial count of 19,237 coordinates. Simultaneously, the same 10 

polygon shapefiles, excluding bodies of water, were utilized to filter the 155 potential HES. 

Table 4.1 and Figures 4.1 illustrate the first phase of filtration for SES and WES, 

respectively, while Table 4.1 and Figure 4.1 delineate the first phase of filtration for HES. 

Table 4.1: Breakdown of First Filtration Process for SES and WES 

Round Area Type Removed Locations Balance 

0 Initial State 0 19,237 

1 Protected Area Exclusion 102 19,135 

2 Point of interest Exclusion 22 19,113 

3 Settlement Exclusion 3 19,110 

4 Parking Exclusion 0 19,110 

5 Surface Exclusion 0 19,110 

6 Vegetation Exclusion 383 18,727 
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Table 4.1 continued    

7 Land Use Exclusion 335 18,392 

8 Island Inclusion 248 18,144 

9 Building Exclusion 15 18,129 

10 Airport Exclusion 5 18,124 

11 Water Exclusion 897 17,227 

 

 

Figure 4.1: Results of Remaining and Cumulative Removed SES and WES 

Figure 4.1 indicates that rounds 1 to 5 and rounds 9 to 10 had minimal effect on the 

available SES and WES, suggesting their limited influence on the dataset. Conversely, 

rounds 6 to 8 and round 11 had a considerable impact, resulting in substantial exclusions of 

unsuitable SES and WES. The most notable reduction transpired in round 11, where 897 

locations were discarded due to their overlap with bodies of water. Consequently, this initial 

filtration process effectively streamlined the available SES and WES, yielding a more 

manageable set of 17,227 coordinates. 
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Table 4.2: Breakdown of First Filtration Process for HES 

Round Area Type Removed Locations Balance 

0 Initial State 0 155 

1 Protected Area Exclusion 3 152 

2 Point of interest Exclusion 0 152 

3 Settlement Exclusion 0 152 

4 Parking Exclusion 0 152 

5 Surface Exclusion 0 152 

6 Vegetation Exclusion 14 138 

7 Land Use Exclusion 0 138 

8 Island Inclusion 0 138 

9 Building Exclusion 0 138 

10 Airport Exclusion 0 138 

 

 

Figure 4.2: Results of Remaining and Cumulative Removed HES 
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As the potential HES is retrieved from the SEB database, some of the HES might 

now be unsuitable for hydro generation as the place may have been developed. According 

to Figure 4.2, where there are only 155 HES in the beginning. There are 3 HES that 

overlapped with protected areas in round 1, while 14 HES are in vegetation zones in round 

6. These HES are removed in the filtration process. It is imperative to note that the water 

bodies polygon shapefile is excluded from the filtration process for HES as all the HES 

should be situated on the water areas. After the first phase of the filtration process, the 

optimal 138 HES remain.  

From the first phase of the filtration process, the remaining 17,227 coordinates with 

wind speeds greater than 3 𝑚𝑠−1 are selected as the optimal WES. There are only 23 WES 

above 3 𝑚𝑠−1. As wind speeds in Sarawak are generally low, preserving some potential 

WES is valuable for site assessment and further evaluation. Additionally, advancements in 

technology allow wind turbines to operate at low wind speeds, as low as 2 𝑚𝑠−1, making 

harnessing low wind speed areas possible. Figure 4.3 demonstrates the remaining 17,227 

potential SES and WES. Furthermore, Figure 4.4 showcases the optimal 23 WES, while 

Figure 4.5 depicts the optimal 138 HES.  

According to the findings depicted in Figure 4.3, the elimination process 

demonstrates rapid operation, with computational times consistently below 10 seconds, even 

when managing a large-scale of locations (19,237 coordinates). The algorithm offers 

flexibility by allowing users to incorporate additional raster layers as needed, thus facilitating 

the development of personalized models. 
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Figure 4.3: Remaining 17,227 Potential SES and WES  

 

 

Figure 4.4: Optimal 23 WES 
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Figure 4.5: Optimal 138 HES 
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4.2.2 Second Phase of Filtration 

The secondary filtration phase further refines the 17,227 coordinates based on 

predetermined criteria constraints, as outlined in Table 3.3. This stage comprised 19 rounds, 

each tailored to specific criteria aimed to filter SES. Factors such as solar radiation, 

temperature, slope, elevation, proximity to electrical power lines, roads, residential areas, 

urban facilities, distance from water bodies, protected areas, settlements, and population 

density were considered to exclude locations falling outside the defined constraints. During 

the initial rounds (1 and 2), where the constraint C1 ≥ 1200 and C2 ≥ 15 was imposed, no 

SES were disqualified. However, in round 3, introducing the constraint C2 < 28 resulted in 

the removal of 47 SES, leaving 17,180 viable options. Subsequent rounds applied constraints 

such as C3 < 25 in round 4, eliminating 46 SES, and C4 < 2200 in round 5, removing 112 

SES. Round 6 with constraint C4 ≥ 0, maintained the number of viable SES. Notably, 

rounds 7 and 8 played a pivotal role, eliminating 1,406 and 2,430 SES, respectively, with 

constraints C5 ≥ 0.01 and C5 < 50. The filtration process continued with constraints like 

C6 ≥ 0.1, C7 < 45, and C8 < 45, resulting in significant reductions. Round 9 witnessed a 

substantial decrease of 9,088 SES due to the constraint C6 ≥ 0.1. Conversely, rounds 10, 17, 

and 18 had no impact on the number of SES, reflecting less restrictive criteria. In the final 

round, only 1 SES was excluded when applying the constraint C12 > 0 . The filtration 

approach showcased meticulousness and effectiveness in systematically narrowing down the 

initial pool, culminating in a final count of 1,862 filtered SES. The progressive reduction in 

SES count after each round is detailed in Table 4.3 and Figure 4.6, while Figure 4.7 visually 

depicts the remaining 1,862 SES, slated for utilization in fuzzy TOPSIS algorithms to 

identify the optimal 100 SES. 
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Table 4.3: Breakdown of Second Filtration Process for SES 

Round Criteria Constraint Removed Locations Balance 

0 Initial State 0 17,227 

1 C1 ≥ 1200 0 17,227 

2 C2 ≥ 15 0 17,227 

3 C2 < 28 47 17,180 

4 C3 < 25 46 17,134 

5 C4 < 2200 112 17,022 

6 C4 ≥ 0 0 17,022 

7 C5 ≥ 0.01 1406 15,616 

8 C5 < 50 2430 13,186 

9 C6 ≥ 0.1 9088 4,098 

10 C6 < 50 0 4,098 

11 C7 ≥ 0.3 5 4,093 

12 C7 < 45 178 3,915 

13 C8 ≥ 0.3 4 3,911 

14 C8 < 45 1214 2,697 

15 C9 ≥ 0.1 215 2,482 

16 C9 < 20 619 1,863 

17 C10 ≥ 0.1 0 1,863 

18 C11 ≥ 0.1 0 1,863 

19 C12 > 0 1 1,862 
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Figure 4.6: Results of Remaining and Cumulative Removed SES 

 

Figure 4.7: Filtered 1,862 potential SES  

The filtration algorithms employed in the second phase provide a versatile method, 

seamlessly integrating with pre-established constraints within the model. Their adaptability 

to diverse raster maps affords decision-makers the flexibility to precisely define constraints 

for each criterion. Furthermore, the computational efficiency of the execution is remarkably 

rapid. Even when managing a substantial dataset of SES, comprising 17,227 entries from the 
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initial filtration process, this second filtration algorithm reduces SES to 1,862, 

accomplishing the task within a mere 5-second timeframe. 

4.2.3 Top 100 Optimal SES 

The fuzzy TOPSIS algorithm is proposed to identify the optimal 100 SES among the 

1,862 pre-screened alternatives. This proposed algorithm not only gauges the proximity to 

the positive ideal solution but also takes into account the proximity to the negative ideal 

solution. Consequently, it yields Closeness Coefficients, 𝐶𝐶𝑖 , encompassing all pertinent 

considerations from the influential criteria raster maps, thereby reflecting the proximity of 

each SES to the optimal solution. These devised fuzzy TOPSIS algorithms afford a lucid 

interpretation and boast high transparency in presenting the top 100 optimal SES. 

Specifically, these 𝐶𝐶𝑖  values span from 0 (representing the least desirable SES) to 1 

(indicating the most favorable SES), with the selection of the top 100 𝐶𝐶𝑖values representing 

the optimal SES. Each SES is allocated a distinctive identifier, commencing with S1 for the 

one exhibiting the highest closeness coefficient and incrementally progressing to S100 for 

the SES possessing the lowest closeness coefficient within the top 100 ranking. Figure 4.8 

visually elucidates the continuum of closeness coefficients ranging from S1 to S100. 
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Figure 4.8: Closeness Coefficient of Top 100 Optimal SES  

The innermost outcome entails the mapping of the top 100 optimal SES. An 

intriguing pattern emerges among these top 100 optimal SES, indicating a tendency to form 

several discernible clusters. However, these clusters present challenges in terms of clear 

visualization. To address this issue, the map has been zoomed in to improve the clarity in 

identifying these top 100 optimal SES. It is noticed that these SES fall into three distinct 

clusters: the first cluster is situated in close proximity to Kuching and Samarahan, the second 

cluster is predominantly concentrated around Sibu, Kapit, and Mukah, while the last cluster 

is centered somewhere between Bintulu and Miri. It is noteworthy that, unlike numerous 

prior studies which primarily focus on areas with solar potential, the findings provided herein 

offer a more comprehensive and specific delineation of SES throughout the interior of the 

Sarawak region. Figure 4.9 provides a detailed visual representation of the top 100 optimal 

SES within the Sarawak region. 
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Figure 4.9: Top 100 Optimal SES  

 

4.2.4 Validation Results for Top 100 Optimal SES 

The 12 criteria raster maps are initially standardized into a consistent scale spanning 

from 1 to 32 in order to validate the findings regarding the top 100 optimal SES. This 

standardization process employs the classify tool to ensure maximum sensitivity in 

generating each criterion raster map. Subsequently, these maps are amalgamated with their 

respective weights, determined through the fuzzy weight method employing the weighted 

average approach. The weighted sum method is then utilized to merge all 12 criteria raster 

maps (scaled from 1 to 32) along with their associated weights, thereby producing a solar 

suitability map for validation purposes as depicted in Figure 4.10. The resultant solar 

suitability map showcases a spectrum of weight values. The location with the lowest 

recorded weight value (2,074.36) is identified as the least suitable for SES implementation, 

whereas the site with the highest weight value (2,979.36) is deemed the most suitable. 

Furthermore, Figure 4.11 combines the top 100 optimal SES derived from proposed method 
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with the solar suitability map, revealing a substantial alignment between most of the top 100 

optimal SES and the solar hotspots delineated on the solar suitability map. 

 

Figure 4.10: Solar Suitability Map 

 

Figure 4.11: Solar Suitability Map with Top 100 Optimal SES  

The Python code in Figure B-2 (Appendix) is employed to extract the weights of the 

top 100 optimal SES from the solar suitability map for a comprehensive comparative 

analysis. This extraction of weight values is essential for assessing their proximity to the 
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maximum weight value of 2,979.36. The weights generated for each of the top 100 optimal 

SES are depicted in Figure 4.12. 

 

Figure 4.12: Generated Weight for Top 100 Optimal SES  

As the weights of the top 100 optimal SES locations are extracted, Equation 3.22 is 

applied to calculate the relative percentages of each SES in relation to the best and worst 

values, as illustrated in Figure 4.13. 

 

Figure 4.13: Relative Percentage for Top 100 Optimal SES  
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Figure 4.13 offers a visual representation of the relative percentages, ranging from 

approximately 31.87 % for S48 to nearly 97.53 % for S20. Notably, only one SES falls 

below the 50 % threshold. Several SES, including S20, S5, S50, S32, S97, and S91, exhibit 

notably high sustainability levels, with percentages approaching or exceeding 90 % . A 

distinct clustering pattern emerges, particularly within the 60 % to 70 % range, suggesting 

shared influencing factors on their suitability. Various factors contribute to the observed 

variability in SES percentages compared to the optimal value of 100 %. Primarily, the solar 

suitability map originates from the weighted sum method, focusing solely on criterion raster 

layers without incorporating filtration processes. Conversely, the proposed method 

integrates filtration procedures, accommodating structured data and criteria constraints. 

Consequently, highly weighted alternatives may be excluded if they fail to meet these 

constraints during filtration. Additionally, limitations inherent in the weighted sum analysis 

tool within ArcGIS, lacking support for fuzzy triangular membership weights, may introduce 

deviations in results. The proposed method leverages fuzzy weights, renowned for their 

effectiveness in addressing ambiguity in decision-making processes. Hence, based on this 

analysis, the proposed GIS-based fuzzy TOPSIS and filtration algorithms are validated 

against a solar suitability map generated via the weighted sum method, affirming their 

capacity to produce dependable outcomes. Specifically, 99 SES demonstrate suitability 

percentages surpassing 50 %, with only one SES falling below this threshold. Moreover, the 

average relative percentage computed for all 100 SES is 69.01 %, indicating a moderately 

high level of agreement among the top 100 optimal SES concerning their suitability for SES 

implementation. 
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4.3 Results of Green Energy Locations Integration 

The identified optimal green energy locations of 100 SES, 23 WES, and 138 HES 

are considered for integration by designing the optimal electrical power lines routing within 

a ring network for each respective cluster. The validation results including minimum 

distance, minimum elevation difference, and minimum average GFD were conducted 

utilizing proposed GIS-driven fuzzy TSP-BIP algorithm against the conventional TSP-BIP 

algorithm. Furthermore, the outcomes obtained from the proposed methodology underwent 

comparison with seven alternative fuzzy TSP algorithms, facilitating a comprehensive 

assessment of its efficiency and performance. 

4.3.1 Optimal Electrical Power Lines Routing Design 

The green energy locations are grouped into 12 clusters based on geographical 

divisions: Kuching, Samarahan, Serian, Sri Aman, Betong, Sarikei, Sibu, Mukah, Bintulu, 

Kapit, Miri, and Limbang. Within each division, green energy locations are further 

categorized for SES, WES, and HES. Table 4.4 illustrates the clustering of these green 

energy locations by divisions, presenting their respective IDs from 𝐶1  to 𝐶12 , and the 

corresponding number of sites in each cluster. 
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Table 4.4: Clustering Green Energy Locations by Divisions  

Cluster Division Type ID Total 

𝐶1 Kuching 

SES S4, S9, S10, S39, S49, S59, S63, S81, S100 

15 WES W4, W15, W17, W18, W19, W20 

HES N/A 

𝐶2 Samarahan 

SES 

S1, S3, S6, S7, S12, S15, S21, S22, S30, S33, 

S34, S35, S36, S41, S46, S56, S57, S58, S66, 

S77, S80, S84, S85, S90, S94, S96 28 

WES W9, W22 

HES N/A 

𝐶3 Serian 

SES S43, S48, S51, S78 

8 WES W3, W5, W7, W21 

HES N/A 

𝐶4 Sri Aman 

SES S14, S27, S37, S62, S93, S98, S99 

9 WES W6, W8 

HES N/A 

𝐶5 Betong 

SES S44, S47, S72 

4 WES W10 

HES N/A 

𝐶6 Sarikei 

SES S2, S8, S31, S67, S69, S71 

7 WES N/A 

HES H1 

𝐶7 Sibu 

SES 
S19, S20, S24, S32, S38, S65, S68, S70, S73, 

S89, S95, S97 
14 

WES N/A 

HES H6, H7 

𝐶8 Mukah 

SES 
S23, S28, S29, S42, S60, S61, S64, S79, S82, 

S87, S88, S92 
12 

WES N/A 

HES N/A 
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Table 4.4 continued  

𝐶9 Bintulu 

SES S26, S76 

4 WES N/A 

HES H52, H59 

𝐶10 Kapit 

SES 
S5, S13, S16, S17, S18, S25, S40, S50, S52, S53, 

S75, S83, S86, S91 

92 

WES W1, W2, W11, W12, W13 

HES 

H2, H3, H4, H5, H8, H9, H10, H11, H12, H13, 

H14, H15, H16, H17, H18, H19, H20, H21, H22, 

H23, H24, H25, H26, H27, H28, H29, H30, H31, 

H32, H33, H34, H35, H36, H37, H38, H39, H40, 

H41, H42, H43, H44, H45, H46, H47, H48, H49, 

H50, H51, H53, H54, H55, H56, H57, H58, 

H120, H121, H122, H123, H124, H125, H126, 

H127, H128, H129, H130, H131, H132, H133, 

H134, H135, H136, H137, H138 

𝐶11 Miri 

SES S11, S45, S54, S55, S74 

40 

WES W14, W16 

HES 

H60, H61, H62, H63, H64, H65, H66, H67, H68, 

H69, H70, H71, H72, H73, H74, H75, H76, 

H103, H105, H106, H107, H108, H109, H110, 

H111, H112, H113, H114, H115, H116, H117, 

H118, H119 

𝐶12 Limbang 

SES N/A 

28 

WES W23 

HES 

H77, H78, H79, H80, H81, H82, H83, H84, H85, 

H86, H87, H88, H89, H90, H91, H92, H93, H94, 

H95, H96, H97, H98, H99, H100, H101, H102, 

H104 
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The integration of these clustered green energy locations is accomplished through 

the establishment of optimal routing for electrical power lines in each cluster, utilizing the 

proposed GIS-driven fuzzy TSP-BIP algorithm. Figures 4.14 (a) to (l) illustrate the mapping 

of green energy location integration in each cluster, with a specific focus on the design of 

optimal electrical power lines routing. 

 

(a) Cluster 1: Kuching 

 

(b) Cluster 2: Samarahan 
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(c) Cluster 3: Serian 

 

(d) Cluster 4: Sri Aman 
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(e) Cluster 5: Betong 

 

(f) Cluster 6: Sarikei 
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(g) Cluster 7: Sibu 

 

(h) Cluster 8: Mukah 
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(i) Cluster 9: Bintulu 

 

(j) Cluster 10: Kapit 
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(k) Cluster 11: Miri 

 

(l) Cluster 12: Limbang 

Figure 4.14: Optimal Electrical Power Lines Routing Design for 12 Clusters  

The distribution of green energy locations across divisions reveals a varied landscape 

of green energy development within the region. Kapit emerges prominently with an 

extensive network of 92 green energy sites, followed closely by Miri with 40 locations. 

Samarahan and Limbang also exhibit strong emphasis on green energy, each boasting 28 
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locations. In contrast, Betong and Bintulu demonstrate lower levels of green energy 

infrastructure, each with only 4 sites. Sarikei, Serian, Sri Aman, Mukah, and Sibu fall within 

the mid-range, with 7, 8, 9, 12, and 14 green energy locations respectively. 

The optimal design for electrical power lines routing in these divisions considers 

three key factors: minimum total distance, minimum elevation difference, and minimum 

total average ground flash density. Minimizing the distance between green energy locations 

is paramount for cost efficiency, reducing construction materials and energy loss during 

power delivery. Considering elevation differences is crucial, as flat or gently sloping terrain 

simplifies construction and reduces maintenance costs. Conversely, higher elevations 

increase installation difficulty and maintenance expenses. Additionally, decreasing the 

average GFD enhances safety and reliability by mitigating the risk of electrical power lines 

damage and downtime. 

Each cluster adopts a ring topology for its simplicity, low maintenance costs, and 

reliability. In the event of a fault leading to power interruption in any section, continuity of 

power supply is ensured through alternative green energy locations feeding the system. Some 

results display overlapping lines, particularly in Figures 4.14 (j) and (k), attributed to the 

high number of green energy locations and consideration of multiple objective functions. 

Values for minimum total distance 𝑚𝑖𝑛 (∑𝑑) in 𝑘𝑚, minimum total elevation difference, 

𝑚𝑖𝑛 (∑∆𝑒) in 𝑚  and minimum total average ground flash density, 𝑚𝑖𝑛 (∑𝐺𝐹𝐷̅̅ ̅̅ ̅̅ )  in 

𝑓𝑙𝑎𝑠ℎ𝑒𝑠 𝑘𝑚−2 𝑦𝑒𝑎𝑟−1 for each cluster 𝐶𝑖 are provided in Table 4.5. 
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Table 4.5: Generated Results and TSP Configurations for 12 Clusters 

𝑪𝒊 

Minimum 

TSP Configuration 

∑𝒅 ∑∆𝒆 ∑𝑮𝑭𝑫̅̅ ̅̅ ̅̅  

𝐶1 387.9479 3,100 389.4225 
S10 → S81 → S100 → W17 → S49 → W15 → S63 → W18 → S39 → W19 → W4 → S59 → 

S9 → W20 → S4→ S10 

𝐶2 247.4423 598 483.9316 

S15 → S7 → S96 → S21 → S58 → S34 → W9 → S94 → S33 → S90 → S80 → S36 → S22 

→ W22 → S77 → S85 → S84 → S12 → S30 → S1 → S35 → S3 → S6 → S66 → S57 → S41 

→ S46 → S56→ S15 

𝐶3 146.0911 1286 199.5101 S51 → S48 → W21 → W3 → S78 → W5 → W7 → S43→ S51 

𝐶4 228.9218 2446 159.5003 S27 → W6 → S93 → S37 → S99 → S14 → S62 → W8 → S98→ S27 

𝐶5 118.1112 698 74.5280 S47 → S72 → W10 → S44→ S27 

𝐶6 160.3681 122 162.6671 H1 → S69 → S2 → S31 → S67 → S8 → S71 → H1 

𝐶7 279.9132 480 261.5549 
H6 → S70 → S65 → H7 → S73 → S95 → S24 → S20 → S89 → S97 → S19 → S68 → S38 → 

S32 → H6 

𝐶8 321.0920 210 273.4130 S61 → S64 → S79 → S88 → S82 → S28 → S42 → S92 → S60 → S23 → S29 → S87 → S61 
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Table 4.5 continued   

𝐶9 339.3953 1088 85.9135 S26 → H52 → S76 → H59 → S26 

𝐶10 3,258.4543 5650 1,556.7928 

H120 → S91 → H121 → H8 → S50 → S86 → H48 → H5 → S52 → H9 → S16 → S25 → S13 

→ H133 → H131 → S18 → S17 → H126 → H127 → H129 → H128 → H122 → H130 → S5 

→ S40 → H51 → H43 → H46 → H49 → H50 → H47 → H134 → H136 → H45 → H135 → 

S75 → H44 → H25 → H24 → H3 → H22 → H20 → H21 → H58 → H19 → W13 → H23 → 

W11 → H57 → H56 → H125 → H124 → H4 → H55 → H54 → H42 → H137 → H53 → H132 

→ H138 → S83 → H123 → S53 → H29 → H16 → H31 → H13 → H14 → H36 → H35 → H12 

→ H30 → W2 → W1 → W12 → H41 → H39 → H27 → H40 → H11 → H28 → H33 → H38 

→ H17 → H18 → H32 → H34 → H15 → H10 → H2 → H26 → H37 → H120 

𝐶11 1,166.2549 4180 782.2271 

H103 → H118 → H117 → H110 → H112 → H111 → H115 → H109 → H69 → H65 → H63 

→ H114 → H116 → H113 → H67 → H68 → S74 → S54 → H105 → H106 → H107 → H108 

→ H72 → H71 → H66 → H62 → H61 → H64 → H119 → H70 → H60 → H75 → H74 → S45 

→ W14 → H76 → W16 → S55 → H73 → S11 → H103 

𝐶12 434.0510 2386 680.7809 

H77 → H79 → H82 → H81 → H99 → H98 → H97 → H96 → H78 → H80 → H83 → H84 → 

H85 → H87 → H86 → H89 → W23 → H100 → H88 → H101 → H104 → H92 → H91 → H95 

→ H93 → H94 → H102 → H90 → H77 
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4.3.2 Validation Results of Proposed Method against Ordinary TSP-BIP Algorithm 

This section discusses the role of fuzzy in the proposed method for enhancing 

multiple objective functions optimization. The results from the proposed method in Table 

4.5 are compared with those achieved through the ordinary TSP-BIP algorithm. The ordinary 

TSP-BIP algorithm covers three distinct scenarios: optimal in D (minimizing total distance 

and measuring the configuration values of total elevation difference and total average GFD), 

optimal in ED (minimizing total elevation difference and measuring the configuration values 

of total distance and total average GFD), and optimal in AGFD (minimizing total average 

GFD and measuring the configuration values of total distance and total elevation difference). 

Tables 4.6 to 4.8 meticulously outline these ordinary TSP-BIP scenarios, facilitating a 

comprehensive performance evaluation of the proposed method. 

Table 4.6: Optimal in D  

𝑪𝒊 𝒎𝒊𝒏 (∑𝒅) 𝒎𝒊𝒏 (∑∆𝒆) 𝒎𝒊𝒏 (∑𝑮𝑭𝑫̅̅ ̅̅ ̅̅ ) 

𝐶1 289.9556 4,032 392.6813 

𝐶2 192.3793 1,014 490.3684 

𝐶3 142.7217 1,330 200.1546 

𝐶4 197.8871 2,464 164.5501 

𝐶5 118.1112 698 74.5280 

𝐶6 152.4521 122 162.6770 

𝐶7 262.4169 676 264.7188 

𝐶8 269.0974 250 285.6249 

𝐶9 284.8119 1,088 83.6776 

𝐶10 1,194.5187 12,722 1,668.9353 
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Table 4.6 continued  

𝐶11 697.8175 5,952 814.1824 

𝐶12 285.3759 3,932 701.8238 

 

Table 4.7: Optimal in ED  

𝑪𝒊 𝒎𝒊𝒏 (∑𝒅) 𝒎𝒊𝒏 (∑∆𝒆) 𝒎𝒊𝒏 (∑𝑮𝑭𝑫̅̅ ̅̅ ̅̅ ) 

𝐶1 620.3646 1,904 407.5034 

𝐶2 563.8661 538 474.2398 

𝐶3 144.3771 1,286 200.1546 

𝐶4 225.0316 2,426 161.6558 

𝐶5 123.7642 698 74.5565 

𝐶6 152.4521 122 162.6770 

𝐶7 326.7989 426 267.7875 

𝐶8 341.1870 210 279.3413 

𝐶9 339.3953 1,088 85.9135 

𝐶10 7,520.9489 3,140 1,608.4104 

𝐶11 2,363.2775 2,222 811.96021 

𝐶12 873.1632 1,768 681.2969 

 

Table 4.8: Optimal in AGFD 

𝑪𝒊 𝒎𝒊𝒏 (∑𝒅) 𝒎𝒊𝒏 (∑∆𝒆) 𝒎𝒊𝒏 (∑𝑮𝑭𝑫̅̅ ̅̅ ̅̅ ) 

𝐶1 398.3651 4,300 387.5120 

𝐶2 747.9849 1,092 459.0019 
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Table 4.8 continued  

𝐶3 203.2288 2,312 198.2211 

𝐶4 335.3407 3,008 159.1003 

𝐶5 118.1112 698 74.5280 

𝐶6 232.2735 198 162.6075 

𝐶7 333.8459 818 257.8640 

𝐶8 661.3168 238 262.9734 

𝐶9 284.8119 1,088 83.6776 

𝐶10 6,890.9860 20,156 1,457.6814 

𝐶11 2,363.2775 2,222 811.96021 

𝐶12 873.1632 1,768 681.2969 

 

Tables 4.6 to 4.8 reveal that clusters with optimal values in 𝑑 tend to exhibit lower 

values in 𝑚𝑖𝑛 (∑𝑑), while clusters optimal in parameter ∆𝑒 tend to show lower values in 

𝑚𝑖𝑛 (∑∆𝑒) , and clusters optimal in parameter 𝐺𝐹𝐷̅̅ ̅̅ ̅̅  demonstrate lower values in 

𝑚𝑖𝑛 (∑𝐺𝐹𝐷̅̅ ̅̅ ̅̅ ). This reveals the limitation of the ordinary TSP-BIP, which can only address 

a singular objective function, implying that it optimizes only one parameter at a time. 

Graphical representations in Figures 4.15 (a) to (c) facilitate a clearer comparison between 

the fuzzy TSP-BIP algorithm and the ordinary TSP-BIP algorithm. The results produced by 

the fuzzy TSP-BIP algorithm for 𝑚𝑖𝑛 (∑𝑑), 𝑚𝑖𝑛 (∑∆𝑒) and 𝑚𝑖𝑛 (∑𝐺𝐹𝐷̅̅ ̅̅ ̅̅ ) are collectively 

termed as “fuzzy optimal”. Clusters 10 and 11 exhibit significant parameter deviations due 

to their substantial number of green energy locations. Optimizing a single parameter within 

these clusters may lead to a drastic increase in the other two parameters. In contrast, the 
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fuzzy optimal consistently maintains low values across all three parameters: distance, 

elevation difference, and average GFD. 

 

(a) Total Distance 

 

(b) Total Elevation Difference 

 

(c) Total Average Ground Flash Density 

Figure 4.15 (a) to (c): Fuzzy Optimal against Optimal in D, ED and AGFD  

MCDM methods are employed to determine the best sets among fuzzy optimal, 

optimal in D, ED, and AGFD through ranking. Two MCDM methods named TOPSIS and 

COPRAS (Irik Mukhametzyanov, 2024), are utilized to rank the sets from best (1) to worst 

(4) across all 12 clusters. Decision matrices are derived from Table 4.5 (Fuzzy Optimal) and 

Tables 4.6 to 4.8 (Optimal in D, ED, and AGFD). In this comparative analysis, clusters 1 to 

12 serve as alternatives, and the three criteria are 𝑚𝑖𝑛 (∑𝑑) , 𝑚𝑖𝑛 (∑∆𝑒)  and 
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𝑚𝑖𝑛 (∑𝐺𝐹𝐷̅̅ ̅̅ ̅̅ ) , each assigned equal weights of 
1

3
 to avoid bias. All three criteria are 

considered cost criteria, as lower values are preferred. The computations are performed using 

MATLAB workspace. Figures 4.16 and 4.17 present the score values for each set in the 

decision matrix using TOPSIS and COPRAS, respectively, while Table 4.9 outlines the 

resulting ranking from these comparisons. 

 

Figure 4.16: Generated Score in TOPSIS 

 

Figure 4.17: Generated Score in COPRAS 
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Table 4.9: Results Comparison of Fuzzy TSP-BIP against Ordinary TSP-BIP 

𝑪𝒊 Optimization 

Rank 

TOPSIS COPRAS 

𝐶1 
TSP-BIP 

Optimal in D 2 2 

Optimal in ED 4 4 

Optimal in AGFD 3 3 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶2 
TSP-BIP 

Optimal in D 3 3 

Optimal in ED 2 2 

Optimal in AGFD 4 4 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶3 
TSP-BIP 

Optimal in D 3 3 

Optimal in ED 2 2 

Optimal in AGFD 4 4 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶4 
TSP-BIP 

Optimal in D 3 3 

Optimal in ED 2 2 

Optimal in AGFD 4 4 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶5 
TSP-BIP 

Optimal in D 1 1 

Optimal in ED 1 1 

Optimal in AGFD 1 1 

Fuzzy TSP-BIP Fuzzy optimal 1 1 
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Table 4.9 continued   

𝐶6 
TSP-BIP 

Optimal in D 2 2 

Optimal in ED 2 2 

Optimal in AGFD 4 4 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶7 
TSP-BIP 

Optimal in D 2 2 

Optimal in ED 3 3 

Optimal in AGFD 4 4 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶8 
TSP-BIP 

Optimal in D 4 4 

Optimal in ED 2 2 

Optimal in AGFD 3 3 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶9 
TSP-BIP 

Optimal in D 1 1 

Optimal in ED 1 1 

Optimal in AGFD 1 1 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶10 
TSP-BIP 

Optimal in D 2 2 

Optimal in ED 3 3 

Optimal in AGFD 4 4 

Fuzzy TSP-BIP Fuzzy optimal 1 1 
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Table 4.9 continued   

𝐶11 
TSP-BIP 

Optimal in D 2 2 

Optimal in ED 4 4 

Optimal in AGFD 3 3 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

𝐶12 
TSP-BIP 

Optimal in D 2 2 

Optimal in ED 3 3 

Optimal in AGFD 4 4 

Fuzzy TSP-BIP Fuzzy optimal 1 1 

 

Notably, the fuzzy TSP-BIP consistently outperforms the ordinary TSP-BIP (optimal 

in D, ED, and AGFD) across all clusters, as evidenced by the higher scores or rankings 

depicted in Figures 4.16 to 4.17 and Table 4.9. Employing both TOPSIS and COPRAS for 

results validation consistently places the cluster utilizing the fuzzy TSP-BIP algorithm at the 

top of the score or ranking. This indicates that integrating fuzzy logic operations into the 

TSP-BIP solver enhances its effectiveness in improving result performance. By efficiently 

integrating GEs, fuzzy TSP-BIP enhances the TSP-BIP algorithm’s capability to optimize 

electrical power lines design routing while considering multi-objective functions of 

𝑚𝑖𝑛 (∑𝑑), 𝑚𝑖𝑛 (∑∆𝑒) and 𝑚𝑖𝑛 (∑𝐺𝐹𝐷̅̅ ̅̅ ̅̅ ). An intriguing observation from Table 4.9 is that 

clusters 𝐶5 and 𝐶9 share the same rank for each optimization. This is primarily due to the 

low number of GEs in these clusters (4 for each), resulting in a smaller number of possible 

routes. Consequently, the optimization of singular objective functions increases the 

likelihood of reaching the global optimum, strengthening the reliability of the results. Both 

TOPSIS and COPRAS produce identical rankings for each cluster due to this simplified 
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optimization landscape. Thus, the superiority of the fuzzy TSP-BIP algorithm over the 

ordinary TSP-BIP algorithm has been demonstrated. 

4.3.3 Validation Results of Proposed Method against Fuzzy TSP Algorithms 

The fuzzy matrix, 𝑓𝑚 is generated using the method in Figure C-4 (Appendix). This 

fuzzy matrix serves as input data for each fuzzy TSP algorithm, aiming to achieve minimal 

fuzzy values, indicating the lowest 𝑚𝑖𝑛 (∑𝑑) , 𝑚𝑖𝑛 (∑∆𝑒)  and 𝑚𝑖𝑛 (∑𝐺𝐹𝐷̅̅ ̅̅ ̅̅ )  for each 

cluster. Therefore, the optimal fuzzy TSP-BIP algorithm is expected to produce the lowest 

fuzzy values. The obtained fuzzy values for all 12 clusters are presented in Figure 4.18. 

Figures 4.18 (a) to (l) reveal a consistent trend, wherein the fuzzy TSP-BIP algorithms 

consistently outperform other TSP-BIP algorithms in generating the lowest fuzzy values. 

The clusters such as 𝐶3, 𝐶5, 𝐶6, 𝐶9, where all algorithms manage to generate the lowest fuzzy 

values. This occurrence can be attributed to the rapid convergence of TSP algorithms when 

dealing with a small number of green energy locations, thereby avoiding being trapped in 

local optima. However, in cases involving higher counts of green energy locations, 

particularly in 𝐶10  with 92 green energy locations, only the fuzzy TSP-BIP algorithm 

achieves the minimum fuzzy value of 21.8918. These findings consistently highlight the 

superiority of the fuzzy TSP-BIP algorithm in producing the lowest fuzzy values across all 

12 clusters. 

 

(a) 𝐶1 

 

(b) 𝐶2 
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(c) 𝐶3 

 

(d) 𝐶4 

 

(e) 𝐶5 

 

(f) 𝐶6 

 

(g) 𝐶7 

 

(h) 𝐶8 

 

(i) 𝐶9 

 

 

(j) 𝐶10 
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(k) 𝐶11 

 

(l) 𝐶12 

Figure 4.18 (a) to (l): Fuzzy Values in Fuzzy TSP Algorithms  

Figures 4.19 (a) to (c) depict the 𝑚𝑖𝑛 (∑𝑑), 𝑚𝑖𝑛 (∑∆𝑒) and 𝑚𝑖𝑛 (∑𝐺𝐹𝐷̅̅ ̅̅ ̅̅ ) for each 

cluster across all fuzzy TSP algorithms. The fuzzy TSP-GA algorithm yields subpar results, 

particularly noticeable in cluster 10. Despite employing a population size of 5,000 and 

running for 5,000 generations, the algorithm experiences significant convergence slowdown 

due to the higher number of green energy locations (92 locations). Although GA is 

recognized for its slower convergence, it is valued for its infrequent entrapment in local 

optima. Moreover, both ACO and GWO exhibit elevated values for total distance and total 

elevation difference. While ACO excels in addressing smaller-scale TSP problems, its 

performance sharply declines when confronted with the integration of large-scale green 

energy locations. On the other hand, GWO, known for its ease of implementation, suffers 

from slow convergence, reduced accuracy, and a heightened risk of falling into local optima. 

In contrast, the fuzzy TSP-BIP consistently demonstrates promising results in the design of 

electrical power lines routing for integrating green energy locations. 
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(a) 𝑚𝑖𝑛 (∑𝑑) of Fuzzy TSP Algorithms 

 

(b) 𝑚𝑖𝑛 (∑∆𝑒) of Fuzzy TSP Algorithms 

 

(c) 𝑚𝑖𝑛 (∑𝐺𝐹𝐷̅̅ ̅̅ ̅̅ ) of Fuzzy TSP Algorithms 

Figure 4.19 (a) to (c): Parameter Values in Fuzzy TSP Algorithms  

Figures 4.20 (a) to (l) present the computational time for each fuzzy TSP algorithm 

across all clusters. The computational time is measured using the 𝑡𝑖𝑐 − 𝑡𝑜𝑐  function in 

MATLAB. The analyses provide comprehensive insights into the computational times for 

eight fuzzy TSP optimization algorithms applied to the 12 clusters. Remarkably, fuzzy TSP-

BIP and fuzzy TSP-NN emerge as top performers, consistently demonstrating impressively 

low computational times across diverse clusters. In contrast, fuzzy TSP-ACO exhibits 

moderate to high computational times, reaching 42.52 𝑠 for cluster 𝐶2, suggesting a potential 

trade-off between computational efficiency and solution quality. Fuzzy TSP-GA and fuzzy 

TSP-GWO show higher computational times, such as 127.61 𝑠 and 478.02 𝑠 for cluster 𝐶1, 

indicating a need for further exploration into the tuning of their parameters and adaptability 
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to specific problem domains. Fuzzy TSP-NN and fuzzy TSP-SA display mixed performance, 

with computational times varying across clusters. Fuzzy TSO-TLBO and fuzzy TSP-TS 

reveal relatively high computational times, suggesting challenges in achieving convergence. 

Notably, fuzzy TSP-TLBO and fuzzy TS, particularly in cluster 𝐶10, exhibit significantly 

higher computational times of 3,903.55 𝑠 and 1,863.79 𝑠, emphasizing the sensitivity of 

these algorithms to certain problem instances. This meticulous examination, supported by 

computational times, provides detailed insights into the performance of fuzzy TSP 

algorithms. These findings offer valuable guidance for researchers and practitioners aiming 

to select the most suitable fuzzy optimization approach based on the intricacies of specific 

problem scenarios. Overall, fuzzy TSP-BIP proves to be the most prominent algorithm for 

integrating green energy locations in Sarawak, focusing on optimizing electrical power lines 

routing design. It offers the lowest fuzzy values, high efficiency, and remarkably low 

computational times compared to other fuzzy TSP algorithms. 

 

(a) 𝐶1 

 

(b) 𝐶2 

 

(c) 𝐶3 

 

(d) 𝐶4 
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(e) 𝐶5 

 

(f) 𝐶6 

 

(g) 𝐶7 

 

(h) 𝐶8 

 

(i) 𝐶9 

 

(j) 𝐶10 

 

(k) 𝐶11 

 

(l) 𝐶12 

Figure 4.20 (a) to (l): Computational Time of Fuzzy TSP Algorithms  
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4.4 Results of Real-Time Monitoring, Control and Automation for IGESs 

This section is structured into four distinct subsections. Firstly, it demonstrates the 

real-time dynamic data transfer from the historical cloud to the real-time cloud via the 

MATLAB workspace. Following this, critical parameter results concerning green energy 

generation, energy storage, AC, and DC loads are presented. These findings are showcased 

through interfaces such as MATLAB Simulink, server systems, and SCADA monitoring 

dashboards. In the third subsection, outputs from both manual control and automation 

strategies are highlighted. These strategies have been implemented and executed across 

various platforms including MATLAB, server systems, and SCADA. Lastly, the fourth 

section unveils outcomes resulting from the integration of SCADA with experimental 

prototyping for validation purposes. 

4.4.1 Real-Time Dynamic Data Generation 

Figure 4.21 illustrates the successful retrieval of load demand, solar radiation, and 

temperature data from a historical cloud based on the current time. These historical data are 

then transmitted to a real-time cloud for integration into the model. Within the MATLAB 

workspace, individual fields (Field 1, Field 2, and Field 3) receive data (load demand, solar 

radiation, and temperature) from the historical cloud. The data retrieval process operates 

based on the closest past timestamp within a 10-minute interval. Subsequently, the data 

received in the MATLAB workspace are transmitted to the real-time cloud. During the 

streaming of load demand data, it undergoes adjustment using Equation 3.49 within the 

MATLAB workspace before being sent to the real-time cloud. This adjustment is necessary 

because the loads are constrained between 1 𝑀𝑊  and 2 𝑀𝑊 , as outlined in the 

methodology. The proposed method for the real-time cloud to retrieve dynamic data from 



165 

the historical cloud based on the current time is valuable as it enables real-time dynamic data 

to be fed into the testing model or system for performance evaluations and validation. 

 

Figure 4.21: Results of Real-Time Dynamic Data 

4.4.2 Real-Time Dynamic Monitoring Results 

The power parameters data from the IGESs are streamed to SCADA for monitoring 

purposes. This subsection focuses on validating the successful streaming results from 

MATLAB Simulink to real-time SCADA via the server. The monitoring data across 

MATLAB Simulink, the server, and the SCADA dashboard are compared and validated. It 

is imperative to note that the actual simulation runtime extends to approximately 20 minutes, 

despite the simulation time being set at 5 𝑠. This prolonged duration is a result of developing 

a heavily integrated green energy system model. The results data for load demand, solar 

radiation, and temperature from the IGESs in MATLAB Simulink are illustrated in Figures 

4.22 (a) to (c) prior to their transmission to SCADA through a server. While the load demand 

Historical Cloud MATLAB Workspace Real-Time Cloud 
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data are updated every 10 minutes, noticeable variations over time are observed. In contrast, 

solar radiation and temperature data remain constant throughout the simulation, as they are 

updated every 30 minutes. 

 

(a) Load Demand 

 

(b) Solar Radiation 

 

(c) Temperature 

Figure 4.22 (a) to (c): Monitoring Data on Load Demand, Solar Radiation and 

Temperature 

Moreover, the monitoring data for power parameters, including voltage, current, and 

active power, pertaining to solar generation, energy storage, DC load 1, and DC load 2, are 

depicted in Figures 4.23 (a) to (l). All measurements commence from zero, aligning with the 

initiation of the simulation. Upon system activation, the load demands of both DC loads 

(approximately 1.7 𝑀𝑊 each) prompt an inrush current occurrence shortly after 0 𝑠. This 

inrush current can peak twice or even ten times the normal rated current. The abrupt 

switching of heavy loads induces voltage fluctuations due to the substantial current drawn 

into the system. To mitigate this, the inrush current can be curtailed by implementing 

components such as Negative Temperature Coefficient (NTC) thermistors, which reduce 

resistance as temperature rises. Typically, the very high inrush current is cleared 

approximately after 0.1 𝑠. Following this, the readings for these power parameters gradually 

stabilize over 1 𝑠. Concurrently, these data are streamed to the SCADA via the server. The 

voltage for solar generation is set at 5 𝑘𝑉, while the energy storage voltage remains at 400 

𝑉. Additionally, the voltages for DC load 1 and DC load 2 are maintained at 15 𝑘𝑉. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 

Figure 4.23 (a) to (l): Monitoring Data on Solar Generation, Energy Storage, DC Load 1 

and DC Load 2 
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Figures 24 (a) to (x) illustrate the monitoring data of wind generation, hydro 

generation, AC load 1, and AC load 2, considering six monitoring parameters (voltage, 

current, frequency, active power, reactive power, and power factor) from AC generations 

and AC loads. In the case of AC generators, which function as inductive motors converting 

rotational energy to electrical energy, a load with an inductive power of 250 𝑘𝑉𝑎𝑟  is 

connected to each generator. These generators draw reactive power from the inductive load 

to magnetize the winding for excitation. Once the rotor spins with sufficient magnetic field 

strength, high rotational speed, and magnetism, it generates electrical power for the AC 

loads. Therefore, the negative values of the reactive powers shown in Figures 24 (e) and (k) 

indicate that the generators draw reactive power from the loads. The generators continuously 

supply the reactive power to maximize the magnetism to their respective windings. 

Furthermore, wind generator, hydro generator, AC load 1, and AC load 2 experience the 

same issue of inrush current at the initial period. The hydro generator stabilizes after 1 𝑠 as 

it deals with two heavy AC loads (approximately 1.7 𝑀𝑊 each). The current magnitude of 

the wind generator exhibits an interesting pattern. Please note that the base wind speed set 

in the model is 9 𝑚𝑠−1, and the nominal power is 10 𝑘𝑊. A skewed limiter block is added 

to the wind generator sub-model at 0 𝑠; the wind speed is 7 𝑚𝑠−1, and at 2 𝑠, the wind speed 

slowly starts to increase from 7 𝑚𝑠−1to 9 𝑚𝑠−1. Therefore, after 1 𝑠, the current of the wind 

generator gradually increases and saturates when it reaches approximately 10 𝑘𝑊 . The 

purpose of modeling the wind generator increasing power at a slow rate is to avoid rapid 

acceleration from low to high speed, which may damage the structure, especially the blade, 

due to sudden high stress. Hence, wind modeling depicts a more realistic behavior of wind 

turbine operation. Additionally, the frequency indicated on the y-axis labeling of the wind 

generation shows multiple occurrences of 50 𝐻𝑧 in Figures 24 (c) and (i), indicating that the 
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frequency fluctuation is extremely low. Both AC loads are in steady state after 

approximately 0.1 𝑠. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 
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(m) 

 

(n) 

 

(o) 

 

(p) 

 

(q) 

 

(r) 

 

(s) 

 

(t) 

 

(u) 

 

(v) 

 

(w) 

 

(x) 

Figure 4.24 (a) to (x): Monitoring Data on Wind Generation, Hydro Generation, AC Load 

1 and AC Load 2 
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The OPC quick client server displays the monitoring data for green energy 

generation, energy storage, AC loads, and DC loads, as showcased in Figures 4.25 (a) and 

(b). Each tag corresponds to a specific parameter, as outlined in Figure 3.27. The data type 

employed is double, representing the actual monitoring values. Timestamps indicate when 

data is streamed through the server, while the “good” quality signifies that the data retrieval 

process was successful. The update count denotes the number of data changes during the 

streaming process, affirming the successful transmission of readings from MATLAB 

Simulink to the server. 

 

(a) Monitoring Data at 2.5 𝑠 

 

(b) Monitoring Data at 5.0 𝑠 

Figure 4.25 (a) to (b): Monitoring Data in Server 

The SCADA energy management system dashboard effectively presents all the 

necessary real-time dynamic readings from the integrated green energy systems model. 

These readings have been successfully streamed from MATLAB Simulink to the SCADA 

dashboard through the server. The behavior of the power parameters has been thoroughly 
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discussed in the monitoring results section of MATLAB Simulink. Upon observation, it is 

evident that all the manual control switches are green, indicating that all green energy 

generations, energy storage, AC loads, and DC loads are connected. Since no faults are 

applied to the systems, the automation is not triggered; hence, all light indicators are red for 

the automation part. A slight delay was observed, especially when data was streamed from 

MATLAB to the server. This delay primarily arises from the numerous communication 

channels built in MATLAB Simulink. However, the data streamed from the server to the 

SCADA experiences negligible delays. Figure 4.26 displays the monitoring data in the 

SCADA dashboard at 2.5 𝑠, while Figure 4.27 illustrates the monitoring data in the SCADA 

dashboard at 5.0 𝑠. 

 

Figure 4.26: Monitoring Data at 2.5 𝑠 in SCADA 
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Figure 4.27: Monitoring Data at 5.0 𝑠 in SCADA 

4.4.3 Real-Time Dynamic Control and Automation Results 

The findings in this section affirm the effective implementation of manual control 

and automation for IGESs using the IIoT communication framework between MATLAB 

Simulink, the server, and SCADA. In practical industrial scenarios, such manual control 

facilitated by an IIoT-based SCADA platform can play a crucial role in tasks such as power 

lines maintenance. For the simulation, AC load 1 and DC load 1 are specifically considered, 

with manual control executed through SCADA, as evidenced in Figures 4.28 and 4.29, 

respectively. Figure 4.28 illustrates the initial state of the simulation, with AC load 1 

connected to the IGESs model. At simulation time, 𝑡𝑠 = 1 𝑠, the first switching of AC load 

1 occurs, signified by the change in the signal tag, TG logical state, from 1 to 0, effectively 

isolating AC load 1 from the model. Subsequently, a second switching operation is 

conducted to reconnect AC load 1 to the systems model. Observing the graph of AC load 1, 

a steady-state current is evident from 0 𝑠 to 1 𝑠. Following this, the current drops to zero and 
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remains for 1 𝑠 as the circuit breaker is opened. Reconnection of AC load 1 to the model is 

initiated at 𝑡𝑠 = 2 𝑠. However, transient current fluctuations occur due to the inductive motor, 

characterized by a temporary spike in current drawn to magnetize its winding for load 

operation and model synchronization. The current stabilizes back to normal around 𝑡𝑠 = 3 𝑠. 

Overall, these scenarios indicate successful manual control of AC load 1 from SCADA to 

the MATLAB Simulink model via the server. 

 

Figure 4.28: Manual Control of AC Load 1 

Figure 4.29 depicts the manual control operation for DC load 1, showcasing a similar 

procedure to that of AC load 1. At 𝑡𝑠  = 1 𝑠 , the first switching occurs, marked by the 

transition of the signal tag, TE, from 1 to 0, indicating the isolation of DC load 1 from the 

model. The second switching takes place at 𝑡𝑠 = 2 𝑠. Examining the graph representing DC 

load 1, at 𝑡𝑠 = 1 𝑠, the current is recorded as zero as the circuit breaker is opened. Following 

the manual closure of the circuit breaker at 2 𝑠, the current swiftly returns to a steady state 

Server 

Second switching, 𝑡𝑠 = 2 𝑠 First switching, 𝑡𝑠 = 1 𝑠 Simulation starts, 𝑡𝑠 = 0 𝑠 

SCADA 
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with minimal spike current. This absence of inductive and capacitive elements in DC load 1 

prevents synchronization issues. 

 

Figure 4.29: Manual Control of DC Load 1 

AC fault 1 and DC fault 1 are integrated into the model, facilitated by window scripts 

employing Equations 3.57 to 3.60 for fault-clearing automation. It is essential to note that 

green light indicators signify the activation of breakers or switches to clear faults, while red 

light indicators signal that the breakers or switches remain closed. AC fault 1 occurs between 

the hydro generator and transformer 1 (refer Figure 3.20). The fault current is measured from 

the busbar between the circuit breaker and three-phase faults, as depicted in Figure D-4 (e) 

(Appendix). This fault persists for 0.2 𝑠, spanning from 1.0 𝑠 to 1.2 𝑠 of simulation time. In 

Figure 4.30, the fault initiates at 𝑡𝑠 = 1 𝑠, causing the fault current to surge to over 30 𝑘𝐴. 

The signal tag transitions from 1 to 0, indicating the successful and automatic triggering of 

the breaker, clearing the fault at 𝑡𝑠 ≈ 1.03. A 1-second delay is implemented for the circuit 

breaker to reclose, ensuring the fault terminates before automatic closure. 

Server 

Second switching, 𝑡𝑠 = 2 𝑠 First switching, 𝑡𝑠 = 1 𝑠 Simulation starts, 𝑡𝑠 = 0 𝑠 

SCADA 
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Figure 4.30: Automation Process for Clearing AC Fault 1 

Figure 4.30 illustrates the initiation of DC fault 1 through a DC short circuit, with 

the fault current measurement extracted from the “Goto Block” of IDCLoad1, as indicated 

in Figure D-4 (a) (Appendix). This setup ensures that the current measurement originates 

specifically from DC load 1. The DC switch is programmed to trigger automatically if the 

current surpasses or equals 200 𝐴, as specified by the window scripts. The duration of DC 

fault 1 is consistent at 0.2 𝑠, spanning from 1 𝑠 to 1.2 𝑠 of the simulation timeline. The 

automated operation is confirmed as the switch automatically activates at around 1 𝑠, as 

indicated by the transition of the TK signal from 1 to 0. Subsequently, the clearance of DC 

fault 1 swiftly occurs within an extremely short interval around 𝑡𝑠 ≈ 1.0002 𝑠, as depicted 

in the results graph presented in Figure 4.31. 

Server 

Auto-reclosed, 𝑡𝑠 ≈ 2.03 𝑠  Fault cleared, 𝑡𝑠 ≈ 1.03 𝑠 Simulation starts, 𝑡𝑠 = 0 𝑠 

SCADA 
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Figure 4.31: Automation Process for Clearing DC Fault 1 

4.4.4 Validation Results of Hardware Prototype 

A hardware prototype has been developed to facilitate practical communication data 

transfer between the SCADA system and the simulation model. This prototype is designed 

to interface seamlessly with the SCADA system via a server and MATLAB Simulink, 

enabling real-time monitoring, control, and automation of the actual load. For this purpose, 

a table fan serves as the AC load, while a DC bulb is employed as the DC load. The 

operational setup of the hardware prototype is depicted in Figure 4.32. 

 

Server 

Auto-reclosed, 𝑡𝑠 ≈ 2.0002 𝑠 

 
Fault cleared, 𝑡𝑠 ≈ 1.0002 𝑠 Simulation starts, 𝑡𝑠 = 0 𝑠 

SCADA   
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Figure 4.32: Hardware Prototype for Testing and Validation 

The hardware prototype effectively demonstrates monitoring results in the SCADA 

system, validated against monitoring data in MATLAB Simulink and the server. Figures 

4.33 (a) to (j) exhibit fluctuations in data, reflecting real-time behavior across various power 

parameters. These monitoring data are streamed from the ThingSpeak cloud, while 

MATLAB ran simulations for 3 𝑠 for validation. Additionally, Figure 4.34 displays real-

time monitoring data in the server, while Figures 4.35 and 4.36 present real-time monitoring 

data in the SCADA system. 
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(a) 

 

(b) 

(c) (d) 

(e) (f) 
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(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 4.33 (a) to (j): Real-time Monitoring Data on Actual Loads  

 

(a) Monitoring Data at 1.5 𝑠 

 

(b) Monitoring Data at 3.0 𝑠 

Figure 4.34 (a) to (b): Monitoring Data on Actual Loads in Server 
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Figure 4.35: Monitoring Data on Actual Loads at 1.5 𝑠 in SCADA  

 

Figure 4.36: Monitoring Data on Actual Loads at 3.0 𝑠 in SCADA  
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The maintenance mode is initially engaged to facilitate the switching of the AC load 

and DC load, validating the real-time manual control functionalities with the hardware 

prototype. The first switch is executed at approximately 0.5 𝑠 (for DC load) and 0.6 𝑠 (for 

AC load). During this instance, the logical state transitions to 0, signifying the disconnection 

of the loads. Subsequently, the second switch occurs around 0.9 𝑠 (for AC load) and 1.0 𝑠 

(for DC load), with the logical state reverting to 1, indicating the reconnection of the loads. 

The hardware prototype is successfully controlled through manual operation using the 

SCADA system, as depicted in Figures 4.37 and 4.38. 

 

Figure 4.37: Manual Control of Actual AC Load  

 

 

 

 

 

Server 

Second switching, 𝑡𝑠 ≈ 0.9 𝑠 First switching, 𝑡𝑠 ≈ 0.6 𝑠 Simulation starts, 𝑡𝑠 = 0 𝑠 

SCADA   
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Figure 4.38: Manual Control of Actual DC Load  

Fault scenarios for both the AC load and DC load are simulated by adjusting the 

threshold currents in the conditional script (refer Figure 3.32) to validate the effectiveness 

of SCADA automation strategies. Given that the steady-state current for the AC load is 

approximately 0.17 𝐴, the AC threshold current is set to 0.1 𝐴, below the steady-state level. 

Similarly, for the DC load with a steady-state current of about 1.2 𝐴, the DC threshold 

current is set to 1 𝐴, also below the steady-state level. These conditions are established to 

trigger automation operations when the automation mode is activated. At simulation time 

𝑡𝑠 = 0 𝑠, both AC and DC loads are in maintenance mode, resulting in zero current as the 

loads are disconnected. At 𝑡𝑠 ≈ 0.5 𝑠, the maintenance mode is toggled to automation mode, 

activating all switches for both AC and DC loads. Due to the threshold currents being lower 

than their respective steady-state currents, the automation strategies are executed, 

automatically clearing the AC fault around 0.8 𝑠  and the DC fault around 0.6 𝑠 . These 

scenarios demonstrate the successful implementation of automation for fault clearing for 

Server 

Second switching, 𝑡𝑠 ≈ 1.0 𝑠  First switching, 𝑡𝑠 ≈ 0.5 𝑠 Simulation starts, 𝑡𝑠 = 0 𝑠 

SCADA   
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both AC and DC loads, as depicted in Figures 4.39 and 4.40. The relays reconnect the AC 

and DC loads only after a 1-second delay, as delay blocks are integrated, as shown in Figure 

D-5 (Appendix). 

 

Figure 4.39: Automation Process for Clearing AC Fault 

 

Figure 4.40: Automation Process for Clearing DC Fault 

 

 

 

Server 

Fault cleared, 𝑡𝑠 ≈ 0.8 𝑠 Simulation starts, 𝑡𝑠 = 0 𝑠 

SCADA 
 

   

 

Server 

Fault cleared, 𝑡𝑠 ≈ 0.6 𝑠 Simulation starts, 𝑡𝑠 = 0 𝑠 

SCADA 
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4.5 Chapter Summary 

This chapter systematically demonstrates all the results from the proposed works. All 

the green energy locations in Sarawak have been thoroughly examined to produce 100 SES, 

23 WES, and 138 HES. The top 100 optimal SES have been validated using the weighted 

sum method. Additionally, optimal electrical power lines routing has been designed for all 

identified green energy locations for integration purposes. The routing for each cluster has 

been validated and compared with state-of-the-art algorithms to achieve the minimum total 

distance, minimum elevation difference, and minimum total average ground flash density. 

In the last section, the results reveal the successful implementation of real-time dynamic 

monitoring, control, and automation using SCADA systems with MATLAB Simulink 

through a server. A hardware prototype has been employed to validate the possibility of 

interfacing it with the SCADA system for real-time dynamic monitoring, control, and 

automation in a real-world scenario. 
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CHAPTER 5  
 

 

CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction 

This chapter presents the overall conclusions drawn from this research, highlighting 

the key contributions and advancements made in identifying green energy, power line 

routing, and real-time system integration. The research introduced a novel GIS-based fuzzy 

TOPSIS and filtration algorithm to identify the suitable green energy locations. Additionally, 

an advanced GIS-driven fuzzy TSP-BIP algorithm was developed to optimize the integration 

of these sites into the power grid, ensuring efficient power line routing. Beyond site selection 

and infrastructure planning, an innovative IIoT-based system was designed for real-time 

monitoring, control, and automation of the IGESs model. A hardware prototype was 

implemented and integrated with SCADA to validate the practical applicability of the 

proposed system. The following sections summarize the research findings, discuss their 

contributions, and outline limitations and recommendations. 

5.2 Research Summary and Findings  

This research successfully identified optimal renewable energy sites using a 

proposed GIS-based fuzzy TOPSIS and filtration algorithm. The methodology initially 

processed a dataset of 19,237 potential sites, refining it to 17,227 locations based on spatial 

criteria. Further analysis determined 23 optimal WES with wind speeds above 3 𝑚𝑠−1 and 

filtered 155 HES down to 138 optimal locations. For SES, the fuzzy TOPSIS algorithm 

evaluated multiple constraints, including climatic, technical, accessibility, environmental, 

and social factors to identify 1,862 potential sites. A second filtration phase ranked the top 
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100 SES locations based on their closeness coefficient, with validation against a weighted 

sum solar suitability map confirming a strong correlation (69.01 %) with high-priority solar 

zones. 

To facilitate the integration of these green energy locations, a GIS-driven fuzzy TSP-

BIP algorithm was developed to optimize power line routing in Sarawak. This approach 

incorporated GIS spatial tools with the proposed fuzzy TSP- BIP algorithm to minimize the 

distance, elevation differences, and ground flash density. Comparative analyses 

demonstrated that the proposed method consistently outperformed conventional TSP-BIP 

approaches across all clusters. Additionally, the validation of the proposed method against 

seven unique fuzzy TSP algorithms demonstrated its superior performance. The proposed 

approach consistently recorded the lowest fuzzy values and achieved significantly reduced 

computational time, confirming its robustness in optimizing power line routing.  

Beyond site selection and power line optimization, this research developed an IIoT-

based system for real-time monitoring, control, and automation of the IGESs model. This 

innovative approach retrieves historical data from the grid system operator and Solcast, 

reuploads it to the ThingSpeak cloud for real-time streaming, and establishes a 

communication link between MATLAB Simulink and SCADA via a dedicated server for 

seamless data exchange. A hardware prototype incorporating a Raspberry Pi 4 and other IIoT 

components was successfully implemented to validate SCADA functionality. Experimental 

results demonstrated effective real-time monitoring, manual control of both AC and DC 

loads, and automated fault clearance using SCADA scripting. These findings confirm the 

practicality and effectiveness of the proposed IIoT-SCADA integration in advancing 

intelligent green energy system operations. 
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5.3 Contributions 

The proposed novel GIS-based fuzzy TOPSIS and filtration algorithms lies in their 

ability to thoroughly screen potential green energy locations within a region. These filtration 

algorithms enhance the capability to identify a large scale of potential green energy 

locations. Additionally, this research provides readily executable code for the 

comprehensive proposed algorithm, making it adaptable for use in other case studies to 

identify potential green energy locations on an extensive scale. Furthermore, the research 

contributes to the reliable selection, along with coordinates, of the top 100 optimal SES, 23 

WES, and 138 HES throughout the Sarawak region (refer Table B-1) (Appendix). The 

research makes a significant contribution to the field of green energy locations integration 

by introducing an innovative approach that incorporates the impact of lightning using the 

GFD parameter. This unique integration of fuzzy logic and GIS tools into the TSP-BIP 

algorithm has been validated, providing comprehensive algorithms and coding for 

researchers and investors interested in further exploration of green energy locations 

integration. Through meticulous evaluation and statistical analysis, the research endeavors 

not only to demonstrate the comparative merits of fuzzy TSP-BIP over ordinary TSP-BIP 

but also its supremacy among a spectrum of state-of-the-art fuzzy optimization algorithms. 

This rigorous validation serves as a foundation for asserting that the fuzzy TSP-BIP method 

stands out as the ultimate solution, offering unparalleled performance and robustness in 

addressing complex multi-objective optimization challenges. Beyond technical 

advancements, the proposed method aims to boost the region’s economy and contribute to 

Sarawak’s transition toward a more environmentally conscious future. It establishes optimal 

power lines routing networks for efficient and resilient GERs utilization. In addition to the 

aforementioned contributions, the research also significantly contributes to the development 



189 

of an IIoT-based system for monitoring, control, and automation for IGESs modeling. The 

modeling of real-time dynamic data provides researchers with valuable insights into the 

impact of dynamic behavior of input data on their respective models. The integration of a 

ring topology into the green energy systems model, coupled with dynamic interfacing, 

encourages more researchers to forecast potential power system issues, enabling proactive 

planning and management. Furthermore, the successful communication between a) 

MATLAB Simulink and the SCADA system (simulation model) and b) Hardware 

prototyping and the SCADA system (hardware simulation) provides valuable assets for 

researchers to facilitate more effective monitoring and management control. This preparation 

is crucial for fully utilizing GERs in the upcoming years. 

5.4 Limitations and Recommendations 

The proposed novel GIS-based fuzzy TOPSIS and filtration algorithms model come 

with certain limitations and negative effects. Firstly, the preparatory steps are time-

consuming, requiring researchers to identify reliable sampling alternatives and utilize 

structured data in the form of polygon layers and influential criteria in raster maps. 

Additionally, implementing the model necessitates complex and trustworthy GIS databases 

for SES identification. Moreover, factors such as input criteria constraints, linguistic fuzzy 

sets, and fuzzy weights could minimally impact the results, as the MCDM parameters are 

derived from experts, potentially introducing bias. Furthermore, concerning results 

validation, the precision of the solar suitability map may be affected by the absence of a 

filtration function in the weighted sum tool and its inability to accommodate fuzzy values. 

As recommendations, this research could integrate additional criteria raster layers, such as 

land controversy, lightning risk, and Gross Domestic Product (GDP), to enhance the 

reliability of the proposed model for green energy locations identification. To improve the 
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validation of results, obtaining experimental or actual data from specific locations could be 

beneficial. Additionally, exploring the integration of fuzzy logic into other MCDM 

techniques, such as AHP, PROMETHEE, VIKOR, ANP, and ELECTRE, could offer crucial 

insights through parameter analyses, robustness testing, and sensitivity analysis. Moreover, 

conducting in-depth measurements and empirical research to determine optimal coefficients, 

especially for factors like lightning can be pursued. This approach aims to reduce human 

bias in parameter, constraint, and weight definition, ultimately leading to an improved 

performance of the model.  

For the integration of green energy locations, incorporating physical geographical 

location assessments could enhance result accuracy. Considering additional geographical 

parameters would also contribute to improving the overall model. Furthermore, conducting 

techno-economic analyses among parameters to assign weightage would provide clearer 

insights into their impacts. However, it is imperative to note that the fuzzy rule setting 

utilizes 𝜌𝑛, where 𝜌 is the number of linguistic variables in each input and 𝑛 represents the 

number of inputs. This indicates that as the number of inputs increases, the number of fuzzy 

rules grows exponentially. This presents a challenge in designing the overall model, as it 

significantly increases memory requirements and computational workload during 

implementation. Additionally, achieving more accurate results could be possible by 

increasing the sensitivity level for fuzzy values in fuzzy membership functions. For 

validation, deploying more TSP optimization algorithms and spending additional time on 

parameter tuning for state-of-the-art algorithms could provide a more historically accurate 

and unbiased comparison and validation. 

For the IIoT-based system for real-time monitoring, control, and automation for the 

IGESs model, further investigation, testing, and assessment are warranted. Modeling more 
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power-intelligent electronics and exploring different control strategies, such as employing 

dynamic voltage regulators and improved voltage source converters, can enhance the power 

quality of the model. Additionally, as real-time dynamic data modeling has been proposed, 

researchers can acquire more dynamic data types and integrate them into the model for a 

more realistic representation and execution. Moreover, the developed hardware prototype 

can be expanded to have capabilities to measure three-phase induction motors and reactive 

power. Automation strategies can also be extended beyond fault clearing in the SCADA 

system to other applications such as load demand control and optimizing energy storage. 

Furthermore, conducting techno-economic analysis can provide valuable insights into 

estimating the costs of the overall systems. 
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Appendix B: Green Energy Locations Identification  

import arcpy 

# Define the paths  

points_layer = (r“path\point_layername.shp”) 

polygon_layers = [ 

(r“path\polygon_layername.shp”, “inside”), 

(r“path\polygon_layername.shp”, “outside”), 

                             …] 

# Create a temporary feature layer for points 

temp_points_layer = “temp_points_layer” 

arcpy.MakeFeatureLayer_management(points_layer, temp_points_layer) 

# Iterate through the list of polygon layers and conditions 

for polygon_path, condition in polygon_layers: 

    if condition == “inside”: 

        arcpy.management.SelectLayerByLocation(temp_points_layer, “INTERSECT”, 

polygon_path) 

    elif condition == “outside”: 

        arcpy.management.SelectLayerByLocation(temp_points_layer, “INTERSECT”, 

polygon_path, invert_spatial_relationship=True) 

    # Remove the selected points 

    arcpy.DeleteFeatures_management(temp_points_layer) 

# Delete the temporary feature layer 

arcpy.Delete_management(temp_points_layer) 

print(“Erase operation completed for all polygon layers and conditions.”) 

Figure B-1: First Phase of Green Energy Locations Filtration 

 

import arcpy 

# Input point layer 

points_layer = (r“path\point_layername.shp”) 

# List of raster datasets to extract values from 

raster_layers = [ 

(r“path\raster_layername.tif”), 

(r“path\raster_layername.vrt”), 

                      …] 

field_names = [] 

# Iterate through the raster layers and add them as separate fields 

for i, raster_layer in enumerate(raster_layers): 

    field_name = arcpy.ValidateFieldName(f“Value_{i + 1}”, arcpy.env.workspace) 

    field_names.append(field_name) 

    arcpy.sa.ExtractMultiValuesToPoints(points_layer, [[raster_layer, field_name]]) 

# Print the field names added to the point layer 

print(“Field names added to the point layer:”, field_names) 

print(“Extraction complete.”) 

Figure B-2: Extraction of Multi-Values to Points 
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import arcpy 

input_point_fc = (r“path\point_layername.shp”) 

# Define the SQL expressions for each criterion 

criteria = [ 

    “Value_1 >= 1200”, 

    “Value_2 >= 15”, 

    “Value_2 < 28”, 

    “Value_3 < 25”,    

    “Value_4 >= 0”, 

    “Value_4 < 2200”, 

    “Value_5 >= 0.01”, 

    “Value_5 < 50”, 

    “Value_6 >= 0.1”, 

    “Value_6 < 50”, 

    “Value_7 >= 0.3”, 

    “Value_7 < 45”, 

    “Value_8 >= 0.3”, 

    “Value_8 < 45”, 

    “Value_9 >= 0.1”, 

    “Value_9 < 20”, 

    “Value_10 >= 0.1”, 

    “Value_11 >= 0.1”, 

 “Value_12 > 0” ] 

# Create a list of criteria expressions 

expression_list = [] 

for criterion in criteria: 

    expression_list.append(criterion) 

# Combine all criteria with AND operator 

expression = “AND”.join(expression_list) 

# Select points that meet the criteria 

arcpy.MakeFeatureLayer_management(input_point_fc, “SelectedPointsLayer”) 

arcpy.SelectLayerByAttribute_management(“SelectedPointsLayer”, 

“NEW_SELECTION”, expression) 

# Create a new feature class with selected points 

output_feature_class = “SelectedPoints.shp”   

arcpy.CopyFeatures_management(“SelectedPointsLayer”, output_feature_class) 

# Clear the selection 

arcpy.SelectLayerByAttribute_management(“SelectedPointsLayer”, 

“CLEAR_SELECTION”) 

# Print a message indicating the number of selected points 

count = arcpy.GetCount_management(output_feature_class) 

print(f“Number of selected points: {count}”) 

# Clean up by deleting the temporary layer 

arcpy.Delete_management(“SelectedPointsLayer”) 

Figure B-3: Second Phase of Green Energy Locations Filtration 
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% Load data from Excel file 

alternatives = xlsread(‘path\filename.xlsx’); 

% Define the criteria and linguistic terms 

criteria = { 

    [1200, 1400], [1400, 1600], [1600, 1700], [1700, 1800], [1800, 1900]; 

    [27, 28], [26, 27], [25, 26], [24, 25], [15, 24]; 

    [15, 25], [10, 15], [5, 10], [2, 5], [0, 2]; 

    [0, 200], [200, 450], [450, 750], [750, 1200], [1200, 2200]; 

    [20, 50], [15, 20], [10, 15], [5, 10], [0.01, 5]; 

    [30, 50], [20, 30], [10, 20], [5, 10], [0.1, 5]; 

    [30, 45], [20, 30], [15, 20], [10, 15], [0.3, 10]; 

    [30, 45], [20, 30], [15, 20], [10, 15], [0.3, 10]; 

    [16, 20], [12, 16], [8, 12], [4, 8], [0.1, 4]; 

    [0.1, 1], [1, 2], [2, 3], [3, 4], [4, 300]; 

    [30, 300], [20, 30], [10, 20], [5, 10], [0.1, 5]; 

  [0, 100], [100, 200], [200, 300], [300, 400], [400, 500]; }; 

% Define criteria attributes 

Attributes = {‘benefit’, ‘cost’, ‘cost’, ‘benefit’, ‘cost’, ‘cost’, ‘cost’, ‘cost’, ‘cost’, 

‘benefit’, ‘cost’, ‘benefit’}; 

% Define membership functions 

param_keys = {‘VL’, ‘L’, ‘M’, ‘H’, ‘VH’}; 

param_values = {[1, 1, 3], [1, 3, 5], [3, 5, 7], [5, 7, 9], [7, 9, 9]}; 

params = containers.Map(param_keys, param_values); 

% Define fuzzy criteria weight 

FCW = { 

    [8.43 12.12 17.65], 

    [6.87 10.85 16.06], 

    [6.57 9.88  14.85], 

    [5.56 10.48 15.61], 

    [7.02 10.42 15.53], 

    [5.81 9.58  14.47], 

    [5.76 9.21  14.02], 

    [5.76 9.21  14.02], 

    [5.76 9.21  14.02], 

    [7.27 11.03 16.29], 

    [5.76 9.21  14.02], 

    [6.21 9.76  14.70]}; 

Figure B-4: Input Definition 

 

% Define linguistic terms 

linguistic_terms = param_keys; 

% Loop through each alternatives point and assign linguistic terms based on criteria 

for i = 1:size(alternatives, 1) 

    for j = 1:size(alternatives, 2) 

        value = alternatives(i, j); 

        found = false; 
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        for k = 1:size(criteria, 2) 

            range = criteria{j, k}; 

            if value > range(1) && value <= range(2) 

                % Assign the appropriate linguistic term 

                B{i, j} = linguistic_terms{k}; 

                found = true; 

                break;  

            end 

        end 

        if ~found 

 B{i, j} = ‘Invalid’; 

        end 

    end 

end 

B = string(B); 

B_num = NaN(size(B)); 

B_cell = cell(size(B)); 

% Convert the string matrix alternatives to numerical values and cell arrays of vectors  

for i = 1:size(B, 1) 

    for j = 1:size(B, 2) 

        term = B{i, j}; 

        if isKey(params, term) 

            param_value = params(term); 

            B_num(i, j) = param_value(2);  

            B_cell{i, j} = param_value;  

        else error(‘Invalid value in B.’);   

        end 

    end 

end 

Figure B-5: Matrix Values to Fuzzy Triangular Membership Values 

 

% Get the number of conditions  

numConditions = numel(Attributes);  

% Initialize arrays to store maximum values and minimum values 

maxValues = zeros(1, numConditions);  

minValues = zeros(1, numConditions);  

% Calculate maximum and minimum values for each condition 

for i = 1:numConditions 

    if strcmp(Attributes{i}, ‘benefit’) 

        maxValues(i) = max(cellfun(@(x) max(x), B_cell(:, i)));  

    elseif strcmp(Attributes{i}, ‘cost’) 

        minValues(i) = min(cellfun(@(x) min(x), B_cell(:, i)));  

    end 

end 

% Normalize fuzzy decision matrix 

for i = 1:size(B_cell, 2) % Iterate through columns 
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    if strcmp(Attributes{i}, ‘benefit’) 

        C_cell(:, i) = cellfun(@(x) x / maxValues(i), B_cell(:, i), ‘UniformOutput’, false); 

    elseif strcmp(Attributes{i}, ‘cost’) 

        C_cell(:, i) = cellfun(@(x) x / minValues(i), B_cell(:, i), ‘UniformOutput’, false); 

    end 

end 

Figure B-6: Fuzzy Decision Matrix Normalization 

 

% Initialize D_cell with zeros 

numRows = size(C_cell, 1); 

numColsC = size(C_cell{1, 1}, 2); 

numColsFCW = numel(FCW); 

D_cell = cell(numRows, numColsFCW); 

% Weight Normalization 

for i = 1:numRows 

    for j = 1:numColsFCW 

        D_cell{i, j} = zeros(size(C_cell{i, 1})); 

        for k = 1:numColsC 

            D_cell{i, j}(k) = C_cell{i, j}(k) * FCW{j}(k); 

        end 

    end 

end 

Figure B-7: Fuzzy Decision Matrix Weight Normalization 

 

numColsD_cell = size(D_cell, 2); 

for col = 1:numColsD_cell 

    max_3rdEC = max(cellfun(@(x) x(3), D_cell(:, col))); 

    Smax_3rdEC = D_cell(cellfun(@(x) x(3) == max_3rdEC, D_cell(:, col)), col); 

    max_2ndEC = max(cellfun(@(x) x(2), Smax_3rdEC)); 

    Smax_2ndEC = Smax_3rdEC(cellfun(@(x) x(2) == max_2ndEC, Smax_3rdEC), 1); 

    max_1stEC = max(cellfun(@(x) x(1), Smax_2ndEC)); 

    max_1stEC_idx = find(cellfun(@(x) x(1) == max_1stEC, Smax_2ndEC), 1); 

    FPIS{col} = Smax_2ndEC{max_1stEC_idx}; 

end 

for col = 1:numColsD_cell 

    min_1stEC = min(cellfun(@(x) x(1), D_cell(:, col))); 

    Smin_1stEC = D_cell(cellfun(@(x) x(1) == min_1stEC, D_cell(:, col)), col); 

    min_2ndEC = min(cellfun(@(x) x(2), Smin_1stEC)); 

    Smin_2ndEC = Smin_1stEC(cellfun(@(x) x(2) == min_2ndEC, Smin_1stEC), 1); 

    min_3rdEC = min(cellfun(@(x) x(3), Smin_2ndEC)); 

    min_3rdEC_idx = find(cellfun(@(x) x(3) == min_3rdEC, Smin_2ndEC), 1); 

    FNIS{col} = Smin_2ndEC{min_3rdEC_idx}; 

end 

Figure B-8: FPIS and PNIS Computation 
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% Distance FPIS and FNIS 

for i = 1:size(alternatives, 1) 

    for j = 1:numColsD_cell 

        D_FPIS{i, j} = sqrt(1/3 * sum((D_cell{i, j} - FPIS{j}).^2)); 

    end 

end 

for i = 1:size(alternatives, 1) 

    for j = 1:numColsD_cell 

        D_FNIS{i, j} = sqrt(1/3 * sum((D_cell{i, j} - FNIS{j}).^2)); 

    end 

end 

% Cell to Vector 

C_V1 = cell2mat(num2cell([D_FPIS{:}])); 

Dvec_FPIS = reshape(C_V1, size(D_FPIS)); 

C_V2 = cell2mat(num2cell([D_FNIS{:}])); 

Dvec_FNIS = reshape(C_V2, size(D_FNIS)); 

% Distance Summation 

SumDis_FPIS = sum(Dvec_FPIS, 2); 

SumDis_FNIS = sum(Dvec_FNIS, 2); 

Figure B-9: Euclidean Distance for FPIS and PNIS 

 

% Closeness Coefficient  

CC = zeros(size(SumDis_FPIS, 1), size(SumDis_FPIS, 2)); 

for i = 1:size(SumDis_FPIS, 1) 

    CC(i) = SumDis_FNIS(i) / (SumDis_FNIS(i) + SumDis_FPIS(i)); 

end 

% Rank alternatives based on the values and assign ranks to the original positions 

[~, rank] = sort(CC, ‘descend’); 

[~, idx] = sort(rank); 

Ranking = idx; 

Figure B-10: Closeness Coefficient and Rankings 
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Table B-1: Identified Green Energy Locations  

ID Latitude Longitude ID Latitude Longitude ID Latitude Longitude ID Latitude Longitude 

S1 1.3666 110.9666 S67 2.1 111.3666 H10 1.752141 112.545624 H76 3.394214 114.175792 

S2 1.9666 111.5 S68 1.9333 112.0833 H11 1.89833 112.571149 H77 4.838551 115.448238 

S3 1.4166 110.9666 S69 1.8666 111.6333 H12 1.875125 112.605956 H78 4.805066 115.508511 

S4 1.2 110.2833 S70 2.6333 111.7 H13 1.791589 112.650045 H79 4.463515 115.376802 

S5 2.0333 112.4833 S71 2.0666 111.3166 H14 1.805512 112.677891 H80 4.483606 115.361176 

S6 1.4333 110.85 S72 1.75 111.2333 H15 1.69645 112.708056 H81 4.644336 115.318761 

S7 1.2833 110.7 S73 1.9 112.3166 H16 1.691809 112.733581 H82 4.597456 115.32769 

S8 2.0333 111.35 S74 3.4833 114.0166 H17 1.652361 112.770709 H83 4.568436 115.320993 

S9 1.2666 110.0833 S75 1.6666 112.3166 H18 1.905291 112.605956 H84 4.550577 115.320993 

S10 1.3 110.1166 S76 3.45 113.4333 H19 2.194177 113.056317 H85 4.497 115.287508 

S11 4.1666 114.3666 S77 1.3833 110.9666 H20 2.178827 113.061433 H86 4.483606 115.332155 

S12 1.45 110.95 S78 1.3333 110.5 H21 2.025329 113.03585 H87 4.443423 115.396893 

S13 1.7 112.3666 S79 2.25 112.2 H22 2.033004 113.145857 H88 4.41217 115.401358 

S14 1.1833 111.1833 S80 1.2833 110.6666 H23 2.048353 113.189349 H89 4.371988 115.446005 

S15 1.5166 110.85 S81 1.55 109.9833 H24 2.020212 113.189349 H90 4.135358 115.521906 

S16 2.1333 112.45 S82 2.3166 111.5666 H25 1.764381 113.181674 H91 4.171075 115.233931 

S17 1.7666 112.55 S83 1.7 112.4833 H26 1.994629 113.222606 H92 4.206793 115.169193 

S18 2.0166 112.5833 S84 1.4666 110.8 H27 1.935788 113.284006 H93 4.240279 115.086595 

S19 2.5166 111.7 S85 1.55 110.7166 H28 2.076495 113.342847 H94 4.264835 115.068736 

S20 2.05 112.1333 S86 1.8833 112.5333 H29 1.940905 113.355638 H95 4.340735 114.995069 

S21 1.3333 110.9 S87 2.6166 112.0333 H30 1.792523 113.33773 H96 4.217955 115.106687 

S22 1.2333 110.8 S88 2.2 111.2666 H31 1.843689 113.409363 H97 4.197864 115.13794 

S23 2.4 111.5166 S89 1.7666 112.3 H32 1.513668 113.455412 H98 4.164378 115.077666 

S24 1.9 112.0666 S90 1.3166 110.9666 H33 1.56995 113.470762 H99 4.13759 115.240628 

S25 1.7166 112.4 S91 2.1 112.4333 H34 1.608325 113.483554 H100 4.126428 115.265184 

S26 3.1 113.1333 S92 2.6 112.05 H35 1.884622 113.465646 H101 4.09964 115.274114 

S27 1.3 111.1833 S93 1.2666 111.2666 H36 1.85648 113.56542 H102 3.996951 115.294205 

S28 2.3333 111.5833 S94 1.3 111.0666 H37 1.88718 113.849391 H103 3.952304 115.122313 

S29 2.3 111.3166 S95 1.9166 112.3333 H38 1.779731 113.7752 H104 3.925516 115.350014 

S30 1.3333 110.9833 S96 1.3166 110.6833 H39 1.697866 113.721476 H105 3.186605 115.280811 

S31 2.1 111.4 S97 1.95 112.3666 H40 1.580183 113.683102 H106 3.229019 115.32769 

S32 1.9333 112.3666 S98 1.2333 111.1833 H41 1.87183 113.859625 H107 3.340637 115.401358 

S33 1.35 110.85 S99 1.2333 111.2 H42 3.168891 113.990098 H108 3.354032 115.423682 
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Table B-1 continued         

S34 1.3 110.8166 S100 1.5 109.9 H43 3.120283 113.946607 H109 3.438861 115.45047 

S35 1.3833 111.0833 W1 2.2333 113.7166 H44 2.872128 114.158946 H110 3.476811 115.48842 

S36 1.2 110.8666 W2 2.1166 113.6833 H45 2.805612 114.130805 H111 3.032572 115.097757 

S37 1.2166 111.2166 W3 1.1333 110.6 H46 2.731421 114.133363 H112 3.148654 115.070969 

S38 1.8166 112.2666 W4 1.4 110.25 H47 2.733979 114.097547 H113 3.068289 115.037483 

S39 1.65 110.0833 W5 0.9666 110.7 H48 2.79282 113.982423 H114 3.041501 115.01516 

S40 1.8833 112.55 W6 1.4666 111.9666 H49 2.841428 113.8673 H115 3.5795 115.408055 

S41 1.3833 110.9833 W7 1.1833 110.55 H50 2.815845 113.744501 H116 3.577268 115.238396 

S42 2.2333 111.4166 W8 1.3833 111.6666 H51 2.749329 113.803342 H117 3.639774 115.209375 

S43 1.35 110.25 W9 1.5166 110.9333 H52 2.731421 113.591003 H118 2.853983 114.921401 

S44 1.5833 111.7 W10 1.7333 111.6333 H53 2.662347 114.054056 H119 2.842821 114.881218 

S45 3.8666 114.2666 W11 1.9833 114.45 H54 2.629089 114.056614 H120 2.661184 114.788175 

S46 1.3166 111.0666 W12 2.0666 113.6666 H55 2.380722 113.827544 H121 2.516467 114.846751 

S47 1.6333 111.4666 W13 2.2833 113.9 H56 2.358399 113.845403 H122 2.661184 114.629675 

S48 1.35 110.2666 W14 4.15 113.8833 H57 2.286963 113.878888 H123 2.654293 114.323012 

S49 1.5166 109.9833 W15 1.8 109.6833 H58 2.159719 113.941394 H124 2.606054 114.436719 

S50 2.0166 112.6166 W16 3.6666 114.1 H59 2.496805 112.905579 H125 2.399315 114.729599 

S51 1.3333 110.5166 W17 1.1666 110.3833 H60 3.896495 114.963815 H126 2.554369 114.185186 

S52 2.0166 112.5666 W18 1.2166 110.25 H61 3.833989 114.782994 H127 2.471673 114.247208 

S53 1.8166 112.65 W19 1.1166 110.3 H62 3.798271 114.979442 H128 2.40276 114.471175 

S54 3.6833 114.2666 W20 1.2166 110.0833 H63 3.45672 114.961583 H129 2.313173 114.161067 

S55 4.15 114.35 W21 1.15 110.6166 H64 3.385285 114.923633 H130 2.264934 114.219643 

S56 1.55 110.85 W22 1.4833 110.8333 H65 3.338405 114.7696 H131 2.192576 114.426382 

S57 1.45 110.9666 W23 4.4 115.3833 H66 3.441094 114.561991 H132 2.123663 114.102491 

S58 1.3833 110.9 H1 1.805512 111.926062 H67 3.37189 114.57092 H133 2.03063 114.081817 

S59 1.1833 110.4 H2 1.601311 112.211478 H68 3.273667 114.81648 H134 2.009956 114.212752 

S60 2.3333 111.3333 H3 1.622195 112.230042 H69 3.170978 114.818712 H135 1.916924 114.540088 

S61 2.6333 112.05 H4 1.643079 112.250926 H70 3.081684 114.812015 H136 1.848011 114.491849 

S62 1.2833 111.1833 H5 1.6454 112.299656 H71 3.186605 114.575385 H137 1.799772 114.54698 

S63 1.55 110.4666 H6 1.933137 112.225401 H72 2.996854 114.88345 H138 1.879022 114.312675 

S64 2.2666 112.2833 H7 1.912253 112.341424 H73 3.016945 114.827641 - - - 

S65 1.9666 112.05 H8 1.687168 112.415679 H74 2.985692 114.863359 - - - 

S66 1.25 110.8833 H9 1.735898 112.529381 H75 3.414305 114.160166 - - - 



233 

Appendix C: Green Energy Locations Integration 

import arcpy 

import csv 

# Constants for converting decimal degrees to kilometres 

DD_TO_KM_FACTOR = 111   

# Set the shapefile name and the output CSV file path  

shapefile_name = “shapefile_name_𝑪𝒊” 

output_csv = r“path\DistanceMatrixData_𝑪𝒊.csv” 

distances = [] 

# Find the shapefile in the content panel 

project = arcpy.mp.ArcGISProject(“CURRENT”) 

map = project.listMaps()[0]   

# Retrieve the fields (column names) from the shapefile 

fields = [field.name for field in arcpy.ListFields(shapefile_name)] 

# Ensure that the necessary fields exist in the shapefile 

if ‘Latitude’ in fields and ‘Longitude’ in fields: 

    # Open the shapefile 

    with arcpy.da.SearchCursor(shapefile_name, [“ID”, “Latitude”, “Longitude”]) as 

cursor: 

        points = [(id, lat, lon) for id, lat, lon in cursor] 

    # Calculate pairwise distances in kilometres and fill the matrix 

    num_points = len(points) 

    for i in range(num_points): 

        row = [0.0] * num_points   

        id1, lat1, lon1 = points[i] 

        for j in range(num_points): 

            if i != j: 

                id2, lat2, lon2 = points[j] 

                distance = math.sqrt((lat1 - lat2) ** 2 + (lon1 - lon2) ** 2) * 

DD_TO_KM_FACTOR 

                row[j] = distance 

        distances.append(row) 

    # Write the pairwise distance matrix to a CSV file without labels for the first row 

    with open(output_csv, ‘w’, newline=”) as csvfile: 

        csv_writer = csv.writer(csvfile) 

        for row in distances: 

            csv_writer.writerow(row)  # Write rows without labels 

    print(“Pairwise distance matrix (in kilometers) has been calculated and saved to”, 

output_csv) 

else: print(“The ‘Latitude’ and ‘Longitude’ fields are missing in the shapefile.”) 

Figure C-1: Distance Matrix Data Generation for Each Cluster  
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import arcpy 

import pandas as pd 

# Reference to the shapefile and raster dataset from the Contents panel 

shapefile_layer = “shapefile_layer_𝑪𝒊” 

raster_layer = “Elevation” 

elevation_values = [] 

# Extract the elevation for each coordinate 

arcpy.MakeFeatureLayer_management(shapefile_layer, “temp_layer”)   

# Create a temporary feature layer 

with arcpy.da.SearchCursor(“temp_layer”, [“SHAPE@XY”]) as cursor: 

    for row in cursor: 

        x, y = row[0] 

        elevation = arcpy.GetCellValue_management(raster_layer, f“{x} 

{y}”).getOutput(0) 

        elevation_values.append(float(elevation)) 

# Form pairwise matrix 

pairwise_matrix = [] 

for i in range(len(elevation_values)): 

    row = [] 

    for j in range(len(elevation_values)): 

        diff = elevation_values[i] - elevation_values[j] 

        # Take the absolute value to ensure no negative distances 

        row.append(abs(diff)) 

    pairwise_matrix.append(row) 

# Convert the pairwise matrix to a DataFrame 

df = pd.DataFrame(pairwise_matrix) 

# Save the DataFrame to a CSV file without column labels 

output_csv = r“path\ElevationDifferenceMatrixData_𝑪𝒊.csv” 

df.to_csv(output_csv, index=False, header=False) 

print(f“Pairwise matrix saved to {output_csv}”) 

Figure C-2: Elevation Difference Matrix Data Generation for Each Cluster  

 

import arcpy 

import numpy as np 

import csv 

# Define the input shapefile and raster file  

input_shapefile = “shapefile_name_𝑪𝒊” 

raster_layer = “GroundFlashDensity” 

# Define the number of intervals for sampling 

num_intervals = 100 

mean_matrix = [] 

# Convert the raster layer to a NumPy array for efficient sampling 

raster_array = arcpy.RasterToNumPyArray(raster_layer, nodata_to_value=0) 

# Get the cell size of the raster as a float 

cell_size = float(arcpy.GetRasterProperties_management 

(raster_layer,“CELLSIZEX”).getOutput(0)) 
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# Get the extent of the raster 

desc = arcpy.Describe(raster_layer) 

extent = desc.extent 

# Iterate through the input shapefiles features 

with arcpy.da.SearchCursor(input_shapefile, [“SHAPE@XY”]) as cursor: 

    for row in cursor: 

        x1, y1 = row[0] 

        row_mean = [] 

        # Second loop to iterate over the coordinates again 

        with arcpy.da.SearchCursor(input_shapefile, [“SHAPE@XY”]) as inner_cursor: 

            for inner_row in inner_cursor: 

                x2, y2 = inner_row[0] 

                if (x1, y1) == (x2, y2): 

                    mean = 0 

                else: 

                    col1 = int((x1 - extent.XMin) / cell_size) 

                    row1 = int((extent.YMax - y1) / cell_size) 

                    col2 = int((x2 - extent.XMin) / cell_size) 

                    row2 = int((extent.YMax - y2) / cell_size) 

                    sampled_values = [] 

                    # Generate additional sample points between the two coordinates 

                    for i in range(num_intervals + 1): 

                        # Calculate intermediate points along line connecting two coordinates 

                        x_interp = x1 + (x2 - x1) * (i / num_intervals) 

                        y_interp = y1 + (y2 - y1) * (i / num_intervals) 

                        # Calculate the row and column indices for the interpolated point 

                        col_interp = int((x_interp - extent.XMin) / cell_size) 

                        row_interp = int((extent.YMax - y_interp) / cell_size) 

                        # Sample values from the raster array at the interpolated point 

                        sampled_value = raster_array[row_interp, col_interp] 

                        sampled_values.append(sampled_value) 

                    # Calculate the mean of the sampled values 

                    mean = np.nanmean(sampled_values) 

                row_mean.append(mean) 

        mean_matrix.append(row_mean) 

# Define the CSV file path 

csv_file_path = r“path\AverageGroundFlashDensityMatrixData_𝑪𝒊.csv” 

# Save the mean matrix as a CSV file 

with open(csv_file_path, ‘w’, newline=”) as csv_file: 

    writer = csv.writer(csv_file) 

    writer.writerows(mean_matrix) 

print(f“Mean matrix saved to {csv_file_path}”) 

Figure C-3: Average Ground Flash Density Matrix Data Generation for Each Cluster  
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%Load input data and FIS system 

D𝑪𝒊 = xlsread(“path\DistanceMatrixData_𝑪𝒊.csv”); 

ED𝑪𝒊 = xlsread(“path\ElevationDifferenceMatrixData_𝑪𝒊.csv”); 

AGFD𝑪𝒊 = xlsread(“path\AverageGroundFlashDensityMatrixData_𝑪𝒊.csv”); 

FIS𝑪𝒊 = readfis(“path\FIS𝑪𝒊.fis”); 

Size = size(D𝑪𝒊, 2); 

Output = cell(Size, 1); 

p = 1; q = 1; r = 1; % Initialize p, q, and r 

% Evaluate the FIS model for each dataset 

for i = 1:Size 

    D = D𝑪𝒊 (:, p); 

    ED = ED𝑪𝒊 (:, q); 

    AGFD = AGFD𝑪𝒊 (:, r); 
    All = evalfis(FIS𝑪𝒊, [D, ED, AGFD]); 

    Output{i} = All; 

    p = p + 1; q = q + 1; r = r + 1; 

end 

% Reshape the output 

Reshape = cell2mat(Output); 

FuzzyMatrix = reshape(Reshape’, Size, [])’; 

% Set diagonal elements of the FuzzyMatrix to 0 

FuzzyMatrix(1:Size+1:end) = 0; 

Figure C-4: Fuzzy Matrix Data Generation for Each Cluster  

 

% Creating pairs and converting the distance square matrix to a distance column vector 

numberOfGEs = size(FuzzyMatrix, 1); 

GEPairs = zeros(numberOfGEs * numberOfGEs, 2); 

distanceVector = zeros(numberOfGEs * numberOfGEs, 1); 

for g = 1:numberOfGEs 

    GEPairs((g - 1) * numberOfGEs + 1:g * numberOfGEs, 1) = g; 

    GEPairs((g - 1) * numberOfGEs + 1:g * numberOfGEs, 2) = 1:numberOfGEs; 

    distanceVector((g - 1) * numberOfGEs + 1:g * numberOfGEs) = FuzzyMatrix(g, :)’; 

end 

Figure C-5: Creation of Pairs and Distance Vectors  

 

% Equality Constraints 

Aeq = spones(1:length(GEPairs)); 

beq = numberOfGEs; 

Aeq = [Aeq; spalloc(2 * numberOfGEs, length(GEPairs), 2 * numberOfGEs * 

(numberOfGEs + numberOfGEs - 1))]; 

g = 1; 

for count = 1:2:(2 * numberOfGEs - 1) 

    columnSum = sparse(GEPairs(:, 2) == g); 

    Aeq(count + 1, :) = columnSum’; 



237 

    rowSum = GEPairs(:, 1) == g; 

    Aeq(count + 2, :) = rowSum’; 

    g = g + 1; 

end 

beq = [beq; ones(2 * numberOfGEs, 1)]; 

nonExists = sparse(distanceVector == 0); 

Aeq(2 * g, :) = nonExists’; 

beq = [beq; 0]; 

% Binary Bounds 

intcon = 1:length(distanceVector); 

lb = zeros(length(distanceVector), 1); 

ub = ones(length(distanceVector), 1); 

Figure C-6: Equality Constraints and Binary Bounds  

 

% Optimize using intlinprog 

opts = optimoptions(‘intlinprog’, ‘CutGeneration’, ‘Advanced’, ‘NodeSelection’, 

‘mininfeas’, ‘Display’, ‘off’); 

[decisionVariables, optimumCost, exitflag, output] = intlinprog(distanceVector, intcon, 

[], [], Aeq, beq, lb, ub, opts); 

% Subtour Detection 

x = decisionVariables; 

x(x < 0.0001) = 0; 

r = find(x); 

substuff = GEPairs(r, :); 

unvisitedSubTours = ones(length(r), 1); 

tours = cell(0); 

numberOfTours = 0; 

curr = 1; 

startour = find(unvisitedSubTours, 1); 

while ~isempty(startour) 

    home = substuff(startour, 1); 

    nextpt = substuff(startour, 2); 

    visitedSubTour = nextpt; 

    unvisitedSubTours(startour) = 0; 

    while nextpt ~= home 

        [srow, scol] = find(substuff == nextpt); 

        trow = srow(srow ~= startour); 

        scol = 3 - scol(trow == srow); 

        startour = trow; 

        nextpt = substuff(startour, scol); 

        visitedSubTour = [visitedSubTour, nextpt]; 

        unvisitedSubTours(startour) = 0; 

    end 

    tours{curr} = visitedSubTour; 

    curr = curr + 1; 

    startour = find(unvisitedSubTours, 1); 

end 
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numberOfTours = length(tours); 

% Subtour Constraints 

A = spalloc(0, length(distanceVector), 0); 

b = []; 

while numberOfTours > 1 

    b = [b; zeros(numberOfTours, 1)]; 

    A = [A; spalloc(numberOfTours, length(distanceVector), numberOfGEs)]; 

    for count = 1:numberOfTours 

        inequalityConstraintNumber = size(A, 1) + 1; 

        subTourId = tours{count}; 

        subTourPairs = nchoosek(1:length(subTourId), 2); 

        for jj = 1:size(subTourPairs, 1) 

            subTourVariable = (sum(GEPairs == subTourId(subTourPairs(jj, 1)), 2)) & ... 

                (sum(GEPairs == subTourId(subTourPairs(jj, 2)), 2)); 

            A(inequalityConstraintNumber, subTourVariable) = 1; 

        end 

        b(inequalityConstraintNumber) = length(subTourId) - 1; 

    end 

Figure C-7: Optimization with Subtour Detection and Constraints 

 

% Reoptimization 

    [decisionVariables, optimumCost, exitflag, output] = intlinprog(distanceVector, intcon, 

A, b, Aeq, beq, lb, ub, opts); 

  x = decisionVariables; 

    x(x < 0.0001) = 0; 

    r = find(x); 

    substuff = GEPairs(r, :); 

    unvisitedSubTours = ones(length(r), 1); 

    tours = cell(0); 

    numberOfTours = 0; 

    curr = 1; 

    startour = find(unvisitedSubTours, 1); 

    while ~isempty(startour) 

        home = substuff(startour, 1); 

        nextpt = substuff(startour, 2); 

        visitedSubTour = nextpt; 

        unvisitedSubTours(startour) = 0; 

        while nextpt ~= home 

            [srow, scol] = find(substuff == nextpt); 

            trow = srow(srow ~= startour); 

            scol = 3 - scol(trow == srow); 

            startour = trow; 

            nextpt = substuff(startour, scol); 

            visitedSubTour = [visitedSubTour, nextpt]; 

            unvisitedSubTours(startour) = 0; 

        end 
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        tours{curr} = visitedSubTour; 

        curr = curr + 1; 

        startour = find(unvisitedSubTours, 1); 

    end 

    numberOfTours = length(tours); 

    fprintf(‘TSP Configuration:%d\n’, tours); 

end 

Figure C-8: Re-Optimization and Subtour Elimination Loop  
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Table C-1: Fuzzy Rule Setting  

𝑹 𝒅 ∆𝒆 𝑮𝑭𝑫̅̅ ̅̅ ̅̅  𝒇 𝑹 𝒅 ∆𝒆 𝑮𝑭𝑫̅̅ ̅̅ ̅̅  𝒇 𝑹 𝒅 ∆𝒆 𝑮𝑭𝑫̅̅ ̅̅ ̅̅  𝒇 𝑹 𝒅 ∆𝒆 𝑮𝑭𝑫̅̅ ̅̅ ̅̅  𝒇 𝑹 𝒅 ∆𝒆 𝑮𝑭𝑫̅̅ ̅̅ ̅̅  𝒇 

1 VL VL VL EL 26 L VL VL VL 51 M VL VL VL 76 H VL VL L 101 VH VL VL ML 

2 VL VL L VL 27 L VL L VL 52 M VL L L 77 H VL L ML 102 VH VL L ML 

3 VL VL M VL 28 L VL M L 53 M VL M ML 78 H VL M ML 103 VH VL M M 

4 VL VL H L 29 L VL H ML 54 M VL H ML 79 H VL H M 104 VH VL H MH 

5 VL VL VH ML 30 L VL VH ML 55 M VL VH M 80 H VL VH MH 105 VH VL VH MH 

6 VL L VL VL 31 L L VL VL 56 M L VL L 81 H L VL ML 106 VH L VL ML 

7 VL L L VL 32 L L L L 57 M L L ML 82 H L L ML 107 VH L L M 

8 VL L M L 33 L L M ML 58 M L M ML 83 H L M M 108 VH L M MH 

9 VL L H ML 34 L L H ML 59 M L H M 84 H L H MH 109 VH L H MH 

10 VL L VH ML 35 L L VH M 60 M L VH MH 85 H L VH MH 110 VH L VH H 

11 VL M VL VL 36 L M VL L 61 M M VL ML 86 H M VL ML 111 VH M VL M 

12 VL M L L 37 L M L ML 62 M M L ML 87 H M L M 112 VH M L MH 

13 VL M M ML 38 L M M ML 63 M M M M 88 H M M MH 113 VH M M MH 

14 VL M H ML 39 L M H M 64 M M H MH 89 H M H MH 114 VH M H H 

15 VL M VH M 40 L M VH MH 65 M M VH MH 90 H M VH H 115 VH M VH VH 

16 VL H VL L 41 L H VL ML 66 M H VL ML 91 H H VL M 116 VH H VL MH 

17 VL H L ML 42 L H L ML 67 M H L M 92 H H L MH 117 VH H L MH 

18 VL H M ML 43 L H M M 68 M H M MH 93 H H M MH 118 VH H M H 

19 VL H H M 44 L H H MH 69 M H H MH 94 H H H H 119 VH H H VH 

20 VL H VH MH 45 L H VH MH 70 M H VH H 95 H H VH VH 120 VH H VH VH 

21 VL VH VL ML 46 L VH VL ML 71 M VH VL M 96 H VH VL MH 121 VH VH VL MH 

22 VL VH L ML 47 L VH L M 72 M VH L MH 97 H VH L MH 122 VH VH L H 

23 VL VH M M 48 L VH M MH 73 M VH M MH 98 H VH M H 123 VH VH M VH 

24 VL VH H MH 49 L VH H MH 74 M VH H H 99 H VH H VH 124 VH VH H VH 

25 VL VH VH MH 50 L VH VH H 75 M VH VH VH 100 H VH VH VH 125 VH VH VH EH 
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Appendix D: Real-Time Monitoring, Control and Automation for IGESs 

while true 

    % Define ThingSpeak read channel parameters  

    channelID = Channel_ID; 

    readAPIKey = ‘Read_API_Key’; 

    % Define the time range for historical data retrieval 

    startTime = datetime(‘YYYY-MM-DD HH:MM:SS’, ‘InputFormat’, ‘yyyy-MM-dd 

HH:mm:ss’, ‘TimeZone’, ‘UTC’); 

    endTime = datetime(‘YYYY-MM-DD HH:MM:SS’, ‘InputFormat’, ‘yyyy-MM-dd 

HH:mm:ss’, ‘TimeZone’, ‘UTC’); 

    % Read data from ThingSpeak channel for multiple fields 

    [data, timestamps] = thingSpeakRead(channelID, ‘Fields’, [1, 2, 3], ‘DateRange’, 

[startTime, endTime], ‘ReadKey’, readAPIKey); 

    % Convert timestamps to a numeric array 

    timestamps_numeric = datenum(timestamps); 

    % Convert numeric timestamps to datetime 

    timestamps = datetime(timestamps_numeric, ‘ConvertFrom’, ‘datenum’, ‘TimeZone’, 

‘UTC’); 

    % Get the current time 

    current_time = datetime(‘now’, ‘TimeZone’, ‘local’); 

    % Extract the time component from all timestamps 

    times = timestamps - dateshift(timestamps, ‘start’, ‘day’); 

    % Calculate the time difference between the current time and all times 

    time_diff = abs(times - timeofday(current_time)); 

    % Find the index of the timestamps which are in the past compared to the current time 

    past_indices = find(times <= timeofday(current_time)); 

    % Processing demand data 

    if ~isempty(past_indices) 

        % Find the index of the closest timestamp in the past 

        [~, idx] = min(time_diff(past_indices)); 

        % Get the index in the original data array 

        idx = past_indices(idx); 

        % Display the values corresponding to the closest timestamp in the past for all fields 

        disp(‘Data:’); 

        disp([‘Current Time:’, datestr(current_time, ‘HH:MM’)]); 

        disp([‘Closest Past Timestamp: ’, datestr(timestamps(idx), ‘HH:MM’)]); 

        disp([‘Value at Closest Past Timestamp (Field 1): ’, num2str(data(idx, 1))]); 

        disp([‘Value at Closest Past Timestamp (Field 2): ’, num2str(data(idx, 2))]); 

        disp([‘Value at Closest Past Timestamp (Field 3): ’, num2str(data(idx, 3))]); 

    else 

        disp(‘No past data available.’); 

    end 

        demand = (str2double(num2str(data(idx, 1))))*100; 

        GHI = str2double(num2str(data(idx, 2))); 

        temperature = str2double(num2str(data(idx, 3))); 

        % ThingSpeak Channel ID and Write API Key 

        channelID1 = Channel_ID_New; 



242 

        writeAPIKey = ‘Write_API_Key’; 

 

        % Create ThingSpeak URL 

        baseURL = ‘https://api.thingspeak.com/update’; 

        thingSpeakWriteURL = sprintf(‘%s?api_key=%s’, baseURL, writeAPIKey); 

        % Construct the data string 

        data = sprintf(‘field1=%.2f&field2=%.2f&field3=%.2f’, demand, GHI, 

temperature); 

        % Send data to ThingSpeak 

        response = webwrite(thingSpeakWriteURL, data); 

    % Pause for 5 seconds before the next iteration 

    pause(10); 

end 

Figure D-1: Read Current Time Data and Write on ThingSpeak Cloud  

 

 

Figure D-2: Establishment of Monitoring Framework in MATLAB Simulink 
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Figures D-3 (a) to (d): Integration of Manual Switches with Signal Channels into Green 

Energy Generations and Energy Storage Systems  

 

 

Figures D-4 (a) to (f): Integration of Manual and Automatic Switches into Loads (AC and 

DC) and Faults (AC and DC)  
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Figure D-5: MATLAB Communication Framework for Hardware Prototype  
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