
Faculty of Economics and Business

Risk Contagion and Price Forecasting of China Carbon Market
Based on High Order Moment Attribute

Ni Li

Doctor of Philosophy
2025



Risk Contagion and Price Forecasting of China Carbon Market
Based on High Order Moment Attribute

Ni Li

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

(Finance)

Faculty of Economics and Business
UNIVERSITI MALAYSIA SARAWAK

2025



i

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of

Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the

work is that of the author alone. The thesis has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

……………………………

Signature

Name: Ni Li

Matric No.: 21010257

Faculty of Economics and Business

Universiti Malaysia Sarawak

Date :13/5/2025



ii

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to the Universiti Malaysia Sarawak

(UNIMAS) for providing me with this opportunity to pursue my doctoral studies, and now

this agonizing but rewarding journey of learning is coming to an end.

I am very grateful to my main research supervisor Professor Dr Liew Khim Sen for his

professional guidance, valuable suggestions and constructive comments throughout my

research and thesis writing, Especially his rigorous academic attitude deeply influenced

me,which are very beneficial for the research process and subsequently led to the

completion of this PhD thesis. To my co-supervisor, Associate Professor Dr Shirly Wong

Siew Ling, thank you for your moral support and motivation throughout my PhD journey.

I would also express my gratitude to all teachers of FEB Postgraduate Programme and

all the staff of Centre for Graduate Studies (CGS) for their support and kindness in

guiding me especially in students affairs.

Finally, I must express my profound gratitude to my parents and my husband for their

material and spiritual support, especially my husband for providing me with unfailing

support, unending encouragement, and motivation throughout my years of PhD study and

the process of researching and writing this thesis. Without his endless guidance and

support in every process, I don't have so much time to complete my doctoral thesis. I also

want to thank my workplace and my classmates, because while working, I usually pursue a

PhD and need to balance many things. Friends encourage and learn from each other

together, which is a special experience that has given me more spiritual motivation

encouragement.



iii

ABSTRACT

As an effective mechanism for addressing climate issues, the carbon market plays an

important role in reducing global greenhouse gas emissions. The core function of the

market is achieving emissions reduction target by the manner of market price mechanism.

So, the carbon price is the key point. This thesis focuses on studying the China carbon

price forecasting and its price driving mechanism after considering the impact of high

order risk contagion relationship, which supports a more convinced and innovative

evidence for explaining the carbon price formation that is significantly different from

previous researches.

In terms of the research variables, the carbon market has closely information linkages and

spillovers with the capital market, homogeneous product market, and energy market

products. In this regard, this thesis uses the daily transaction price of Hubei Carbon

Emission Allowances (HBEA) as the representative indicators of China carbon price, takes

the daily settlement price of the European Carbon Emission Allowance Futures (EUAF) as

the representative variables of carbon homogeneous market, selects the daily trading price

of Jiaotan futures (JTF), Jiaomei futures (JMF),and Brent crude oil futures (Oil) as the

special variables of energy market, and selects the daily trading price of China security

index 300 (CSI300) as the special variables of capital market.

In terms of model design and empirical discussion, firstly, this thesis measures the risk

contagion relationship between the carbon market and its infected markets based on the

idea of Markov theory, then designs a carbon price state transition model to classify the

high, medium and low volatility state of the carbon market. Secondly, constructs and tests
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the risk contagion channels between carbon price and its infected markets, that is the low

order moment risk contagion channel of Forbes Rigobon contagion (FR), and the high

order moment risk contagion channels of Co-Skewness (CS), Co-Kurtosis (CK) and Co-

Volatility (CV). And finally, designs a high order risk contagion carbon price forecasting

model (HOC-LSTM) to forecasting the price of China carbon market.

The main conclusion of this thesis are as follows: firstly, the high order risk contagion

carbon price forecasting framework support a convinced theoretical support for forecasting

the China carbon price. Secondly, there is no risk contagion relationship in low order

moment channels, but significant risk contagion relationship in high order moment

channels no matter the carbon market in rapid and slow change. Thirdly, the HOC-LSTM

model constructed in this thesis has a significant superiority in forecasting China carbon

price then other comparative models, such as the Gated recurrent unit (GRU), Multi-Layer

Perceptron(MLP), Gradient Boosting Decision Tree (GBDT), Extra Trees Regressor (ETR)

and Back Propagation Neural Network (BPNN), the high order risk contagion channels are

indispensable factors for explaining carbon price formation mechanism. Those results can

not only provide reference for investors and emission reduction entities to make investment

and financing decisions, analyze price trends, but also contribute to technical references for

government departments to promote the construction of carbon market pricing mechanisms

and market efficiency.

Keywords: China carbon market, risk contagion, price forecasting, high order moment,

HOC-LSTM
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PENULARAN RISIKO DAN RAMALAN HARGA DALAM PASARAN KARBON
NEGARA CINA BERDASARKAN ATRIBUT MOMEN TERTIB TINGGI

ABSTRAK

Sebagai mekanisme yang efektif untuk mengatasi masalah iklim, pasaran karbon bermain

peranan penting dalam pengurangan pelepasan gas rumah hijau secara global. Fungsi

utama pasaran adalah mencapai sasaran pengurangan pelepasan gas melalui mekanisme

harga pasaran. Jadi, harga karbon merupakan perkara utama. Tesis ini fokus pada

mempelajari ramalan harga karbon negara Cina dan mekanisme penentuan harganya

selepas mempertimbangkan kesan dari hubungan penularan risiko tertib tinggi, yang

menyokong bukti yang lebih meyakinkan dan inovatif untuk menjelaskan penentuanan

harga karbon yang ternyata berbeza berbanding dengan kajian sebelumnya.

Dari segi pembolehubah kajian, pasaran karbon mempunyai hubungan maklumat yang

dekat dan limpahan dengan pasaran modal, pasaran produk homogen, dan pasaran produk

tenaga. Dalam hal ini, tesis ini menggunakan harga transaksi harian Keizinan Pelepasan

Karbon Hubei (HBEA) sebagai penunjuk yang mewakili harga karbon di negara Cina,

sementara itu harga penyelesaian harian Keizinan Pelepasan Karbon di Eropah (EUAF)

dianggap sebagai pembolehubah yang mewakili pasaran homogen karbon, manakala harga

perdagangan harian bagi masa depan Jiaotan (JTF) dan masa depan Jiaomei (JMF)

dianggap sebagai pembolehubah khas pasaran tenaga, dan harga perdagangan harian

indeks China 300 (CSI300) digunna sebagai pembolehubah khas pasaran modal.

Dari segi rancangan model dan perbincangan empirik, pertama-tama, tesis ini mengukur
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hubungan penyebaran risiko antara pasaran karbon dan pasaran yang terjejas olehnya

berdasarkan idea Teori Markov, kemudian merancang model transaksi harga karbon negara

untuk pengelasan keadaan kemeruapan tertib tinggi, tengah dan rendah pasaran karbon.

Kedua, membina dan menguji saluran penularan risiko di antara harga karbon dan pasaran

yang terpengaruh olehnya, iaitu saluran penularan risiko tertib rendah Forbes Rigobon

(FR), dan saluran penularan risiko tertib tinggi Kecondongan Bersama (CS), Kurtosis

Bersama (CK) dan Kemeruapan Bersama (CV). Dan akhirnya, kajian ini merancang model

ramalan harga karbon (HOC-LSTM) untuk meramal harga pasaran karbon negara Cina.

Kesimpulan utama tesis ini adalah seperti berikut: pertama, rangkaian ramalan harga

karbon penularan risiko tertib tinggi memberi sokongan teori yang menyakinkan untuk

meramalkan harga karbon negara Cina. Kedua, tiada hubungan penularan risiko dalam

salurantertib rendah, tetapi hubungan penularan risiko yang signifikan dalam saluran tertib

tinggi telah dikesani dalam pasaran karbon pada frasa perubahan cepat dan lambat. Ketiga,

model HOC-LSTM yang dibina dalam tesis ini mempunyai kelebihan yang signifikan

dalam meramalkan harga karbon negara Cina berbanding dengan model pesaing lain,

seperti Unit Berulang Berpagar, Perceptron Berbilang-Lapisan, Pohon Keputusan

Membentuk Gradien, Regressor Ekstra Pohon dan Rangkaian Neural Penyedaran Belakang.

Hasil kajian tersebut bukan sahaja memberikan rujukan bagi pelabur dan

pihakpengurangan pelepasan gas rumah hijau untuk membuat keputusan pelaburan dan

kewangan, serta menganalisa halatuju harga, tetapi juga menyumbangkan rujukan teknikal

kepada jabatan kerajaan untuk mempromosikan pembangunan mekanisme penentuan harga

pasaran karbon dan kecekapan pasaran.

Kata kunci: Pasaran karbon Cina, penularan risiko, ramalan harga, momen terbtinggi,

HOC-LSTM
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The carbon market, as an effective mechanism for addressing environmental issues,

plays an important role in reducing global greenhouse gas emissions. The carbon market

solves environmental problems through its function of market mechanisms. Generally, the

government usually sets certain emission targets and grants a certain amount of carbon

allowance to high emission enterprises. If enterprises use advanced emission reduction

technologies to reduce emissions, they can sell the saved allowance in the carbon market to

obtain economic benefits (Chevallier, 2009). While enterprises with insufficient emission

allowance can purchase the required proportion in the market, for which they need to pay

costs for high emissions. With the increase of companies participating in the carbon market,

the incentive performance of the market becomes more significant, thereby encouraging

the entire economy to achieve low-carbon goals.

The core function of the carbon market is achieving emissions reduction target by

the manner of market price mechanism. As a result, the topic of carbon market price

formation and driving are crucial. Furthermore, the price forecasting of carbon market in

uncertain complex market condition has been regarded as the core of carbon market price

research. Based on this, this thesis focus on studying the China carbon price forecasting

mechanism and its price driving mechanism after consider the impact of high order risk

contagion relationship on the carbon market, which support a more convinced and

innovative evidence for explaining the carbon price formation that significant different

from previous research. Based on the designed theoretical framework, this thesis uses long
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and short-time memory (LSTM) neural network to construct a model for forecasting

carbon prices, solve the price forecasting issues of China carbon price that consider high

order risk contagion channels.

According to research design, the framework of the first chapter is as follows.

Firstly, this thesis analyzes the origin of the environmental problems, expounds the

evolution of European carbon market (EUCM) and China carbon market, introduces the

topic of risk contagion and price forecasting issues for aligning with the theme of this

thesis. Secondly, this thesis suggests some specific research problems in the filed of carbon

price risk contagion and price forecasting. Finally, proposes the general objective and

special objective in different points. Furthermore, the contribution and some new

innovations for solving the above research problems are suggested.

1.2 Study Background

1.2.1 Origin of the Environmental Problem

The environment externality theory was proposed by the famous economist Pigou

in 1960, the key points of this theory were property rights and trading costs. As we known,

the environment externalities have two types, that one is the positive externality, and

another is the negative externality. Specifically, the negative externality can be produced

when the behavior of a producer or consumer result in harm to others in society, while they

do not provide any compensation for this damage. On the contrary, it creates positive

externality. Actually, the environmental pollution is a typical manner of negative

externality. The main reason is that the polluting enterprises have emitted pollutants into

the atmosphere for a long time, and the world has paid a huge cost to digest this gas,

including human health and environmental pollution, while those industrial enterprises do
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not take responsibility for this damage. Among them, the sharp increase in greenhouse gas

emission is direct cause of environment negative externalities.

Since the industrial revolution in the 18th century, accompanied by advancements

in production technology and a rise in fossil energy consumption, the world economy has

achieved great development and created remarkable achievements. According Bradford

DeLong, an economist at the University of Berkeley in the United States, the average

annual growth of the global economy was only 0.1% before the industrial revolution.

While, from the 18th century to end of the 20th century, the global per capita GDP

increased by nearly 37 times (DeLong,2022). On the one hand, economic development has

profoundly altered the production methods and lifestyles of human society, promoting the

progress of social civilization. On the other hand, excessive resource extraction and

consumption have also produced severe environmental problems. If this dilemma does not

receive global attention and resolution, the global economic development will be difficult

to maintain.

Although some environmentalists, such as Chevallier (2009) and Kim et al.(2010)

commonly accepted that the moderate carbon dioxide proportion is an important

component for stabilizing the global climate, it is evident that this share is undergoing

significant changes due to human activities. According to the World Bank (2023), the

global carbon emissions of CO2 in 2022 are 36.8 billion tons, which had increased by 2.3

times compared to the level of 11.183 billion tons in 1965, with per capita carbon

emissions increasing by nearly 68% (as shown in Figure 1.1).
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Figure1.1: The Curve of Main Greenhouse Gas Emission in 1965-2022

Source: Wind Database (2023)

In particular, with the rapid economic development over the past half century, the

emission of various pollutant gases has produced a significant increase in the concentration

of atmospheric pollutants. According to the latest data from the National Oceanic and

Atmospheric Administration (NOAA) of the United States (Figure 1.2), global atmospheric

CO2 concentration rose from 316.91 ppm in 1960 to 417.1 ppm in 2022, with a significant

increase of 31.6% and an average annual growth rate of 0.5%. With sharp increase in

global carbon emissions, the average temperature of the earth has risen by 1.1℃ in the past

two hundred years. The increase of global temperature will not only trigger serious

environmental problems, but also generate more serious social, economic and political

problems. Therefore, for promoting the sustainable development, effectively curbing

climate problems, suppressing global warming and reducing greenhouse gas emissions

have become key issues that need to be urgently addressed by the global community.
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Figure1.2: The Curve of Global CO₂ Emission Concentration in 1960-2022

Source: Wind Database (2023)

1.2.2 European Carbon Market for Solving the Environmental Problems

1.2.2.1 The Evolution of European Carbon Market

The United Nations Framework Convention on Climate Change (UNFCCC),

promoted in 1992 during the United Nations Conference on environment and development,

established carbon market as an effective market mechanism to solve the climate problems

and reduce global greenhouse gas emissions. Over 150 countries participated in

formulating the convention. The main objective of this convention is to stabilize

greenhouse gases concentration at a level that does not harm the climate system, and to

achieve global sustainable development by suppressing greenhouse gas emissions. To

construct common but differentiated responsibilities, the convention requires developed

countries that with more greenhouse gas emissions to take positive measures to reduce

pollution gas emissions, while developing countries do not bear the legal responsibility for
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emission reduction in the near future. The greatest contribution of this convention is

providing the basic framework of international cooperation to solve climate and

environmental problems.

The promotion of the Kyoto Protocol in 1997 is a supplementary clause to the

UNFCCC. The Kyoto Protocol, adopted in 1997, further stipulates implementation of

greenhouse gas emission reduction responsibilities by developed countries, especially in

terms of the schedule and allocation of emission reduction quotas. To facilitate the

implementation of national emission reduction actions, the Kyoto Protocol has established

three market-based mechanisms for greenhouse gas emission reduction, namely Joint

Implementation (JI), International Emission Trading (IET) and Clean Development

Mechanism (CDM) (as shown in Table 1.1).
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Table 1.1:Market Characteristics of the Phase I to Phase IV of the EUCM

Source: China Emissions Trading Network (2023)

Object Greenhouse
gas

Scope
covered Industries covered Total control Quota method Regulatory

mechanism

Phase I

Establishing
carbon
market
infrastructure

CO₂ European
states

Power plants over 20MW,oil
refining,coking,iron and steel,

cement, glass,lime, brick making,
ceramics,paper making industries

2.058 billion
tons of CO₂

Free allocation
of 95% quota JI, CDM

Phase Ⅱ

Reduce
emissions by
8% on the

basis of 1990

CO₂

European
states,
Norway,
Iceland,

Liechtenstein

Newly added aviation industry 1.859 billion
tons of CO₂

Free allocation
of 90% quota JI, CDM

Phase Ⅲ

Reduce
emissions by
21% on the
basis of 2005

CO₂, N2O,
PFC

European
states,
Norway,
Iceland,

Liechtenstein

Newly added industries such as
aluminum production, petrochemical
industry, ammonia production,nitric
acid, oxalic acid, and aldehyde acid
production,carbon capture, pipeline
transportation, and underground

storage of carbon dioxide

Linear
decrease of

1.74% per year
compared to
2013 levels

100% auction in
the power

industry, 80%
free allocation in
manufacturing
industry in 2013,
and reach 30%

by 2020

JI, CDM

Phase IV

Reduce
emissions by
43% on the
basis of 2005

CO₂, N2O,
PFC

European
states,
Norway,
Iceland,

Liechtenstein

Same with Phase Ⅲ

Linear
decrease of
2.2% per year
compared to
2020 levels

100% auction in
the power

industry, free
allocation of

34% quota, and
reach 0% by

2026

No
offsetting
allowed
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Among them, the JI mechanism mainly refers to the transfer of emission reduction

units achieved by developed countries to another developed country through project level

cooperation, but at the same time, corresponding quotas must be deducted from the

transferor's allocated quantity units. IET mechanism refers to the practice of developed

countries purchasing emission allowances from another developed country with excess

emission quotas when they may exceed their greenhouse gas emissions, in order to fulfill

their emission reduction commitments, and at the same time deducting the corresponding

transfer quota from the transferor's allowed emission quota. The CDM refers to the project

level cooperation between developed countries and developing countries through the

provision of funding and technology. The "Certified Emission Reductions" (CERs)

achieved through projects are used by developed country Parties to fulfill their

commitments under the Protocol. The implementation of the above three measures

essentially gives the carbon emission right with commodity attribute, and promotes the

formation of the global carbon market. The European carbon market (EUCM), the

representative market is the European Union Emissions Trading System (EUETS),

established in 2005, stands as the world's pioneering carbon market. With the development

of nearly 20 years, the EUETS has become an famous carbon market with the largest

trading volume, the strongest liquidity and mature market mechanism. The EUETS follows

the "top-down" quota allocation principle, and each emission reduction entity determines

the initial allocation of emission allowances, that is, the European Union Allowance (EUA).

If the actual carbon emission quota is less than the allocated part, the excess quota can sell

in the carbon market. On the contrary, if there is a shortfall, the entities can also buy the

quota from the market.
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The EUETS has established four stages to promote the development of carbon

market, that is the first stage (from 2005.1.1 to 2007.12.31) belongs to the experimental

stage, that is the informal trading stage with the aims to accumulate operational experience

in the carbon market and does not mandate the achievement of emission reduction., and the

emission reduction gas is limited to carbon dioxide. In the second stage (from 2008.1.1 to

2012.12.31), emissions reduction will be expanded to other greenhouse gases, including

sulfur dioxide and chlorofluorocarbons, and the transportation industry will be included in

the emission reduction range, the target is achieving a 19% reduction in the carbon

emissions compared to 1980. In the third stage (from 2013.1.1 to 2020.12.31), the aviation

industry had be included in the emission reduction scope, and the goal is reducing the total

carbon emission by 20% compared with 2005. The important characteristic of the fourth

stage (from 2020.1.1 to 2030.12.31) is the implementation of stricter emission reducing

rules. At this stage, the European carbon market requires 2.2% reduction in the total annual

quota and cannot use carbon credits to offset it.

The Paris Agreement that adopted at the 2015 Paris Climate Conference is the

latest supporting consensus for the European carbon market. The Paris Agreement clearly

puts forward two basic objectives, the first goal is to limit global temperature within 2 ℃

in this century and strive to control the temperature rise within 1.5 ℃. The second is

achieving zero net global greenhouse gas emissions in the latter half of this century. The

Paris Agreement engages all nations in a collective effort to protect the Earth's ecology.

Although the European carbon market operation mechanism remain regards the trading

rules such as CDM, JI and IET as the market core, the market governance pattern has from

the "bottom-up" to "top-down". It is worth noting that, the bottom-up carbon allowance

allocation method was implemented after the establishment of the European carbon market
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in 2005, which determines the emission allowance based on the actual carbon emissions of

each enterprise. However, the entire region has not set a total emission limit. The practice

of this method has led to excessive allocation and a decrease in carbon prices. Conversely,

the top-down plan was implemented in 2008, and the allowance for this plan was

uniformly set by the state, with enterprises developing their own allowance plans within a

limited scope. This measure greatly improved the economic attributes of carbon allowance,

and carbon prices steadily increased, providing the correct price signal for enterprises to

reduce emissions.

1.2.2.2 The Price Trend of the European Carbon Market

The EUETS serves as the cornerstone of the European policy framework for

combating climate change. According to data from the International Carbon Action

Partnership (ICAP) in 2020-2021, EUETS covered approximately 36% of total emissions

in the European Economic Area (EEA). The EUCM has played a positive role in reducing

carbon emission in Europe. Since the market’s formal operation, the carbon price trend has

been upward, and has experienced several big fluctuations (as shown in Figure 1.3).
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Figure 1.3: Prices and Volatility of EUA Continuous Futures Contracts in the EUCM

Source: European Energy Exchange(2023)

Specifically, in the first stage (from 2005 to 2007), the European carbon price has

continued to fall. The EUA price continued to fall, dropping to almost zero in 2007. In the

second stage (from 2008 to 2012), the carbon price remained consistently low. In particular,

because of the 2008 financial crisis and immature carbon market mechanism, the emissions

form the European corporate have significantly decreased, which resulting in a consistently

low carbon price. In the third stage (from 2013 to 2020), the European carbon price has

increased. Especially, the Backloading mechanism adopted in 2014, and then formally

started to implement the Market Stability Reserve (MSR) in 2019, boosted market
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confidence and increased carbon price, exceeding 20 euros per ton. Actually, the

Backloading mechanism mainly ensures that the carbon market's emission reduction

targets match the macro emission reduction targets by adjusting the total allowance. For

example, the emission reduction companies voluntarily purchase carbon credits to support

emission reduction projects and offset their carbon emissions. In the fourth stage (from

2021 to 2030), the European carbon price has significantly increased, the possible reason is

the ambitious emission reduction targets that Europe aims to achieve in 2023.

1.2.3 China Carbon Market for Solving the Environmental Problems

1.2.3.1 The Carbon Emission in China

Since the implementation of the reform and opening-up policy in 1980s, the

Chinese economy has officially entered a stage of rapid development, especially from 2003

to 2010, where the growth rate of the Chinese economy remained at a level of around 10%.

According the National Bureau of Statistics of China(2025), China's GDP grew from 362.4

billion yuan to 13.4 trillion yuan from 1978 to 2024, with an average annual economic

growth rate of 8.9%, far higher than the world's average economic growth rate of 3%

during the same period. China's GDP in 2024 was 13.4 trillion yuan, calculated at constant

prices, an increase of 5.0% compared to the previous year. The total economic output ranks

second in the world, and the economic growth rate ranks among the top in the world's

major economies, making it an important driving force for global economic growth.

Taking 2024 as an example, the added value of China's primary industry is 9.1414 trillion

yuan, an increase of 3.5% over the previous year. The added value of the secondary

industry is 4920.87 billion yuan, an increase of 5.3%. The added value of the tertiary

industry was 765583 billion yuan, an increase of 5.0%. In general, the total economic
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output accounted for over 18% of the global economy, contributing 32% to global

economic growth, and its per capita income was close to the high-income countries.

However, behind the rapid economic development, there are also concerns about

carbon emissions. In fact, in the past two decades, with the economy development, China's

carbon emissions have gradually increased, especially since 2007, the total carbon

emissions have surpassed the United States for the first time, that make China becoming

the world's largest emitter of CO₂. The excessive reliance on traditional fossil energy

consumption is the primary cause for the increase in carbon emissions. That is to say, the

China's economic growth miracle is largely at the cost of sacrificing the environment.

Despite the Chinese government's increasing attention to environmental issues in recent

years, and the dependence of economic growth on energy has also gradually decreased,

the high carbon emissions in the short term still exists.

Figure 1.4: Country-by-Country breakdown of carbon emission for 2023

Source:National Bureau of Statistics of China (2024) and International Energy Agency
(2024)
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According the National Bureau of Statistics of China (2024) and The International

Energy Agency (IEA,2024), the global energy related carbon dioxide emissions reached

37.4 billion tons in 2023, an increase of 1.1% compared to the previous year. There are

four noteworthy observations. Firstly, the CO2 is the largest emissions of the country, and

China's carbon emissions reached 12.6 billion tons, accounting for 31.8% of the world's

level. The second is the United States, with the carbon emissions of 4.85 billion tons in

2023, accounting for 14.4%. That is, China's carbon emissions still account for the highest

proportion in the world (as shown in Table 1.2). India's global carbon emissions account

for 9.5%, Russia and Indonesia both account for 5.8%, Brazil accounts for 5.5%, 27

European countries account for 4.9%, Japan accounts for 3.5%, South Korea accounts for

1.9%, and the remaining countries and regions account for 16.9%.

Secondly, the carbon emission growth rates of China from 2020 to 2022 were 0.6%,

0.6%, and 5.3%, respectively. From the perspective of carbon emissions sources, according

the Shanghai Environment and Energy Exchange (2024), China's carbon emissions in 2023

mainly come from the energy sector, including energy supply and energy consumption

industries, which account for 77% of the country's total emissions. Meanwhile, industrial

process carbon emissions account for 14%, agricultural sector carbon emissions account

for 7%, and waste carbon emissions account for 2%. Thirdly, China's carbon emission

strength from 2020 to 2022 were 1.14, 1.11, and 1.03, respectively. Carbon emission

strength is the ratio of total carbon emissions to GDP. The smaller the indicator, the more

GDP output can be obtained under a given carbon emission level. Data from the Table 1.2

shows that since 2020, China's carbon emission strength has experienced a downward

trend. Fourthly, from 2020 to 2022, China's per capita carbon emissions were 7.96, 8.0,
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and 8.42 tons per person, respectively, with a clear upward trend in per capita carbon

emissions.

Table 1.2: Carbon Emission and its Growth Rate of China in 2020-2022

Items 2020 2021 2022

Carbon emission (Billion tons) 112.2 112.9 118.9

Growth rate of Carbon emission 0.6% 0.6% 5.3%

Carbon emission strength (Tons/10000 yuan) 1.14 1.11 1.03

Growth rate of Carbon emission strength -6.2% -2.1% -7.2%

Per capita carbon emission (Tons per person) 7.96 8.0 8.42

Growth rate of per capita carbon emission -0.4% 0.5% 5.3%

Source: National Bureau of Statistics of China Government (2023)

Therefore, to reduce the negative environmental impact of economic growth and

maintain long-term high-quality economic development, taking effective measures to

reduce carbon emissions has become a key issue that China urgently needs to solve.

Among various means, relying on market-oriented carbon markets has become an

significant breakthrough for achieving this goal, and has received strong support from

Chinese government.

1.2.3.2 Mechanism Design of China Carbon Market

The institutional design of China's carbon market depends on the economic policies

and energy policies currently implemented in China.The carbon peak and carbon neutrality

strategy proposed by the Chinese government in September 2020 is the top-level design for

formulating energy policies and promoting carbon market construction. The strategy of

Carbon peak means the carbon dioxide emissions situation reach their peak and no longer
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increase. This means that China aims to achieve a peak in total carbon dioxide emissions

before 2030, after which they will gradually decrease. The strategy of Carbon neutrality

refers to China offsetting its own carbon dioxide emissions through afforestation, energy

conservation and emission reduction, and industrial adjustment before 2060. Based on this,

China's economic policies have also undergone adjustments, and economic growth is no

longer based solely on the extensive model of pursuing economic growth, but on a high-

quality growth model that places more emphasis on green and low-carbon development.

To promote the reduction of carbon emission rights, the Ministry of Ecology and

Environment began implementing the "Management Measures for Carbon Emission

Trading (Trial)" in February 2021, and officially launched the construction of a national

unified carbon emission trading market in July 2021.

Compared to the European carbon market, China carbon market development

started relatively late. In 2011, the National Development and Reform Commission

(NDRC) launched pilot carbon trading operations in seven regions: Beijing, Shanghai,

Tianjin, Chongqing, Hubei, Guangdong and Shenzhen. In 2016, Fujian became the eighth

pilot region. In the same year, the Sichuan carbon market also opened. Furthermore, the

national unified carbon market was officially established in July 2021. It is estimated that

annual industry emissions exceeds 4 billion tons of CO₂, that is China carbon market has

become the world’s largest in terms of emissions coverage.

The national unified carbon market is divided into two parts, one is the mandatory

quota market, another is the voluntary emission reduction market. As for the mandatory

quota market, the trading product is Chinese Emission Allowances(CEA), also known as

carbon emission quotas. The mandatory quota market has developed since the regional
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pilot carbon market, that focusing initially on the power generation industry. The regional

pilot and the national unified carbon market follow the same design principle, while the

differences are mainly in the system design of the quota allocation. It is worth noting that

the operation of national unified carbon market does not mean closure of pilot markets.

Following the establishment of the national unified carbon market, the regional pilot

market is still operating synchronously.

Figure 1.5: Policy Design Framework of the China NUCM

Source: China Carbon Emissions Trading Network (2024)

China carbon market adopts a "dual-centre" model, where Hubei is responsible for

the construction of the national unified carbon market registration system, while Shanghai

manages the operation of carbon trading system. The two regions jointly play a pillar role

in the national unified carbon market (as shown in Figure 1.5). Among them, the

registration system serves as the "warehouse" for storing carbon funds, and it undertakes

the registration, settlement and cancellation of carbon price, and supervises registration

system and its management institutions. Furthermore, Beijing Green Exchange is
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responsible for constructing the National Voluntary Emission Reduction Trading Centre

(NVERTC), which serves as the national platform for future Certified Voluntary Emission

Reductions (CVER) trading. This initiative encourages enterprises that do not bound by

mandatory emission reduction obligations to develop greenhouse emission reduction

projects. Emission-control enterprises taking part in the national carbon emissions trading

market can also use CVER as a supplementary compliance method, up to 5% of actual

emissions can be offset.

It is worth noting that there are significant differences in the legal frameworks of

carbon markets between China and the European Union, mainly reflected in the legal

hierarchy and specific content. Specifically, firstly, the legal framework for the EU carbon

market is relatively comprehensive. The EU has formulated numerous basic legal

documents on carbon emissions trading, clarifying the common standards and procedures

that member states must follow. The emission quotas and emission rights allocation plans

formulated by various countries need to be reviewed and approved by the European

Commission before they can take effect, which provides a solid legal guarantee for the

operation of the carbon market. Secondly, the legal framework for China's carbon market

is relatively weak. At present, China's legal framework for carbon emission trading mainly

includes the "Interim Regulations on the Administration of Carbon Emission Trading" and

the "Measures for the Administration of Carbon Emission Trading (Trial)". Although a

"1+N" policy system for carbon peak and carbon neutrality has been established, policy

requirements have not yet fully risen to the legal level, and there is a lack of clear

regulations on many core issues in trading. Thirdly, in terms of market size and activity,

the Chinese carbon market has shown a gradual growth trend. The EU carbon market is in

a leading position globally in terms of market size and activity, especially with the
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extensive participation of numerous enterprises, financial institutions, and various

investors, making the market highly liquid and the price discovery mechanism more

effective.

Figure 1.6: Transaction Prices of China NUCM from 2021-2023 (yuan/t)

Source: China Carbon Emissions Trading Network (2024)

1.2.3.3 The Price Trend in China Carbon Market

In terms of price and trading volume of the national unified carbon market, as of

the end of June 2023, the accumulative trading volume reached 235 million tonnes, with a

trading volume of 10.787 billion yuan, and an average carbon price of 45.83 yuan per

tonne. The closing price was 60 yuan per tonne, reflecting 25% increase compared to the

opening price on 16 July according to the Figure 1.5. After surveying the transaction prices

of the national unified carbon market over the past two years, prices are generally

smoothing. In particular, the trading price has risen steadily. For example, The national

unified carbon market initially opened with a price of 48 yuan per tonne. However, by
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November 2021, this price had dropped to an average of around 40 yuan per tonne.

Starting from January 2022, the market saw a steady recovery, with transaction prices

stabilizing between 50 and 60 yuan per tonne (as shown in Figure 1.6).

In terms of the price of Hubei carbon market, as the most active carbon market,

Hubei carbon market ranked first in China in terms of transaction scale, continuity, amount

of social capital introduced, and participation of enterprises. As of June 30, 2023, the

secondary market of Hubei carbon market quota has accumulated a transaction volume of

365 million tonnes, turnover of 8.831 billion yuan, maintaining a leading level in the

national pilot carbon market.

Figure 1.7: Transaction Prices of Hubei Carbon Market from 2014-2024 (yuan/t)

Source: China Carbon Emissions Trading Network (2024)

The latest data shows that, as of October 2023, total transaction volume of Hubei

Emission Allowances (HBEA) is 184,500 tonnes, with a total turnover of 9,179,600 yuan.

During the period, the highest transaction price was 51.40 yuan per tonne, while the lowest

transaction price was 47.02 yuan per tonne. The average transaction price settled 49.76
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yuan per tonne, on the last trading day of October, the closing price was 50.19 yuan per

tonne, which was 2.70% higher than that of the closing price of 48.87 yuan per tonne on

the last trading day of September. As of 31 October, the cumulative turnover of HBEA was

82.25 million tonnes, and cumulative turnover reached 1.99 billion yuan (as shown in

Figure 1.7).

1.3 Problem Statement

1.3.1 Problem Statement from Macro Level

As the rapid economic development and increasing energy consumption, China has

become the world's largest emitter of carbon emission. The environmental problems caused

by the increasing carbon emissions are profoundly affecting the physical health and

lifestyle of every Chinese person. If environmental problems are not effectively solved,

sustaining long-term growth in the Chinese economy will also be difficult to maintain.

Therefore, as a solution to environmental issues and carbon emission reduction, the

establishment of the carbon market is a crucial measure for China. This approach aims to

lead the global climate governance, overcome energy and environmental constraints, and

get socioeconomic improvement and efficiency. It is generally believed that the faster the

economic development speed, the more obvious the demand for fossil fuels, and the more

pollution emissions come from the combustion of fossil fuels. Therefore, for China's

rapidly developing economy, addressing environmental pollution and carbon emissions has

become an important topic.

In September 2020, Chinese President Xi Jinping declared at the 75th United

Nations General Assembly that, China will increase the strength of its national autonomous

contribution, adopt stronger policies and measures, and strive to peak its carbon dioxide
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emissions before 2030 and work towards carbon neutrality before 2060. This important

commitment plays a crucial role in promoting the development of China carbon market. In

December 2020, the Chinese government further proposed to accelerate the construction of

national energy rights and carbon emission trading market, and expect to achieve stable

and moderate decrease in carbon emissions after reaching peak levels. The People's Bank

of China in January 2021 clearly proposed to enhance the financial system's ability to

manage climate related risks, and promote the construction of carbon market to reduce

carbon emissions. In fact, the operation of the carbon market is an important means of

reducing carbon emissions. An effective carbon market pricing mechanism can motivate

the ability to address environmental issues, achieve effective reduction of carbon emissions,

gradually alleviate climate conflicts, including preventing climate disasters, and

responding to economic losses caused by abnormal and extreme weather conditions. That

is to say, in the carbon market, companies with strong emission reduction capabilities can

sell their excess quotas to companies with weak emission reduction capabilities, and

through such active trading, achieve effective incentives for companies to reduce emissions.

If the entire society's enterprises achieve emission reduction through this method, then the

goal of carbon emissions will be eventually achieved.

According to the arrangement, in July 2021, the Ministry of Ecology and

Environment of China officially launched the national unified carbon market. As of the end

of 2023, the annual trading volume of China carbon market is 212 million tons. Among

them, the trading volume of listed transactions was 35 million tons, and the trading volume

of bulk agreement transactions was 177 million tons.
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With the expansion of carbon market trading scale, the annual transaction volume

of carbon emission quotas in 2023 is 14.44 billion yuan. Among them, the trading volume

of listed agreement transactions was 2.57 billion yuan, and the trading volume of bulk

agreement transactions was 11.88 billion yuan. The China carbon market has become the

largest carbon market in the world. The price mechanism is the core of the carbon market

(Yun et al., 2023), thus, in order to reduce emissions, enhance carbon market effectiveness,

achieve the target of carbon peaking and carbon neutrality, it is essential to study price

formation and forecasting mechanism of carbon market. Actually, an effective carbon price

forecasting mechanism can improve the development of carbon market mechanism, but

also serve the performance of carbon reduction.

1.3.2 Problem Statement from Micro Level

As a special financial innovative market, the price forecasting of carbon market

need follows the basic methodology of general financial assets before considering the

exclusive price characteristic. Compared with other financial markets such as the stock

market, exchange rate market, interest rate market, etc, China carbon market has

remarkable characteristics of sharp peaks and thick tails, market asymmetry, high

sensitivity to policy shocks, and time-varying volatility (Zhang et al., 2017; Yun et al.,

2023). Actually, the market asymmetry characteristics reflect the price fluctuations caused

by irrational market shocks in the carbon market. Highly sensitivity to policy shocks means

carbon price vulnerable to external events or policy changes, such as energy policies,

emission reduction quota, global climate negotiations and financial crises in the capital

market sector (Adekoya et al., 2021; Qiu et al., 2023). So, effective price forecasting

research needs to capture those above characteristics, otherwise, such research needs to be

strengthened. In statistics, the skewness of the third-order moments and kurtosis of the
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fourth-order moments can be used to reveal the impact of market asymmetry and extreme

factors on the carbon market suggested by Kraus & Litzenberger (1976) and developed by

Forbes et al.(2002). Effective price forecasting requires not only characterizing market

characteristics, but also considering the cross market risk contagion relationship between

carbon market and its infected markets. As the close connection of global financial

networks, the price signal transmission and risk contagion relationship between carbon

markets, energy markets, and capital markets cannot be ignored (Conrad et al., 2013; Zhu

et al., 2022). Effectively identifying these relationships and incorporating them into carbon

price forecasting models can enhance the explanatory of carbon price formation.

Actually, according to cross-market contagion and extended high order moment

CAPM theory (Fry & Hsiao, 2018), the risk contagion from sourced carbon market to its

infected markets also have an impact on carbon price. Relevant studies have found that, the

volatility spillover originated from carbon market to the energy market, especially to the

crude oil markets, is much larger than the degree of volatility spillover it receives (Tsai et

al.,2024;Wang et al.,2024). The carbon prices contain complex volatility risk , which is

easily transmitted to other closely markets through cross-market network, and forming a

phenomenon of risk contagion (as shown in Figure 1.8).

After reviewing previous studies, mainly including Yu et al. (2020), Uddin et al.

(2018) and Ji et al.(2018), as for the risk contagion measurement, this thesis found that

previous studies mainly focused on measuring the information transmission and volatility

spillover relationship between carbon market and its infected markets from the

perspectives of market returns and volatility variance, using GARCH volatility techniques.

Although these studies have certain advantages, they overlook the characterization of
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market asymmetry and highly sensitivity to policy shocks. That is to say, existing studies

mainly focus on the low order moment perspective of mean and variance to study the risk

contagion problem in carbon market, ignoring the risk contagion revealed from third-order

and fourth-order moments such as skewness and kurtosis. As for the construction of

forecasting model, the high order moment risk contagion factors were not included in the

forecasting model, which has raised doubts about the forecasting accuracy.

In theory, the price transmission and volatility spillover relationship between

carbon prices and their infected factors based on low order moments have received

considerable attention. However, the impact mechanism of carbon prices has not been

explained from the perspective of high order moments, especially from the perspective of

reflecting the characteristics of carbon market asymmetry and extreme shocks. This makes

it difficult for the existing theoretical framework to truly reflect the operating laws of

carbon prices, and there are doubts about the accuracy of the relevant conclusions.

Therefore, to provide new and more convincing evidence, it is necessary to reveal

the high order moment risk contagion relationship between China carbon market and its

infected market before conducting the carbon price forecasting, and to construct machine

learning models that can handle complex data, which is the core theme of this study.
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Figure 1.8: Price Fluctuation between Carbon Market and Infected Markets

Source: Investing App (2024)
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1.4 Objective of the Study

1.4.1 General Objective

As environmental issues and carbon emissions have given more attention, relying

on the carbon market to reduce carbon emissions has become the most effective means.

Especially, the price mechanisms play a vital role in implementing emission reduction

targets. Effective price forecasting can promote the achievement of emission reduction

targets. Therefore, the general objective of this study is to forecast carbon price in China

by high order risk contagion long and short-term memory model (HOC-LSTM).

1.4.2 Specific Objective

The specific objectives pertain to the following points:

i. To test the risk contagion channel from risk source carbon market to its infected

markets in the manner of high order moment attribute.

ii. To construct a machine learning carbon price forecasting model that suitable for

capturing the impact of high order moment risk contagion on carbon price.

iii. To forecast the China carbon price by the proposed high order risk contagion

model (HOC-LSTM) to prove the risk contagion is useful to improve the

forecasting performance.

1.5 Research Questions

In achieving the objectives of this study, the following questions research have to

be addressed:



28

i. Under the high order moment attribute, how to test the risk contagion channel

from risk source carbon market to its infected markets?

ii. How to construct a suitable carbon price forecasting model that consider the

impact of the high order moment risk contagion?

iii. How to forecast the China carbon price by the proposed high order risk

contagion machine learning model (HOC-LSTM) compared with others models?

1.6 Significance of the Research

Forecasting carbon market prices is central to its functioning. Building an effective

mechanism between risk contagion and price forecasting through high order moment

attributes, can not only conducive to improve the effectiveness of carbon market, but also

better serve the capital allocation function of carbon market. This thesis has certain

theoretical significance and practical significance.

1.6.1 Theoretical Significance

Firstly, the carbon price forecasting theoretical framework designed in this thesis

can expands the theory and method of China carbon price forecasting research. Starting

from the high order moment financial asset pricing theory, this thesis explores the basic

connotation of high order moment risk contagion and its infected mechanism on China

carbon price. According to extended high order moment pricing theory and cross market

risk contagion theory, combined the special characteristics of carbon market, using LSTM

neural network to forecast China carbon price.

Secondly, a new non parametric method has been developed, which helps to test

the risk contagion relationship from sourced carbon market to infected market. On the one



29

hand, the carbon market volatility is characterized into rising and declining trend, and

furthermore, constructs different risk contagion relationship from sourced carbon market to

its infected markets in the fast and slow market volatility. On the other hand, this study

conducts a new non-parametric method to test high order risk contagion relationship in the

channel of Co-Skewness (CS), Co-Kurtosis (CK) and Co-Volatility (CV).

Thirdly, this study promote the carbon price forecasting model development

through designing a high order moment risk contagion model (HOC-LSTM ). The LSTM

has training advantage of conforming to long-term memory function of financial time

series, especially through the special design of gate structure to control data information.

The LSTM can effectively avoiding the problem of gradient explosion and gradient

vanishing that other deep networks, so as to ensure the effective convergence of the model

(Wang et al., 2021; Elsayed et al., 2022). An effective carbon price forecasting mechanism

can significantly contribute to achieving carbon reduction targets. Therefore, the

theoretical framework and research methods improve the forecasting accuracy of carbon

price, as a result, the solution ideas and process of carbon price forecasting can also offer

valuable insights and reference for solving forecasting problems in other capital markets or

energy markets.

1.6.2 Practical Significance

Firstly, this study serves the emission reduction of carbon market and improve

market trading mechanism. The price forecasting of carbon market is the core issue. An

effective carbon price forecasting framework helps to improve the maturity and

improvement of carbon market, promote the allocation of emission reduction funds,

provide decision-making reference for government departments to formulate carbon
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market risk control policies, supervise the operation of carbon market, and deal with

systemic financial risks. At the same time, these advancements will better support entity

enterprises to reduce emissions of pollutants, enhance the role of the carbon market, and

achieve carbon peak and carbon neutrality goals.

Secondly, this study help carbon market investors make investment decisions under

uncertain environment. On the one hand, compared with the traditional price forecasting

framework, constructing a carbon price forecasting mechanism that considers high order

moment attribute risk contagion can offer valuable reference for market participants, such

as investors and emission reduction entities to make investment decisions and risk

management. On the other hand, the maturity of carbon price forecasting model can

promote the development of market efficiency, thereby providing price operation rules and

decision-making basis for carbon asset supply and demand enterprises to achieve optimal

economic and ecological benefits.

1.7 Organization of the Study

The thesis is organized into five chapters. Chapter one analyzes the origin of

greenhouse gas emissions and the environmental negative externalities caused by them,

expounds the development of carbon market in European and China, analyzes the core

issue of carbon market, that is, the relevant research background of carbon price

forecasting, and then puts forward the research problems and research objectives. Then,this

chapter emphasizes the significance and structural details of the research, in order to

comprehensively understand the motivation and direction of the research.

Chapter two reviews the literature, which is related to the objective of the study.

From perspective of financial asset moment attribute, this chapter summarizes the risk
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contagion theory of carbon market, carbon asset pricing theory, efficient market hypothesis

theory and prospect theory. Collects and analyzes high order moment attribute financial

asset pricing theory and high order moment attribute risk contagion theory, and combine

them with the characteristics of carbon emission trading to classify, extract and summarize

the risk fluctuation characteristics of carbon market. Through theoretical analysis, a carbon

price forecasting framework suitable for China carbon market is constructed, which

provides foundation for the model construction and experimental analysis in the following

chapters.

Chapter three explains research design and methodology used in the study. The

chapter is mainly the design of carbon price forecasting model based on high order

moment attribute risk contagion. Firstly, identify and judge the high order moment risk

contagion relationship caused by market asymmetric information and extreme event impact.

Then, according to the identified risk contagion relationship, the model framework of

carbon price forecasting is clarified and determined. Finally, machine learning method is

used to predict the high order moment risk contagion framework.

Chapter four is the empirical analysis of high order moment risk contagion in

China carbon market. Firstly, based on statistical modeling technology, this chapter makes

basic statistical analysis, stationarity test, heterogeneity division of fluctuation trend of

carbon price, calculation and analysis of high order statistics. Secondly, based on the non-

parametric statistical hypothesis test method, identify the risk contagion relationship

between carbon market and its infected markets, analyze variations risk contagion channels

among different market volatility trends. Thirdly, this study utilizes machine learning
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methods to fit the pricing framework and forecast prices based on high order moment

contagion.

Chapter five summarizes the empirical results and conclusions of this study, as

well as explaining the limitations that must be noted. In addition, the following suggestions

have been put forward in the thematic areas: policy recommendations for China carbon

market price mechanism, analysis risk contagion prevention strategies in China carbon

market, and some information that may be used for future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

From a global perspective, China, the United States, and Europe are the top three

carbon emitters, accounting for approximately 51% of the total global carbon emissions by

2023, according to the International Energy Agency (2024). The total carbon emissions are

closely related to the total economic output. China's carbon emissions have shown rapid

growth since joining the WTO, mainly due to the continuous expansion of its economic

scale. After the financial crisis, the overall carbon emissions in Europe and America

showed a downward trend. The main driving force behind decarbonization in Europe and

the United States is the removal of coal. The difference between the two is that Europe is a

renewable energy source, mainly driven by the growth of wind and solar power offsetting

the decline of coal-fired power, while the United States has benefited from the "shale

revolution", with a large amount of cheap natural gas resources accelerating the process of

replacing coal-fired power with gas power. Regardless of the economy, ultimately

achieving the goal of reducing carbon emissions requires minimizing coal consumption,

and filling the coal gap can only rely on renewable energy.

The topic of this thesis is price forecasting of China carbon market based on high

order risk contagion. The relevant literature review mainly focuses on two aspects:

theoretical literature and empirical literature. In terms of theoretical literature, this study

first introduces the classical Efficient Market Hypothesis theory, and further analyzes the

financial asset price forecasting research from the perspective of portfolio theory and

capital asset pricing model theory. Secondly, this study reveals the research of prospect
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theory on financial asset price forecasting from the perspective of market inefficiency, and

further explores the risk contagion theory and its specific performance in the carbon

market. In terms of empirical literature, this study discusses the financial asset price

forecasting research from both the perspective of low order moment and high order

moment, and also analyzes the price characteristics of carbon market. Based on this, the

latest development in carbon price forecasting is revealed through GARCH technology and

artificial intelligence modeling technology.

2.2 Theoretical Literature

2.2.1 Efficient Market Hypothesis Theory

The Efficient Market Hypothesis (EMH) theory was proposed by the renowned

economist Eugene Fama in 1970. It is a cornerstone of financial asset price forecasting

research based on investor rational expectations in uncertain environments. Professor Fama

was awarded the Nobel prize in economics in October 2013 for his new approach in the

field of asset market trends. In his doctoral thesis "The behaviour of stock-market prices",

Fama (1965) first studied the non-normal distribution characteristics of Dow Jones

Industrial Average stocks, and revealed the relationship between time series characteristics

and stock returns (Fama,1965a). The study is considered to be the earliest test of the

efficient market hypothesis. Under the framework of random walk theory, based on

commonly used strategies such as technical analysis and fundamental analysis in

quantitative investment, Fama (1965b) formally proposed and elaborated the basic

concepts of the efficient market hypothesis in his article "Random walks in stock market

prices". This study has shown that the financial market under the random walk theory is

actually equivalent to an efficient market, where stock prices reflect all information. In

such a market, a large number of market investors makes the stock price to follow the
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"Random walks ". If the deviation of stock returns and prices is triggered by systematic

risk rather than random behaviour, then the rational investors trading behaviour driven by

profit-seeking motives will bring the market price back to the real value, at the same time,

the trading motivation will be offset by systematic changes in returns. Although the

intrinsic price of the stock market is stable and unchanged, the market price will be

wander randomly. In order to establish a complete framework for the efficient market

hypothesis, Fama (1970) systematically summarized the previous research on the efficient

market hypothesis in his article "Efficient market hypothesis: A review of theory and

empirical work", and innovatively proposed a validity testing framework for the Joint

Hypothesis, the study has suggested that it is necessary to establish a reasonable and

effective asset price forecasting model to test market efficiency. Only on established

pricing models can the relationship between expected returns and wandering behavior can

be analyzed, and then the market efficiency problem represented by stock returns can be

studied (Fama, 1970).

Based on the ideas of the above classical literature, the efficient market hypothesis

suggests that market price of any financial asset already incorporates all available

information accessible to investors, and investors can use those information to take asset

valuation and price forecasting. Only the emergence of new information will trigger the

price fluctuations, while the occurrence of new information is uncertain, so the financial

assets price is also unpredictable. Therefore, any strategy attempts to obtain excess profits

though technical tools and fundamental analysis is futile (Fama and MacBeth, 1973; Fama

and Schwert, 1977). Depending on the extent to which market information reflects asset

prices, the efficient market hypothesis can be divided into three forms. Among them, the

Weak Form Efficient Market Hypothesis (WFEMH) states that asset prices reflect the
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historical information of all disclosed stocks assets, so the excessive profit by using

technical analysis is no longer valid. The Semi-Strong Efficient Market Hypothesis

(SSEMH) means that asset prices reflect all publicly available market information.

Therefore, it is difficult to obtain excess returns when using publicly available information

for asset valuation. The Strong Form Efficient Market Hypothesis ( SFEMH) suggests that

asset prices reflect all publicly available and undisclosed stocks information in the market,

and any means of chasing excess profits will be ineffective (Fama, 1970; Fama, 1991).

The efficient market hypothesis essentially means that there is no free lunch in the

world. As the starting point of traditional financial asset price forecasting theory, the

efficient market hypothesis has two core assumptions: one is that stocks prices reflect all

information and quickly adjust to it, the other is that all investors are completely rational.

In fact, the efficient market hypothesis is only a hypothetical framework for analyzing

asset price forecasting problems. As a matter of fact, not all stock prices can reflect market

information, and investors are not entirely rational. To be honest, the hypothesis still

occupies an important position in the basic framework of modern mainstream financial

market theory (Barberis et al., 2016).

2.2.2 Financial Asset Price Forecasting Theory

2.2.2.1 Portfolio Theory

Portfolio theory is an asset management theory based on diversified investment

portfolios, the advantage is diversifying investment risks and improving investment

efficiency, the more portfolio assets there are, the greater the degree of non-systematic risk

diversification. In 1952, Markowitz published the classical " Portfolio Selection ", marking

the beginning of modern portfolio theory. Markowitz (1952) proposed a research
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conclusion that effective portfolio selection can reduce non systematic risk based on the

"mean-variance" low order moment framework. According to the portfolio theory, rational

investors prefer to seek portfolios that maximize the expected return under established risk,

or minimize investment risk under expected return. The curve formed by connecting the

points corresponding to expected return and standard deviation of each portfolio is called

efficient frontier. The Markowitz portfolio model based on the mean-variance framework

provides an analytical basis for quantifying the relationship between risk and return, while

the model requires the calculation of covariance matrices for all portfolio assets, especially

when the number of portfolio assets is enough large, which makes calculation process too

complicated. On this basis, William Sharpe (1963) proposed Sharpe's one-way analysis of

variance, which simplified the calculation of the covariance and significantly promoted the

practical application of portfolio theory. The Sharpe's one-way model divides the market

risk into systematic risk and non-systematic risk, the single factor only maps the systematic

risk, and there is no contagion between the assets of non-systematic risk. Therefore,the

factors that affect stocks returns are focused on the common systematic risk.

2.2.2.2 Capital Asset Pricing Model Theory

Based on Markowitz portfolio theory, William Sharpe (1964) further research the

risk-return relationship of financial asset, and proposed the famous Capital Asset Pricing

Model (CAPM). The Markowitz portfolio theory provides a framework for the analysis of

asset portfolios based on the perspective of the individual investor, while the CAPM

determines the equilibrium returns of asset portfolio at the efficient portfolio boundary.

The CAPM assumes that investors make their investment decisions in accordance with

Markowitz's asset selection theory, and focuses on the relationship between expected

returns and risk-reward coefficients. It establishes a simple linear correlation between risk-
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taking and expected returns, and puts forward a series of assumptions for applying the

model. Building on the findings of the CAPM, the relationship between the expected

returns obtained by investors and the market risk they bear can be explained by the Capital

Market Line (CML) and the Security Market Line (SML). By relaxing risk-free borrowing

restriction in the classical CAPM, and assuming that there are no risk-free assets in the

financial market, Black (1972) pointed that any asset portfolio composed of asset groups is

still an efficient asset portfolio. Furthermore, relaxing the restriction of liquidity costs in

the classical CAPM, assuming that there are trading frictions and liquidity costs in the

financial market, Achary et al.(2005) proposed a liquidity-adjusted CAPM (LA-CAPM).

In the consumption-based capital asset pricing model, Breeden et al.(1989) assume that the

investor's utility function is maximizing the utility between immediate and future periods,

with equilibrium utility satisfying the condition where the marginal cost of immediate

consumption equals the marginal benefit of future consumption.

Compared to the optimal portfolio theory and CAPM theory, the multi factor price

forecasting model based on Arbitrage Pricing Theory (APT) relaxes more assumptions,

and incorporate numerous macro factors into the framework, thus presenting stronger

explanatory power for financial price forecasting (Ross, 1976; Merton, 1987). APT theory

uses factor models to explain the determining factors of asset prices and the formation

mechanism of equilibrium prices. As an extension of the CAPM, Fama & French (1993)

introduced the classical three-factor model, considering the market size factor and book-to-

market ratio factor beside the risk premium measured by CAPM. Furthermore, based on

the three-factor model, Carhart (1997) suggests that studying stock returns should add

momentum trend factors into three-factor models, then construct a four-factor model.

Similarly, based on three-factor model, Fama and French (2015) further incorporate profit
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level risk and investment level risk factors into the analytical framework and propose a

five-factor pricing model.

2.2.3 Prospect Theory Based on the Market Inefficiency Hypothesis

Based on the limited rational decision-making practices and the development of

investment psychology, Tversky & Kahneman (1979) proposed the classical Prospect

Theory. This theory suggests that financial asset prices are not only determined by the

intrinsic value, but also largely influenced by the subjective behaviour of rational investors.

That is, the decision-making psychology and behavior of investors are also affect asset

prices (Barberis & Thaler, 2003; Barberis et al., 2018). Therefore, prospect theory focuses

on the hypothesis of limited investor rationality, and focus on studying how a limited

rational investor evaluates and determines the optimal decision option when facing with

multiple decision options (Tversky & Kahneman, 1981). Unlike traditional financial asset

price forecasting theory under completely rational investment, prospect theory solves the

decision-making problem that cannot be explained by traditional gain-loss utility. Under

prospect theory, the value function evaluates the subjective value of uncertain decision

outcomes to rational investor, while the weight function is the probability of an uncertain

decision outcome.

Tversky & Kahneman (1992) proposed the Cumulative Prospect Theory (CPT),

which further extends the analysis of prospect theory to multiple alternative decision

options, and achieving quantitative expression of the value function and weighting function.

Furthermore, prospect theory also confirms that, lower volatility risk indicates lower

returns, which increases investors' expectations of high future returns and promotes buy

financial assets with right-skewed distributions in the future. Therefore, there is a negative
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correlation between volatility and expected returns (Ang et al., 2006; Ang et al., 2009),

there is a certain positive correlation between low volatility and future skewness, which is

known as low heterogeneous volatility anomaly (Mitton & Vorkink, 2007; Boyer et al.,

2010). Based on the analysis of the value function, it is found that rational investors exhibit

a strong risk aversion preference when facing deterministic returns. When facing

deterministic losses, investors tend to have a risk preference, which explains the fact that

investors tend to arbitrage and sell profits as soon as possible when facing stock price

increases. While when losses occur, they are delayed in selling (Barberis&Xiong, 2009;

Ingersoll&Jin, 2013).

2.2.4 Risk Contagion Theory of the Carbon Market

Probability analysis and correlation analysis are commonly used in previous

research to identify risk contagion of financial markets. Probability analysis is one of the

early methods to test risk contagion among financial markets. If the probability of a

financial risk in one country increases significantly in response to a risk in another country,

it indicates that risk contagion has occurred (Dornbusch et al., 2000; Kumar et al., 2003).

Correlation analysis suggests that the existence of risk contagion can be defined when the

correlation between markets significantly increases following a financial crisis (King &

Wadhwani, 1990). Based on this idea, the significant change in correlation between

different financial markets before and after a risk shock becomes a proxy indicator for

identifying risk contagion. In particular, with the development of econometric models,

correlation analysis is able to satisfy the risk contagion measurement request within linear

and nonlinear financial systems (Boyer et al., 1999; Loretan et al., 2000; Tjøstheim et al.,

2013; Støve et al., 2014). Furthermore, correlation analysis can also capture the nonlinear

interdependence and tail dependence between financial markets, this method can describes



41

dynamic structural changes and analyzes the direction and intensity of risk contagion

(Patton, 2006; Chollete et al., 2009; Arakelian and Dellaportas, 2012; Abbara et al., 2014).

The economic fundamentals are the direct cause of financial risk contagion,

however, due to the investors limited rationality and the market incomplete efficiency, the

impact of financial crisis on investors psychological expectations cannot be ignored in the

formation of risk contagion. Karolyi (2003) proposed that the risk contagion theory based

on market efficiency, which states that contagion occurs when the cross market linkage

behavior has become irrational and cannot be explained by economic fundamentals. Risk

contagion is essentially an irrational co-movement. Actually, it is the phenomenon of "net

contagion" through high order moment channels, which excludes market linkage caused by

economic fundamentals and rational investment decisions (Masson, 1999; Forbes and

Rigobon, 2002; Boyer et al., 2006). For example, the financial markets globalization can

lead to investor herd effects, affecting investor sentiment and trading psychological

expectations (Calvo et al., 2000; Zhang et al., 2023; Ashfaq et al., 2024). The macro-risk

exposure behaviour accompanying with the investors asset portfolios in other markets is

commonly used to hedge their investment risks (Kodres & Pritsker, 2002). These behaviors

can exacerbate the occurrence and transmission of financial crises. Therefore, "net

contagion" theory of carbon market risk is essentially the study of investor expectations

and behavioral changes caused by market asymmetry and extreme event shocks, leading to

significant changes in market correlation.

2.3 Empirical Literature

2.3.1 Financial Pricing Research in Low Order Moment Risk Contagion Channel

2.3.1.1 Financial Pricing Research in the Perspective of Market Return
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The idea of early research on financial asset pricing are commonly based on the

point of returns, these studies mainly examining the influence mechanism of asset price

from the perspective of first order moments of financial assets. In terms of research

methodology, it is mainly based on linear or non-linear regression methods to explain

premiums of financial asset prices.

On the basis of portfolio theory, the CAPM model based on rational expectations

links excess returns with portfolio returns, and studies the relationship between financial

asset risk premium and systemic risk. Sharpe (1964) used the stocks sample form the New

York Stock Exchange (NYSE) discovered a nearly exact linear relationship between

average returns and risk coefficients. Although using only the risk coefficient as an

explanatory factor can clarify the compensation mechanism between risk and return, it is

obvious that the strict assumptions is not adapted to the specific analyses of real problems.

Subsequent studies have gradually relaxed the assumption, and more consideration have

given attention to test the impact of non-market factors on the price formation of financial

assets (Mayers, 1973). It is difficult to explain the risk premiums only based on the single

or combined market factors. Multiple factors, including macroeconomic factors such as

inflation rate and interest rate, should be included in the explanatory framework, as a result,

the multi-factor Arbitrage Pricing Theory (APT) is constructed (Ross, 1976; Merton, 1984).

Under the multi-factor pricing idea, consider the emerging financial anomalies and risk

premiums, inflation factor (Moerman & Van, 2010), liquidity risk factors (Pastor &

Stambaugh, 2003; Acharya & Pedersen, 2005; Asparouhova et al. 2010; Lam & Tam,

2011), exchange rate risk factors (Apergis et al., 2011), global risk factors (Bali & Cakici,

2010), homogeneity of financial standards (Griffin, 2002; Moerman, 2005; Biscarri &

Espinosa, 2008), and tax heterogeneity risk factor (Eikseth & Lindset, 2009) have been
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successively incorporated into the APT framework and used to improve the explanatory

power of pricing models for realistic risky asset returns.

Breaking through the limitation of considering the linear impact of a single risk

factor on premium, Fama & French (1993) added company size and book-to-market ratio

factors into regression model. Research found that the three-factor model was able to

explain 70%-80% of price changes in US stock returns. Research results such as the long-

term low performance caused by rights issues (Allen et al., 2024; Fritz et al., 2024), market

efficiency and corporate performance under equity separation reform (Trakarnsirinont et

al., 2023; Alodat et al., 2023), and the improvement of the three-factor model under state

transition and unexpected stock returns (Kostin et al., 2022; Hong et al., 2022) all shown

that the three-factor model can fit and analyse the market returns and abnormal changes in

China's capital market (Jiang, 2014). As the three-factor model is unable to reveal the

momentum phenomenon of financial asset returns, the four-factor model includes

momentum factors have been proved to be significantly improves the explanatory power of

pricing model for asset premiums (Carhart, 1997). Furthermore, Fama & French (2015)

continued to incorporate profitability factor and investment capacity factor into three-factor

model, and proposed a five-factor asset pricing model. It was found that the five-factor

model could achieve an explanation level of 46%-58%. Empirical evidence from China

also suggests that the five-factor model greatly improves the average portfolio returns (Guo

et al., 2017).
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Table 2.1: Summary of Financial Pricing in the Perspective of Return

Author & Year Methodology Pricing Factors Changes

Sharpe (1964) Linear regression model Risk factor +

Mayers (1973) Linear regression model
Human capital, social

insurance, pensions

Ross (1976); Merton (1984) Linear regression model Inflation, interest rates

Fama & French (1993)

Jiang,(2014);

Kostin et al.(2022)

Trakarnsirinont et al.(2023)

Allen et al.(2024)

Three factors CAPM
Risk factors, company

size, book value ratio
+

Carhart (1997) Four factors CAPM

Risk Factors, Firm Size,

Book-to-Value Ratio,

Asset Momentum Factors

+

Moerman (2005) Linear regression model
Homogenisation of

financial standards

Eikseth & Lindset (2009) Tax heterogeneity

Acharya & Pedersen, (2005)

Moerman & Van (2010)

Asparouhova et al. (2010)

Bali & Cakici (2010)

Inflation factor, liquidity

risk factor, global and

country-specific risk

factors

+

Lam & Tam (2011)

Apergis et al. (2011)

Liquidity risk factor,

exchange rate risk factor
+

Fama & French (2015)

Chen et al.(2022)

Zerbib (2022)

Mosoeu and Kodongo (2022)

Five factors CAPM

Risk Factors Firm Size,

Book-to-Value Ratio,

Asset Momentum Factor,

Profitability Factor and

Investability Factor

+

Roy & Shijin (2018)

Hong et al.(2022)

Alodat et al.(2023)

Fritz et al.(2024)

Six factors CAPM

Risk Factors Company

size, book to value ratio,

asset momentum factor,

profitability factor and

investability factor,

human capital factor

+
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However, some studies have pointed out that the effectiveness of financial asset

pricing models varies depending on market efficiency and investment philosophy, the

efficiency of China capital market is weaker compared to developed countries, the

fundamentals of the capital market are more sensitive to policy shocks, investors are not

sufficiently concerned about company growth, etc. (Chen et al., 2022; Zerbib, 2022),

which makes profitability factors and investment level factors ineffective in revealing

premium volatility in asset returns. Contrary to the empirical experience in the US capital

market, the five-factor model is not suitable for the China capital market (Mosoeu and

Kodongo, 2022), especially for small-cap stocks with high investment ratio and low

profitability, the five-factor model lacks explanatory power (Fama & French, 2017).

Introducing non-marketable human capital factors into the five-factor model, Roy & Shijin

(2018) proposed an equilibrium six-factor asset pricing model, this model revealed that

human capital component possesses predictive power comparable other factors in

explaining changes in portfolio returns. Table 2.1 summarizes the studies on premiums and

changes in financial asset prices under the linear regression approach.

The above research on financial asset pricing based on linear regression can reveal

the influential strength and direction between expected asset returns and pricing factors.

However, as the complexity of financial asset pricing factors, the nonlinear characteristics

of financial assets make it difficult for traditional linear regression methods to accurately

capture the nonlinear relationship. The modeling technology based on Artificial Neural

Network (ANN) can capture the nonlinear structure through adaptive adjustment and

optimization of model parameters, thus making the nonlinear regression between financial

assets and pricing factors more accurate. For example, Szkuta et al. (1999), Yamin et al.

(2004), Gonget et al. (2008), Singhal and Swarup (2011) constructed a comprehensive
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model for short-term electricity price adaptive forecasting based on artificial neural

networks. It was found that the neural network-based electricity price forecasting model

has general advantages, especially the Recurrent Neural Network (RNN) model

represented by LSTM neural network and Gate Recurrent Unit (GRU) neural network

have significant fitting advantages for time series data (Ugurlu et al., 2018). To solve the

problem of under-learning and over-learning in the learning process of traditional neural

networks, as well as the possibility of network training falling into local minima,

regression based on Support Vector Machine (SVM) is used in the financial asset price

forecasting research. For example, by constructing the nonlinear mapping relationship

between daily return of the exchange rate and its lagged return, as well as pricing factor of

lagged return, it is found that the exchange rate forecasting model based on support vector

machine can effectively explain the price volatility mechanism (Yuan, 2013; Cao et al.,

2005; Alamili, 2011; Plakandaras et al., 2011; Özorhan et al., 2017).

Machine learning models are essentially a type of regression models, the machine

learning model is a deep network structure of multi-layer perceptron with self-organizing,

self-adaptation and self-adjustment advantage, the significant advantage is promoting

feature extraction and network learning, which can improve the fitting performance

between input variables and output variables. For example, the improved deep belief

network and the Copula LSTM model can both fit and predict exchange rate prices well

(Shen et al., 2015; Ugurlu et al., 2018; Zheng et al., 2019; Cao et al., 2020; Cheng et al.,

2023). It indicates that machine learning methods can use powerful feature learning and

optimization methods, maximize the network regression and nonlinear mapping between

financial asset prices and their pricing factors, providing technical support for grasping the

determination mechanism of financial asset returns (Kim et al., 2008; Luo et al., 2024).
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The Copula model can effectively reveal the nonlinear dependence relationship between

carbon prices and their influencing factors, especially it can accurately reveal the

characterization of this correlation by the multi-vine Copula model. As such, combining

Copula models with various machine learning regressors can greatly improve the

predictive performance of hybrid models.Table 2.2 summarizes the studies on premiums

and changes in financial asset prices under the non-linear regression methods.

Table 2.2: Premiums and Changes in FAP under Non-Linear Regression Methods

Author & Year Objectives Methodology

Ability to

Explain Asset

Premiums

Szkuta et al. (1999)

Yamin et al. (2002)

Gonget al. (2008)

Singhal and Swarup (2011)

Construction of an integrated

model for adaptive,

forecasting of short-term

electricity prices in the

electricity market

LSTM and GRU
Universal

advantages

Cao et al. (2005)

Alamili (2011)

Plakandaras et al.(2011)

Yuan (2013)

Özorhan et al. (2017)

Constructing a non-linear

mapping between daily

returns on exchange rates and

their lagged returns, lagged

returns on pricing factors

Holding Vector

Machines for

Exchange Rate

Prediction

Models SVM

Effectively

explain price

fluctuations in

exchange rate

assets

Kim et al. (2008)

Shen et al. (2015)

Ugurlu et al. (2018)

Zheng et al. (2019)

Cao et al. (2020)

Cheng et al. (2023)

Luo et al. (2024)

Enabling the fitting and

forecasting of exchange rate

prices

Copula LSTM
Has a good fit

and predict

2.3.1.2 Financial Pricing Research in the Perspective of Market Volatility

Risk contagion and information transfer triggered by market volatility are important
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foundation for the study of cross-market asset pricing mechanisms. Affected by sudden

economic events and policy events, the financial assets prices show obvious characteristics

such as sharp peaks and thick tails, volatility clustering, which makes the pricing model

based on the first order moment attribute of return no longer applicable. Incorporating

financial asset volatility into the pricing models, the Autoregressive Conditional

Heteroscedasticity Model (ARCH), Generalized Autoregressive Conditional

Heteroscedasticity Model (GARCH), and Stochastic Volatility Model (SV) modles have

gradually been applied to forecast the second order moment attribute of volatility (Sajjad et

al., 2013; Wang & Wong, 2017; Arashi & Rounaghi, 2022).

The classic Black Scholes (BS) volatility pricing model assumes that the financial

assets price follow a Brownian motion with constant volatility, but it cannot reflect the

time-varying characteristics of financial asset price in reality (Black & Scholes, 1973). In

response to the drawbacks of constant volatility, Heston (1993) proposed the Heston

stochastic volatility model, which not only captures the characteristics of financial assets

volatility clustering, but also reflects the dynamics and time-varying nature of volatility.

Considering the sudden price variability caused by market shocks, the jump process based

on Poisson distribution can provide a better explanation for price volatility behaviour, and

improve the pricing ability of financial assets derivatives (Chen et al., 2022). Based on the

dynamic jump-diffusion stochastic process, Lian & Chen (2022) proposed a two-factor

cross-feedback option pricing model with time-varying jump arrival rate and volatility. The

study showed that the explanatory power of asset premium based on the jump process is

better than that of risk premium based on volatility, and pricing power of the two-factor

cross-feedback model is significantly better than that of the one-way feedback jump

diffusion model (Büchner & Kelly, 2022). Based on the three factor term model (short-
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term, medium-term, long-term model) and random discount factor model, a futures pricing

dynamic model with jumps is constructed to depict the impact of jump factors on energy

market prices. The study found that the asset premium explanatory power of the futures

price dynamic model is stronger (Sakariyahu et al., 2023; Fang et al., 2023; Cheng et al.,

2023; Tronzano, 2024). Table 2.3 summarizes the studies on financial asset pricing for

market volatility analysis.

Table 2.3: Summary Financial Pricing in the Perspective of Market Volatility

Author & Year Methodology
Ability to Explain Premiums on

Financial Assets

Sajjad et al. (2013)

Wang & Wong (2017)

Arashi & Rounaghi (2022)

ARCH, GARCH, SV

Stronger prediction and fitting of

volatility of second-order moment

properties

Black & Scholes (1973)
Black Scholes volatility

pricing model

Failure to reflect the time-varying

nature of financial asset price

fluctuations in reality

Heston (1993)
Heston stochastic volatility

model

Not only does it capture the

characteristics of volatile

aggregation of financial assets, but

also the dynamic and time-varying

nature of fluctuations in returns

Büchner & Kelly (2022)
Jump-diffusion modelling

of unidirectional feedback
Weaker

Chen et al. (2022)

Lian & Chen (2022)

A two-factor cross-

feedback option pricing

model

Relatively strong

Sakariyahu et al.(2023)

Fang et al.(2023)

Cheng et al.(2023)

Tronzano (2024)

A jumpy model of futures

pricing dynamics
More powerful
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2.3.2 Financial Pricing Research in High Order Moment Risk Contagion Channel

2.3.2.1 Financial Pricing Research in the Perspective of Market Skewness

Kraus & Litzenberger (1976) added third-order moment skewness information to

the CAPM model for revealing the financial asset price formation process, derived an asset

pricing model based on third-order moment attributes, and used the two-stage regression

method proposed by Fama & MacBeth (1973) for empirical analysis. The study found that

co-skewness as a systematic risk can provide a good explanation for the NYSE stock

returns from 1936 to 1970, and the market skewness of third-order moments is negatively

correlated to expected returns. In order to obtain a portfolio with a right-skewed return

distribution, rational investors are willing to sacrifice some risk premium, and only a

portion, but not all, of the portfolio's return distribution is affected by skewness (Conrad et

al., 2013). Harvey & Siddique (2000) found that co-skewness affects not only cross-

sectional changes in expected returns, but also reveals the relationship between inertia

effects and systematic co-skewness. Inertia portfolios with low expected returns have a

larger skewness than those with high expected returns. Buckle et al. (2016) combined

realized volatility measures with high order moments properties of the portfolio assets, and

found that time varying high-order moment models can more accurately capture the high

order moment changes of asset portfolios during financial crisis. The third order moment

CAPM model that integrates first-order moment mean, second-order moment variance, and

third-order moment skewness not only meets expectations of rational investors' risk

preferences, but also has significantly explanatory power of asset premiums than the

CAPM model and the three factor model (Smith, 2007).

Moreover, the third order moment CAPM model that integrates liquidity

adjustments has better explanatory effect on financial asset premiums, especially in asset
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pricing research in the China A-share market, the liquidity factor and the third order

moment skewness factor have strong explanatory power (Shafiullah et al., 2024). The

financial asset pricing models considering high order moment attributes are more suitable

for China capital market than the low order moments model (mean-variance based pricing

model) (Yun et al., 2020).

Table 2.4: Summary Financial Pricing in the Perspective of Market Skewness

Author & Year Methodology Study Result

Kraus & Litzenberger (1976)

Three high-moment CAPM

Negative correlation

Conrad et al. (2013) Partial positive correlation

Harvey & Siddique (2000) Positive correlation

Buckle et al. (2016) Positive correlation

Smith (2007) Positive correlation

Boyer et al. (2010) Fama-French three factors model Positive correlation

Lin et al. (2019)

Yun et al.(2020)

Shafiullah et al.(2024)

Equilibrium assets and option

pricing models
Negative correlation

Based on the Fama & French asset pricing framework, Boyer et al. (2010) found

that stocks with high skewness have lower expected returns, and the expected skewness

coefficient in the Fama-MacBeth cross-sectional regression is significantly negative, this

conclusion indicates that a negative correlated between expected skewness and stock

portfolio returns. The Fama & French Alpha value of stocks with lower expected skewness

is one percentage point higher than that for stocks with high expected skewness on a

monthly basis. Defining the skewness risk premium as the difference between statistical

skewness and risk-neutral skewness, Lin et al. (2019) used equilibrium asset and option

pricing models, the result shown that S&P500 index can be predicted, especially when the
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market skewness risk premium is high, and risk-averse individuals typically demand higher

risk compensation. Table 2.4 summarizes the studies on asset pricing for market skewness

based on high-order moment.

2.3.2.2 Financial Pricing Research in the Perspective of Market Kurtosis

Further incorporating the kurtosis moment attribute into high order moment CAPM,

explanatory power of co-kurtosis on returns of emerging market financial assets is stronger

than that of co-skewness attribute (Hwang and Satchell, 1999). For investment portfolios

with different sample periods, the extension of the sample period can gradually reduce the

explanatory power of the three factor model in terms of systematic co-skewness and co-

kurtosis (Chung and Schill, 2006). By establishing a high order moment asset pricing

framework under neutral volatility of security risk, Conrad et al. (2013) used option prices

and stock market data to extract the density function of high order moment distribution and

tested the relationship between cross-sectional differences of high order moment factors in

security returns and later returns, and studied the negative correlation between expected

kurtosis changes and later returns. The research results with those of Ang et al. (2006),

Ang et al. (2009) and Amaya et al. (2015) on trait moment volatility studies are basically

consistent.

To avoid the inherent bias of cross-sectional regression methods, Markowski (2024)

pointed out that non-linear models have significantly better explanatory power with

common skewness and kurtosis than traditional CAPM and Fama French models. In

response to the shortcomings of traditional portfolio theory that does not consider high

order moment risk, Guo et al. (2024) designed a Generalized Autoregressive Conditional

Heteroscedasticity Skewness Kurtosis (GARCHSK) model that considers skewness and
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kurtosis information. The study found that the China stock market not only has high order

moment attribute risk, but also risk has time-varying characteristics. Therefore, designing a

model based on high order moment dynamic portfolio can improve the effectiveness of

financial asset investment portfolios (Zhu et al., 2022; Luo et al., 2024).

Table 2.5: Summary Financial Pricing in the Perspective of Market Kurtosis

Author & Year Methodology Study Result

Hwang and Satchell (2001)

Four high moment

CAPM

Emerging market financial asset returns

better than the covariance property

Chung and Schill (2006)

Longer sample periods can reduce the

explanatory power and significance of the

three-factor model

Ang et al. (2006, 2009)

Conrad et al. (2013)

Amaya et al. (2015)

The change in kurtosis was negatively

correlated with late yield, the Negative

skewness is positively correlated with returns

Fry et al. (2014b)
Forex Option

Models
Significant pricing errors in option prices

Fry et al. (2010a, 2014)

Chan et al. (2018)

Monte Carlo non-

parametric equation

Positive covariance risk and higher

covariance risk contagion relationships can

significantly explain the extent of the decline

in risk premiums for financial assets during

the financial crisis

Guo et al(2024) GARCHSK model

Models based on higher-order moments

dynamic portfolios can improve the

effectiveness of financial asset portfolios.

Zhu et al.(2022)

Markowski (2024)

Luo et al.(2024)

Nonlinear option

risk index

estimation method

Non-linear models have strong fitting effects

https://www.sciencedirect.com/science/article/abs/pii/S0304405X15001257
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Risk contagion, especially those occurring on high order moment attributes, are

indispensable factors to conduct asset pricing research (Fry et al., 2010a). A high order

moment asset pricing model that integrates the asymmetry and tail information shocks is

used to study asset premiums under the assumptions of two-dimensional normal and

skewed distributions. Monte Carlo non-parametric analysis is used to examine the

contagion effects of co-skewness, co-kurtosis, and co-volatility between portfolio assets on

risk asset premiums, research has found that the risk contagion relationship between

positive co-skewness and high co-kurtosis can significantly explain the degree of decline in

financial asset risk premiums during financial crises (Fry et al., 2010a; Fry et al., 2014,

Chan et al., 2018). Sudden financial crisis are important triggers of risk contagion, and it is

found that during financial crises, the high order moment attribute risk contagion

relationship between capital markets is also more significant. Using the exchange option

model, it is found that there is a greater risk exposure without considering the high order

moment risk contagion (Fry et al. 2014b). Table 2.5 summarizes the studies on asset

pricing for market kurtosis based on high-order moment.

2.3.3 Research on Price Characteristics of Carbon Market

2.3.3.1 General Price Characteristics

The heteroskedasticity of financial asset price originates from the significant non-

stationary characteristics, while the non-stationary data can lead to strong volatility and

time-varying variance changes, and then forming distribution characteristics such as

volatility clustering and sharp peaks and thick tails (Engle, 1982). Among them, the ARCH

model and the GARCH model created by Engle and Bollerslev have become effective
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tools for capturing and mapping the non-stationary heteroskedasticity time-series

(Bollerslev, 1986; Bollerslev, 1996).

As a special financial markets, carbon market have basic financial attributes, and

market returns have obvious characteristics of volatility clustering, sharp peaks and thick

tails, as well as stronger time-varying variance fluctuations (Montagnoli et al., 2010;

Chevallier, 2010a; Nazifi, 2013). It has been found that there is significant

heteroskedasticity in spot price of European Union Allowance (EUA), with the tail

distribution following a Poisson distribution rather than a normal distribution (Taschini &

Paolella, 2008). Benz &Truck (2009) captured the heteroskedasticity characteristics of the

carbon spot return using the Markov transformation model and AR(1)-GARCH(1,1) model.

GARCH cluster models, which incorporate heteroskedasticity, time-varying variance, and

time-varying jump-variance, demonstrate effective predictive capability for European

carbon prices (Byun & Cho, 2013; Koop & Tole, 2013; Sanin et al., 2015). The return

series of carbon futures assets in the European carbon market show sharp peaks and thick

tails and volatility clustering characteristics, the volatility clustering phenomenon is more

obvious as the increasing of transaction costs (Palao & Pardo, 2012). By constructing the

Copula-ARMA-GARCH model to depict the nonlinear relationship among the multiple

factors of carbon prices, the study shows that the carbon prices have volatility clustering

and heteroskedasticity characteristics, the sharp peaks and thick tails characteristics of

carbon price are significantly stronger than other markets (Zhang et al., 2020; Zhou et al.,

2022). Based on Ensemble Empirical Mode Decomposition (EEMD) technique, it was

found that there are spatio-temporal heterogeneity characteristics of carbon price volatility

influenced by market institutional design and policy adjustments (Li et al., 2021; Kong et

al., 2022). The Asymmetric Generalized Dynamic Conditional Correlation Model
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(AGDCC-GARCH) was used to analyse the dynamic correlation between the European

carbon market and the China stock market. The research results showed that, similar to

return characteristics of traditional financial assets, the EUA carbon futures also existed

more obvious characteristics of sharp peaks and thick tails, and volatility clustering (Lu &

Wang, 2009).

2.3.3.2 Special Price Characteristics

Compared to general price characteristics, specific characteristics of carbon price

primarily emphasize their commodity attributes. This is evident in their heightened

sensitivity to policy shocks, asymmetric market volatility, and non-linear multi-fractal

characteristics.

(1) High sensitivity to policy shocks

The carbon price has a significant policy driving impact, and price volatility is

highly susceptible to emissions reduction technologies, quota policy adjustments, carbon

tax policy, as well as energy and environmental policies in the energy market.

Although a well-designed carbon market will effectively reduce emission costs and

promote innovation, achieving sustainable development of a low-carbon economy still

requires constructive incentive and protection policies for the operation of carbon market

(Peace et al., 2009). Research has shown that borrowing and storage system of carbon

allowances forms a foundational element for effective operation of carbon market (Rubin,

1996). Excessive allocation of carbon allowances and the allowance storage policy are

important forces that caused a serious decline of carbon price in the first stage of EUCM

(2005-2007) (Ellerman and Montero, 2007). By studying the structural adjustments

experienced by the European carbon price in the first stage, it was found that the structural
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adjustment of carbon allowances and the market response to carbon prices usually follow

the European releases allowance information ( Alberola et al., 2008). The restriction of EU

ETS banning on cross period storage has a significant impact on the EUAs price (Alberola

and Chevallier, 2009). Based on Hotelling CAPM analysis, the study suggests that policies

of French and Poland banning banks from engaging in carbon business have also led to the

price declining of EUAs in the first stage of EUCM.

The government's carbon tax is also an important external factors that leads to

volatility of carbon price. Research has concluded that imposition of carbon tax can

effectively reduce carbon emissions from manufacturing enterprises, especially those with

greater responsibility to reduce emissions, to participate more actively in the carbon

trading market and purchase excess stock of allowances, thus moderately increasing the

market demand for carbon emission rights and driving up the price price (Xu et al., 2023;

Hu et al., 2020; Zhou et al., 2022).

Due to rescue measures introduced by the European Union (EU) and the United

Nations (UN), such as “volume auctions" and the implementation of storage management

mechanisms aimed at controlling the supply and price of emission rights, as well as

uncertainties surrounding carbon emission reduction policies in the post-Kyoto era, the

trading price of Certified Emission Reduction (CER) showed a sudden increase in 2015

(Zhang, 2018). Through event analysis and wavelet analysis, it has been discovered that

incidents such as data leakage in the European carbon market, the US subprime crisis, and

the European debt crisis have all influenced the price volatility of the European carbon

market. This underscores the carbon market's characterization as a typical "policy market."

(Adekoya et al., 2021; Zeng et al., 2021; Qiu et al., 2023).
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The above literature studies affect of relevant policies on carbon prices. Further

research has found that policy events related to capital or energy markets can also have an

impact on carbon prices through financial channel (Hammoudeh et al., 2015; Reboredo,

2014). The policy changes related to the carbon price can also be transmitted to carbon

market itself through globalization of financial markets and cross market linkage

mechanisms. The study has highlighted the significance of national energy and

environmental policies, including energy-saving and emission-reduction measures, which

exert a crucial influence on the price dynamics of the fossil energy market. Given that

consumption of fossil energy are primary sources of carbon emissions. Therefore, when the

fossil energy market is faced with the background of energy policy changes or industrial

technology upgrading, energy consuming enterprises, especially high-energy-consuming

power generation firms, can switch between various power generation fuels such as coal,

natural gas and oil. This forms an inherent price transmission mechanism between the

fossil energy market and the carbon market. That is, an increase in energy prices will drive

up carbon prices, the decrease in energy prices will also lead to a decline in carbon prices

(Convery, 2007; Chang et al., 2019; Gong et al., 2021; Jiang et al., 2023). Table 2.6

summarizes the studies on high policy sensitive characteristics of carbon price.

(2) Asymmetric market volatility

Using asymmetric GARCH models such as GJR-GARCH, EGARCH, TGARCH, it

is found that the tail data of carbon price has obvious asymmetric characteristics

(Chevallier, 2009). And there is a significant leverage impact on carbon price, the negative

impact of carbon market excess on prices gradually weakens (Wang et al., 2018; Lin et al.,

2019).
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Table 2.6：Summary of High Policy Sensitive Characteristics of Carbon Price

Author & Year Methodology Influence Factor Result Country/Region

Peace et al.(2009) CAPM

Carbon emission

reduction technology

innovation

Significant

impact：+
European

Rubin(1996)

Ellerman and Montero(2007)

Alberola et al. (2008)

Alberola and Chevallier(2009)

Hotelling

CAPM

analysis

Adjustment of

carbon emission

quota policy

Significant impact

limit：-

Information

disclosure：+

European

Hu et al.(2020);

Adekoya et al.(2021)

Zeng et al.(2021); Zhou et al.(2022)

Xu et al.(2023); Qiu et al.(2023)

Event analysis

and wavelet

analysis

Carbon tax policy

Carbon tax

collection: rising

carbon price

European

Reboredo (2014)

Hammoudeh et al.(2015)
Event analysis

Energy policy + European

Convery(2007); Chang et al.(2019)

Gong et al.(2021); Jiang et al.(2023)

Environmental

policy
+ European

Based on heterogeneity differences in market volatility, the asymmetric GARCH

cluster models were used to find that when the volatility trend of carbon market rises,

carbon prices show a positive Monday effect and a negative Tuesday effect, while when

the volatility trend decreases, they show a negative Monday effect and a positive Tuesday

effect (Zhang et al., 2019). Investor overconfidence and risk preference differences are the

main causes of asymmetric volatility in carbon market, the higher degree of investor

overconfidence, the higher expected price of carbon futures, and investors overconfident

behaviour drives abnormal volatility of carbon futures returns (Zhang et al., 2018).

According to data analysis of European power companies, it was observed that the

spillover effects from carbon and electricity market have obvious asymmetric effect on the

volatility spillover of stock returns, the spillover intensity of negative returns is higher than

that of positive returns (Ji et al., 2018). The ARCH and GARCH cluster models were used

http://www.iaee.org/en/publications/ejsearch.aspx?author=Emilie+Alberola
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to study the domestic carbon market, it was observed that price volatility of China carbon

market is generally characterized by volatility asymmetry and market policies sensitivity

(Yun et al., 2020; Yang et al., 2020). Further study suggests that the carbon market in

Shenzhen shows persistent volatility and obvious time-varying jump behavior in terms of

market returns, the jump direction exhibits significant asymmetry, meaning that after a

market price increase, the next jump direction tends to be more positive (Han et al., 2019;

Liu et al., 2021).

(3) Nonlinear multi-fractal characteristics

The price behaviour of EUETS is a nonlinear dynamical system with fractal

characteristics. As the market efficiency is not completely efficient, so its price behaviour,

trading mechanism cannot be studied with a linear paradigm (Fan et al., 2019; Zou et al.,

2020). By studying price quantity multi-fractal characteristics between the European and

Hubei carbon market, research shows that price relationship between European carbon

futures market and Hubei carbon market has nonlinear multi-fractal and long-term memory

characteristics, the fractal degree of Hubei carbon market is stronger than that of the

European carbon futures prices (Zhu et al., 2023). Cross-correlation has observed in price

of the EUCM that with multi-fractal characteristics. Moreover, there is a significant

asymmetry in the multi-fractal characteristics between price and volume relationships of

the carbon market, especially when returns and trading volume changes are on an upward

trend, the price relationship becomes more complex, and the corresponding market risk

increases (Wang et al., 2023).

Dividing carbon prices into different frequencies and using the Hilbert spectrum

model to capture shock of extreme events, economic crises on carbon price at different
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time scales (Zhu et al., 2018a). The EUA carbon futures prices experienced multiple

significant structural changes (Alberola et al., 2008), the regional transformation equation

can reflect the nonlinear change characteristics of carbon price volatility. The Hurst index

using the R/S method can determine long-term memory fractal characteristics of carbon

price (Zhu et al., 2015). The multi-fractal model with long-term dependence and regional

transformation found that the carbon spot price also has multi-fractal characteristics

(Segnon et al., 2017). Table 2.7 summarizes the studies on market asymmetry and

nonlinear multifractal characteristics of carbon price.

Table 2.7：Summary of Special Fluctuation Characteristics of Carbon Price

Special

Characteristics
Author & Year Methodology Impact Result Country/Region

Market

asymmetry

Zhang et al.(2019)

GARCH

Monday：-

Tuesday：+
European

Ji et al(2018)
Significant impact

European, China

Yang et al.(2020)

Yun et al.(2020)
ARCH and GARCH

Asymmetry of price

fluctuation
European

Nonlinear

multifractal

Alberola et al.(2008)

Zhu et al.(2015)

Hurst index of R/S

method

Significant structural

mutations
European

Segnon et al.(2017)

Fan et al.(2019)

Zou et al.(2020)

Multi-fractal model
With multifractal

characteristics
European, China

Zhu et al.(2018a)

Wang et al.(2023)
Hilbert spectrum

Nonlinear structural

catastrophe

characteristics

China

Zhu et al.(2023)

Wavelet three-layer

transform and neural

network model

With local scale

diversity
European
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2.4 Carbon price Forecasting Research

2.4.1 Carbon Price Forecasting Under the GARCH Cluster Models

2.4.1.1 Linear GARCH Cluster Forecasting Models

Based on correlation analysis and multivariate linear modelling, it was found that

energy market returns have the most significant impact on carbon prices. The GARCH

cluster models are able to better fit the carbon futures price (Byun & Cho, 2013). Study has

concluded that the GARCH model based on Markov regime switching is superior to other

GARCH cluster models in forecasting short-term carbon prices (Oertel et al., 2022).

Zeitlberger et al. (2016) suggest that AGARCH and GJR-GARCH models can accurately

forecast European carbon futures price. Through the asymmetric threshold GARCH

models, Chevallier (2009) studied empirical relationship between carbon futures prices and

macroeconomic changes. Research has pointed out that stock and bond market, namely

stock dividend and "junk bond" premiums, can effectively explain the asymmetric

fluctuations in carbon futures prices. However, interest rate and commodity market returns

are not robust in forecasting carbon futures prices, and research reveals that

macroeconomic have relatively weak impact on the carbon prices volatility. Even if energy

market factors are included in the study framework, the research conclusions remain

broadly robust. Using a multivariate GARCH model, Oberndorfer (2009) pointed out that

price changes in European emission allowances (EUA) are positively correlated with stock

returns of power companies.

However, fluctuations in the stock market have not caused fluctuations in the EUA

market. Using multiple factor model and panel quantile regression method, the study

shows that stock market returns can effectively explain the European carbon market returns,
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and this correlation shows heterogeneous differences at different stages of EUCM. In first

stage (2005-2007) and third stage (2013-2020) of the European carbon market, carbon

returns have positive correlation with stock market returns, whereas in the second stage

(2008-2012) show negative correlation (Zhu et al., 2018). Chevallier (2010b) constructed a

dynamic AR(1)-GARCH(1,1) model based on 115 indicators to effectively forecast the

carbon price volatility. Using daily data volatility, option price, and intraday data to

measure three types of EUA volatility, the study found that policy is important evidence

for explaining European carbon price (Chevallier, 2011). Conducting the DCC-GARCH

and ARCH model to study volatility spillover between fossil energy and carbon market, it

has found that returns in coal, crude oil and natural gas markets significantly impact short-

term European carbon price (Zhang et al., 2016; Jie et al., 2021). Carbon market exhibits

price fractal characteristics (Zhu et al., 2021;Liu et al., 2021).

2.4.1.2 Nonlinear GARCH Cluster Forecasting Models

The carbon price has nonlinear dynamic feature, traditional single and multiple

linear regression models are difficult to reveal the driving path of carbon prices. Studies

have shown that the European carbon spot price show random walk volatility, and carbon

futures returns show unconditional tail behaviour and dynamic heteroskedasticity. The

hybrid models considering jump diffusion, and GARCH models demonstrates a robust

capability to accurately model and forecast carbon prices (Daskalakis et al., 2009; Taschini

& Paolella, 2008; Seifert et al., 2008; Zhou et al., 2022).

Different from the findings of linear regression methods, studies based on nonlinear

autoregressive models found that stock prices, especially those of clean energy companies,

cannot explain the volatility of European carbon markets (Kumar et al., 2012). Koop et al.
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(2013) used a Dynamic Mean Analysis (DMA) nonlinear model to forecast the European

carbon futures prices by infected markets of energy market product returns, climate factors,

capital market factors, corporate risk premiums, and carbon homogeneous products. They

found that the price forecasting accuracy was significantly better than Bayesian models and

Time-Varying Parameter (TVP) regression models. Due to the abnormal returns and

fluctuations in the European carbon futures market, the ARMA-GARCH model based on

the assumption of normal distribution is unable to forecast the carbon market returns, for

improving the model predictability, the study incorporated the random jump process of

carbon futures into the price formation framework. It was found that ARMAX-GARCH

model based on the Gaussian mixture distribution with time-varying jump process can

effectively reveal price changes of European carbon futures market (Sanin et al., 2009).

Affected by the supply and demand of market carbon quotas, the price changes in

European carbon market show heterogeneous volatility characteristics. The GARCH model

based on Markov regime transfer has better forecasting performance for short-term carbon

spot prices than other GARCH cluster models (Benz & Stefan, 2009). Using the improved

linear quantile regression model and Nonlinear Auto-Regressive Distributed Lag (NARDL)

model to test nonlinear and asymmetric relationship between energy market prices and

carbon prices. The study has showed that crude oil prices exert a long-term negative

asymmetric effect on European carbon prices. In the short term, declines in coal prices

have a greater impact on carbon prices than increases do, while natural gas prices and

electricity prices exert a symmetric effect on carbon prices (Hammoudeh et al., 2014).

Based on the ARCH auto-regressive lag model, it was found that the volatility of coal

market is the main cause for price changes in carbon markets. The dynamic fluctuations in

crude oil, natural gas, and coal prices exert a profound and far-reaching influence on the
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dynamics of carbon prices, especially short-term carbon prices (Kim & Koo, 2010; Zhu et

al., 2023). Especially, the model can reveal the non-linear effect of policy regulation events

on price of carbon market (Ren et al., 2020). Table 2.8 summarizes the studies on carbon

market pricing based on GARCH cluster models.

2.4.2 Carbon Price Forecasting Under the Artificial Intelligence Technology

2.4.2.1 Integrated Artificial Intelligence Models for Forecasting Carbon Price

Compared with single price forecasting model, integrated price forecasting model

can effectively forecast nonlinear and non-stationary carbon price sequences. Empirical

Mode Decomposition (EMD) technique can decompose nonlinear non-stationary carbon

price signals into time-frequency-differentiated mode components, revealing formation

mechanism of carbon price from different time-scale perspectives (Zhu et al., 2015). Zhu et

al. (2018) proposed a carbon price mixed forecasting model that combines EMD and Least

Squares Support Vector Machine (LSSVM). Research found that multi-scale nonlinear

integrated method has high fitting accuracy for forecasting carbon price. The carbon price

signal is divided into multiple time-scale modes, and GARCH and LSSVM models are

used for component forecasting, and the forecasting models are optimized by Particle

Swarm Optimization (PSO), Genetic Algorithm (GA), Spiking Neural Network (SNN) and

Deep Neural Network (DNN). It is found that carbon price forecasting performance of the

EMD-ARMA-LSSVM model as well as other combination models, is significantly better

than the single model effect (Zhu et al., 2019; Elsayed et al., 2022). Based on the improved

Empirical Mode Decomposition technique, Yang et al. (2020) used the Improved Whale

Optimization Algorithm (IWOA) to optimize the LSTM prediction model, and the study

showed that the hybrid model IWOA-LSTM was stable and robust in forecasting prices of

the emerging carbon markets in Beijing, Fujian and Shanghai. To solve the issue of mode
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mixing that easily arises in EMD mode decomposition, Li et al. (2022) used

Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Variational

Mode Decomposition (VMD) to decompose the original carbon prices and the obtained

Intrinsic Mode Function (IMF) with maximum sample entropy. The results show that the

mode decomposition technique has a obvious advantage in forecasting carbon price.

Breaking through shortcomings of the traditional EMD technique in point forecasting, Ji et

al. (2022) constructed a three-stage vertical carbon price interval forecasting model, and

used Kernel Density Estimation (KDE) algorithm for interval estimation, the results

suggested a stronger credibility. Liu et al. (2022) proposed interval multi-scale

decomposition methods, including Interval Variational Mode Decomposition (IVMD), for

regional trend decomposition and carbon price forecasting. Empirical evidence shows that

the above models are effective means of interval price forecasting.

Carbon prices have nonlinear and non-stationary features, and a hybrid price

forecasting framework that integrates multiple mode has more accuracy advantages (Zhou

et al., 2019). Xiong et al. (2019) proposed a hybrid multi-step forecasting model that

integrates Variational Mode Decomposition (VMD), and applied the proposed hybrid to

forecast carbon price of China carbon market. The research found that compared with other

multi-output models, the integrated VMD model has better performance in terms of carbon

price forecasting accuracy and stability. Based on similar modelling ideas, a hybrid model

for carbon price forecasting consisting of extreme value learning machine and grey wolf

optimization algorithm is integrated (Zhang et al., 2019; Zhou et al., 2019). The hybrid

model for carbon price forecasting integrating empirical mode decomposition, sample

entropy, and particle swarm optimization improved extreme value learning machine (Sun

and Duan, 2019) have good forecasting performance for price of China regional carbon
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market. Hao et al. (2020) proposed a carbon price forecasting model according to two-

stage feature selection and multi-objective optimization algorithm. The study shows that

after selecting pricing factor variables, the multi-objective grasshopper optimization

algorithm is used to optimize weighted regularization extreme value learning machine,

which can forecast European carbon price and China carbon price better. Used the

CEEMD and VMD technologies to secondary decompose carbon price, conducting SVM,

BP network for forecasting, previous researches shown that CEEMDVMD-BP, CEEMD-

VMD and CEEMD-VMD-SVM model have obvious price forecasting advantages in China

carbon market (Li et al., 2023;Yang et al., 2023).

2.4.2.2 Artificial Neural Networks for Carbon Price Forecasting

Carbon price forecasting models based on traditional statistical measures usually

require the market returns to follow strict parametric assumptions and tail distribution

assumptions (Ji et al., 2018; Zhang et al., 2019), which makes some parameter structures

unable to show special characteristics of carbon price. Artificial intelligence technologies,

such as ANN, SVM, LSSVM, and Multi-Layer Perceptrons (MLP), have obvious

advantages compared to traditional statistical econometric models in solving the price

fitting and forecasting of the carbon price (Atsalakis and Valavanis, 2009; Oliveiraet al.,

2013; Zhang et al., 2017), because those models do not considering the tail distribution of

return sequences, and can achieve the advantage of self-learning and adaptive adjustment.

According to the optimized Extreme Learning Machine (ELM) model, the Kidney

Algorithm (KA) with scaling factor and cooperation factor (CKA) model are established to

forecast China carbon price. The findings reveal that the MOEMD-CKA-ELM performs

well in carbon price forecasting (Huang et al., 2020). Using Computational Intelligence
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Techniques (CIT) such as new hybrid neural fuzzy controller (PATSOS), ANN to forecast

carbon prices changes (Atsalakis, 2016). Considering correlation of various mode

components, Sun et al.(2020) proposed a hybrid carbon price forecasting model

incorporating factor analysis, empirical mode decomposition and least squares support

vector machine, the superiority of the model was tested and proved on the price forecasting

in China carbon markets. Based on the same mode decomposition modeling approach,

Huang et al. (2021) constructed an integrated carbon price forecasting model based on

Variational Mode Decomposition (VMD). The findings showed that the integrated models

VMD-LSTM were able to effectively forecast European carbon price, especially during

price increase stage, those models have the strongest stability, while the EMD-VMD-

LSTM model and VMD-GRU models, on the other hand, present good forecasting

accuracy only in China carbon market (Sun et al., 2020; Wang et al., 2021). According to

maximum Lyapunov index and Kolmogorov entropy, the third stage of European carbon

price was studied from a chaotic system. It was found that MLP neural network can

forecast carbon price effectively (Fan X et al., 2015). The Finite Distribution Lag (FDL)

model based on the Genetic Algorithm (GA) and Ridge Regression Algorithm (RRA) can

independently select suitable regressors, and has better performance in forecasting and

analyzing complex carbon prices than other GARCH cluster models (Han et al., 2015).

According to integrated learning idea, GA-ANN is used to forecast various mode

components (Zhang et al., 2020; Zhu et al., 2018b; Qin et al., 2020). A hybrid forecasting

model is constructed, combination model is optimized by Spike Neural Network (SNN)

and Grey Neural Network (GNN). The study pointed out that the combined model can

effectively fit and forecast carbon prices (Sun et al., 2016; Zhu et al., 2019; Zhang et al.,

2018). To overcome the neglect of high order moment terms such as market skewness and
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kurtosis, which represent market asymmetric information and external event shocks, Yun

et al. (2020) proposed a multi factor carbon price forecasting framework based on the multi

factor APT concept, which extends the high order moment. A multi-layer multivariate

LSTM model was used to map the nonlinear relationships of carbon price. Study has found

that compared to pricing frameworks that do not consider high order moment risk

contagion, the LSTM models based on extended high order moment price forecasting

frameworks have significant fitting advantages, with better performance and stability than

other neural networks and nonlinear volatility models. Table 2.9 summarizes the studies on

carbon market pricing based on artificial intelligence techniques.

2.5 Summary of the Chapter

According to the above analysis of the literature review, it shows more clearly that

the price forecasting of carbon price is based on the traditional financial asset pricing

theories. The research perspective have change from the low order moment attribute of

asset returns and volatility to the high order moment attribute of skewness and kurtosis.

The price forecasting models of carbon market also develops from linear or nonlinear

GARCH cluster models to the artificial intelligence methods such as artificial intelligence

and machine learning. These studies provide empirical references for further studying the

topic of carbon price forecasting in China. While through the literature review, there are

still some improvements need to be solved in the future.

(1) Existing carbon price forecasting research listed in the Section 2.4 above lacks a

theoretical framework that considers high order moment risk contagion relationship.

Firstly, existing carbon price forecasting research mentioned in Section 2.4 mainly

consider low order moment attribute of returns, adopts the influence factor analysis method
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to study the return transmission and volatility spillover between carbon price and its

infected market. However, these research are limited to explaining the premium

mechanism of low order moment attribute, and does not consider high order moment

attribute. Because high order moment attribute of skewness and kurtosis reflect the

asymmetry and sensitivity to extreme events, those characteristics are completely

consistent with carbon market. That is to say, existing research listed in above literature

neglects to consider influence mechanism of carbon price from the high order moment

attribute, making it difficult to reflect the operation rules of carbon price, and the accuracy

of relevant price forecasting conclusions is questionable.

Secondly, previous studies discussed in Section 2.4 neglect risk contagion

relationship from sourced carbon market to infected markets. The theory of high order

moment risk contagion can explain price changes purely due to irrational and synergistic

fluctuations in the market beyond market fundamentals, and the explanatory perspective of

this return fluctuation conforms to features of carbon prices. Therefore, existing research

that neglects to consider risk contagion relationship of high order moment attribute, which

will make it difficult to provide stronger evidence to explain the carbon premium.

(2) Existing research methods listed in the Section 2.4 for testing the high order risk

contagion are difficult to satisfy the characterization the volatility trends heterogeneity in

the carbon market.

Previous studies about measures high order moment risk contagion discussed in

Section 2.4 mainly consider event affect, such as financial crisis. However, this event-

based method, on the one hand, does not consider the volatility trend heterogeneity of the

financial return. On the other hand, it also can not identify affect factors of risk contagion
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in carbon market. To thoroughly investigate high order risk contagion in the carbon market,

it is crucial to uncover the risk contagion relationship from sourced carbon market to

infected markets under varying market volatility trends.

(3) Existing modeling techniques listed in the Section 2.4 for carbon price

forecasting are difficult to fit and map non-linear the special carbon price forecasting

framework with high order moment risk contagion relationships.

Existing carbon price forecasting models do not capture carbon price characteristics

of high order moment risk contagion well. Under the high order carbon price forecasting

framework, the carbon price infected markets include not only low order moment

information reflecting market returns and risks, but also high order moment skewness and

kurtosis information. However, among the existing models, the statistical modeling

technique represented by GARCH models require the return follow strict distributional

assumptions, which is difficult to reflect the real volatility characteristics of carbon prices.

The artificial intelligence modeling technique based on hybrid models focuses on the

processing of single moment attribute dimension information. Artificial neural network

modeling techniques are prone to forget or difficult to capture data characteristics of

financial time series with longer time intervals. The algorithm based on reverse gradient

descent may suffer from gradient explosion and gradient disappearance, resulting in

forecasting models presenting under-fitting or over-fitting, and the model may not

converge to the optimal solution.
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Table 2.8: Summary of CMP Based on GARCH Cluster Models

Author & Year Methodology Research Target Findings Country/Region

Byun & Cho (2013)

Oertel et al.(2022)

Linear

GARCH

cluster model

GARCH cluster model
Impact of energy market

returns on carbon prices
+ European

Chevallier (2009)

Zeitlberger et al.(2016)

Asymmetric threshold GARCH

family models

Carbon Futures Returns and

the Macroeconomy

The impact is relatively

weak
European

Oberndorfer (2009) Multivariate GARCH model
EUA price changes and

electric utility stock returns
+ European

Chevallier (2010b);Chevallier (2011)

Zhang et al.(2016); Jie et al.(2021)
AR(1)-GARCH(1,1) model

Measuring the three

volatilities of the EUA

Carbon price volatility

instability
European, China

Zhu et al. (2018);

Zhu et al.(2021)

Multifactor modelling and

panel quantile regression

Carbon financial asset returns

versus equity market returns
- European, China

Taschini & Paolella (2008)

Seifert et al. (2008)

Daskalakis et al. (2009)

Non-linear

GARCH

cluster model

Time-varying GARCH models

with nonlinear parameters
EU carbon spot market price Goodness of fit European

Sanin et al. (2009)

Benz & Stefan (2009)
ARMAX-GARCH model

European Carbon Futures

Market Benefits

Effective explanation of

changes in earnings
European

Kim & Koo (2010);

Ren et al.(2020)

ARCH autoregressive lag

model

Carbon financial asset return

impact triggers

High impact of volatile

coal market returns
European

Koop et al. (2013);

Zhou et al.(2022)

Dynamic Mean Nonlinear

(DMA) Modelling

EU Carbon Futures Yield

Price Forecast

Significantly stronger

pricing accuracy
European, China

Hammoudeh et al. (2014);

Liu et al.(2021); Zhu et al. (2023)
NARDL model

Crude oil prices and CO2

quota prices

Negative asymmetric

effects
European, China
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Table 2.9: Summary of CMP Based on Artificial Intelligence Techniques

Author & Year Methodology Effectiveness on Carbon Price Country/Region

Zhu et al. (2015,2018,2019)

Elsayed et al.(2022);Zhou et al.,2019 Integrated
modelling

techniques for
artificial

intelligence

Multi-scale nonlinear integrated
learning methods

Good fit European, China

Xiong et al. (2019);Liu et al. (2022) VMD-FMRVR-MOWOA integration High accuracy and stability China

Zhang et al. (2019);Zhou et al. (2019)

Sun and Duan (2019);Hao et al. (2020)

Sun et al. (2020);Li et al.(2023)

Hybrid models for carbon price
forecasting

Better predictive performance China

Zhu et al.(2018b); Zhang et al.(2020); Qin et al.(2020)

Artificial neural
network

GA-ANN Strong predictive ability European, China

Atsalakis (2016) PATSOS Good prediction European

Fan X et al. (2015);Han et al. (2015) MLP model and FDL model Effective forecasting European

Zhu et al. (2018b);Qin et al. (2018) GA-ANN model
High predictive accuracy and

stability
China

Sun et al. (2016);Zhu et al. (2019);Zhang et al. (2018) CFM Hybrid Predictive Modelling Goodness of fit China

Zhu et al. (2019);Zhang et al. (2021) EMD-ARMA-LSSVM model
Significant predictive accuracy

and stability
China

Sun et al. (2020);Wang et al. (2021);Huang et al. (2021) VMD-GARCH and LSTM-LSTM Stable and robust European, China

Yun et al. (2020); Ji et al. (2022) Multilayer multivariate LSTM models
Significant fit performance and

stability
China

Li et al. (2021);Yang et al.(2023) VMD and ICEEMD model Improved credibility of forecasts China

Liu et al. (2022); Guo et al. (2024) IEMD and IVMD models Good prediction China
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CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter discusses the research framework, research variables and data sources.

This chapter also introduce contagion model for recognizing high order risk contagion,

furthermore a high order contagion forecasting model (HOC-LSTM) has been constructed,

which can provide theoretical support for research design and empirical analysis.

3.2 Research Framework

The objective of this chapter is constructing the risk contagion recognizing model

and price forecasting model of the China carbon market. The first objective is to test the

high order moment risk contagion from risk source carbon market to infected markets.

During risk contagion test, using the Markov mechanism transformation model to classify

price volatility carbon market into three states: high volatility, medium volatility and low

volatility. For testing the specific manner of high order moment risk contagion relationship

from the carbon market to its infected markets, this thesis constructs the Co-Skewness (CS)

risk contagion model, Co-Kurtosis (CK) risk contagion model and Co-Volatility (CV) risk

contagion model to identify the risk contagion relationship from risk source carbon market

to its infected markets. The second objective is to construct a machine learning carbon

price forecasting model that suitable for capturing the impact of high order moment risk

contagion on carbon price. The last objective is to forecast the China carbon price by

HOC-LSTM model to prove the high order risk contagion is useful to improve the

forecasting performance. During the test, the high order risk contagion relationship
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recognized by the above models are as the input infected markets for forecasting, the

machine learning LSTM model is used to take out-of-sample forecasting of the carbon

prices. This chapter constructs a theoretical framework for forecasting carbon price from a

theoretical perspective and proposes a theoretical solution to the scientific problem among

other things (as shown in Figure3.1).

Figure 3.1: The Theoretical Framework of Methodology
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It is worth noting that the meanings of some variable abbreviations in Figure 3.1 are

as follows: the full name of JTF is Jiaotan Futures, the full name of JMF is Jiaomei Futures, the

full name of Oil is Brent Crude Oil Futures, the full name of CSI300 is China Securities

Index 300Futures, the full name of EUAF is European Carbon Allowance Futures.And the

FR means the low order moment correlation coefficient risk contagion channels, means the

Forbes Rigobon Contagion.

3.3 Research Variables and Data

3.3.1 Risk Source Market Variable

In this study, the average transaction price of Hubei carbon emission allowance

(HBEA) is chosen as return series of carbon assets, so the Hubei carbon price is the risk

source market variable of the forecasting model. The reason for choosing the Hubei carbon

emission allowance is that Hubei carbon market has already led the China regional market

in terms of market transaction scale, introduction of social capital and participation of

emission reduction enterprises, and has undertaken the task of operating role of national

carbon emission right registration system. So, the market system construction and

operation regulations of Hubei carbon market are relatively mature. Another important

reason is that, with the official establishment of China national unified carbon market in

2021, the Hubei carbon market, with its mature operational experience in the introduction

of social capital and enterprise participation, has play a key role in the operation of the

national carbon market in market registration, enroll, and settlement. Therefore, Hubei

carbon market is representative.

3.3.2 Infected Market Variable

As a product innovation with financial attributes, the carbon market not only has
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closely related information linkages and spillovers with the capital market and

homogeneous product market, but also has correlation with the energy market ( Nazifi et

al., 2010; Aatola et al., 2013 ). Based on this, this study selects the product instruments of

carbon homogeneous market, capital market and energy market as the carbon pricing

factors, which are the infected market variables of the model. Among them, the

homogeneous products are selected as EUAF, the European carbon allowance futures

product traded in the European carbon market. The capital market is selected as CSI 300

index, which represents China's macroeconomy. The energy market products are selected

as Jiaotan futures (JTF), Jiaomei futures (JMF), and Brent crude oil futures. The specific

variable definitions are shown in Table 3.1. Using Rt to represent the return of carbon

assets, one can define: 100 ( )t t t-1R = lnP-lnP , where Pt represents the daily price or index series

of carbon price and its infected markets.

Table 3.1: Research Variable Design

Financial

Market

Representative

Trading Products
Abbreviation Product Meaning

Panel A: Carbon Market (Risk Source Market)

Carbon market
Hubei Carbon Emission

Allowances
HBEA

Carbon emission allowance

transaction price (yuan/tonne)

Panel B: Infected Markets

Carbon

homogeneous

products market

EUA Futures EUAF
EUA Continuous Futures

Settlement Price (EUR/tonne)

Capital market CSI 300 Index CSI 300 CSI 300 Daily Closing Price

Energy market

Jiaomei Futures JMF
Coking Coal Futures Daily

Settlement Price

Jiaotan Futures JTF Coke Futures Daily Settlement Price

Crude Oil Futures Oil
Brent crude oil futures daily

settlement price
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3.3.2.1 JT Futures (JTF)

JTF is a kind of carbon product. JTF is a commodity futures contract with coke as

the underlying material, taking advantage of the standardized characteristics of futures

contracts. The product of JTF is listed on the Dalian Commodity Exchange. Participants

can hedge risks or make investments by buying and selling coke futures contracts. The

main role of JTF is to provide price risk management tools for producers and consumers.

Producers can lock in future selling prices by selling futures contracts, while consumers

can lock in future purchasing prices by buying futures contracts. In addition, investors can

also invest and speculate by buying and selling coke futures.

3.3.2.2 JM Futures (JMF)

JMF, also known as metallurgical coal, is a kind of bituminous coal with medium

and low volatile matter, medium bonding and strong bonding. In the national standard for

coal classification in China, JMF is a type of bituminous coal with high coaling degree and

good coking property. JMF is a commodity futures contract with coking coal as the

underlying material, using the standardized characteristics of futures contracts.

3.3.2.3 Brent Crude Oil Futures (Oil)

Brent crude oil, sourced from the Brent region of the North Sea in the North

Atlantic Ocean, is extensively traded across futures, over-the-counter swaps, forwards, and

spot markets. Futures trading on the Intercontinental Exchange in London and the New

York Mercantile Exchange serves as a key benchmark for global oil prices. Brent crude oil

futures contracts are contracts that can be physically delivered, while the contracts can be

settled with the option to convert from futures to cash.

3.3.2.4 CSI 300 Index (CSI 300)
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The China Securities Index 300 (CSI300) comprises the largest and most

representative 300 securities with high liquidity from the Shanghai and Shenzhen markets.

Officially released on April 8, 2005, the index reflects the overall performance of securities

listed in these markets, acting as a "barometer" for the overall trend. The CSI300 index

samples are selected from both the Shanghai and Shenzhen stock markets, encompassing

the majority of the circulating market value.

3.3.2.5 European Carbon Allowance Futures (EUAF)

EUA futures are financial derivatives traded on the European Emissions Trading

System (EUETS), which is a European Union policy designed to combat climate change

by limiting greenhouse gas emissions. EUA futures serve as mature instruments for

representing the European carbon price.

3.3.3 Data Sources

The time span of above risk source carbon market and infected market variables is

from 28 April 2014 to 24 January 2024. Excluding the inconsistent data, a total of 2337

time series data sample were obtained. For machine learning modeling process, the first

80% of the time series data were used as the training set and the last 20% of the data were

used as the test set.

For the data source, the daily transaction price of Hubei carbon market is selected

for China carbon emission right price data, and the data is sourced from China Carbon

Emission Trading Network (https://www.hbets.cn). The price of European carbon

allowance futures (EUAF) product is the daily trading settlement price, and the CSI 300

index uses the daily closing price, the data is sourced from the Wind database. The prices
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of JTF, JMF, and Brent crude oil futures are also selected as daily settlement price data,

and the data are sourced from China Dalian Commodity Exchange.

3.4 Risk Contagion Model of the Carbon Market

3.4.1 The Model for Dividing the Market Volatility Trend

The price of carbon market has obvious volatility clustering characteristics, that is,

one fluctuation trend usually hides another bigger fluctuation, and this fluctuation has

strong time-varying, stochastic and unobservability characteristics. Therefore, it is

necessary to establish a fluctuation state recognition mechanism to divide the carbon

returns into different state characteristics. Considering the persistence of carbon price

fluctuations, the uncertainty of the volatility states number and the unobservability of the

mutual transformation between different states, this study establishes a carbon price

volatility state transition model to classify asymmetrically volatility of the carbon price

based on the idea of Markov state transition model.

Considering carbon price complexity, it is assumed that state of carbon return

fluctuation following the Markov stochastic process only depends on the n states before the

state. That is, the current return fluctuation is only related to the probability of the current

state and previous state, which is the n-order Markov stochastic process. However, due to

the independence assumption of state transition, the first-order Markov stochastic

processes are sufficient for problem analysis in applications. Therefore, the discussion in

this study is also based on the first-order Markov state transition model. That is, it is

assumed that the probability of carbon price fluctuation in state M depends only on the

probability of state M-1 is 1 2 1 1( | , , , ) ( | )t t t t tP M M M M P M M   , where the formula

denotes that in the first-order stochastic Markov process, the historical fluctuation state of
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the carbon price is irrelevant for forecasting future fluctuations.

Based on this, assuming that the carbon returns with heteroscedasticity

characteristics follow a first-order autoregressive AR process, and the variance sequence

has an M-volatility states, according to the mechanism transition model proposed by

Hamilton (1989), the fluctuation distribution of the carbon returns sequence satisfies the

following model:

1
( ) ( )

p

t t a t t a t
i

R v M M R 


   (3.1)

where tR is the carbon returns series, 2(0, ( ) )t tN M  , represents a stochastic

process in which the variance sequence follows the state of M zone system;

 1, 2, ,t k  is an unobservable discrete variable describing the number of fluctuating

states, and tM obeys a first-order Markov chain, so the probability of a transition denoted

1 2 3 1( | , , , ) ( | )ab t t t t t tP pr M b M a M M pr M b M a            ; ,a b t

represents the state variable; ( )tv M , ( )a tM and ( )tM represent the intercept term,

autoregressive coefficient and standard deviation,respectively.

Under the assumption of a normal distribution in the residual series, the conditional

probability density of the carbon return tR in the state tM is:

2

1 2

( ( ))1( | , ; ) exp[ ]
2 ( )2 ( )
t

t t t
R v bf R M b I

bb




 
  （3.2）

When the probability 1( | ; )t tf M b I  is known, under the condition that 1tI  is

determined, the probability density of tR is denoted as:
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where 1tI  represents the observed values of all variables tR in state tM up to

moment t-1, that is all the information available up to moment t-1,

 = ( ), ( ), ( )ab i t a t a tp v M M M  ， denotes parameters to be estimated for the volatility

transition model, which can be estimated using the 1
1ln ( ) ln ( | ; )t tf f R I
n

   function

applied to the data collected over the observation period.

Using smooth probability to describe the likelihood of carbon returns in various

fluctuation states, denoted as:

1
1

1

1 1
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( | ; )

k

t T t t T
i

k
ab t T

t t
i t t

p M b I p M b M a I

p p M a Ip M b I
p M a I

 









 

   

 
  






（3.4）

Due to the differences in the smoothing probability among different states, a larger

probability indicates a greater likelihood of a specific fluctuation state occurring, while a

lower probability indicates a lower probability. Therefore, after calculating the smoothing

probability, considering the state value corresponding to maximum smoothing probability,

this thesis can refer to the processing method of Jiang et al. (2013), and take the value of

0.5 as the screening threshold for the smoothing probability of each state system. Therefore,

to identify the carbon returns related to maximum smoothing probability, and provide an

analytical basis for analyzing the high order moment attributes of carbon asset and its

infected factors, this thesis uses screening criteria of ( | ; ) 0.5 ( )t T tp M b I R M   to
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decide the maximum smoothing probability.

3.4.2 Risk Contagion Measure of the Carbon Market

The carbon market is marked by high sensitivity to policy changes and low market

efficiency, which requires the design of risk contagion models be able to capture these two

features. Based on the non-parametric high order moment risk contagion test method

introduced by Fry et al. (2014, 2018), this thesis focuses on the Co-Skewness (CS) risk

contagion relationship of market asymmetric information shocks, the Co-Kurtosis (CK)

risk contagion relationship of extreme event shocks, and the Co-Volatility (CV) risk

contagion relationship of market volatility shocks. For comparability reasons, this thesis

also comparatively analyses the risk contagion indicator of Forbes Rigobon Contagion (FR)

based on low order moment attributes proposed by Forbes et al. (2002).

3.4.2.1 CS Indicator for Co-Skewness Risk Contagion

The co-skewness risk contagion is an indicator that measures whether there is a

significant change in asymmetry of the return distribution between carbon assets and its

infected markets. It measures whether the risk contagion coefficient is significantly

changes before and after the market volatility trend under the impact of market asymmetry.

In fact, calculating the risk contagion strength of the co-skewness is also a measure of the

degree to which the portfolio deviates from the normal distribution. According to the

different that returns and squared returns when calculating the co-skewness statistics, the

co-skewness risk contagion indicators is categorized into two types: 12CS and 21CS ,

where 12CS represents the contagion channel from carbon returns to infected markets

variance, and 21CS represents the contagion relationship from carbon asset variance to

infected markets returns. A statistically significant contagion coefficient indicates that
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there is a risk contagion relationship between carbon asset and infected markets with co-

skewness attribute. Smaller contagion coefficients, indicating that distribution of the

portfolio composition is basically close to standard normal distribution, with less exposure

to asymmetric risk, and can achieve portfolio objective of risk sharing and return sharing.

In constrast, higher risk contagion coefficients indicate that the asymmetric risk of the

portfolio is high, making it difficult to achieve the portfolio investment objective.

The co-skewness channels risk contagion are given as the following equation:

 
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In the above equation, i and j represent the risk sourced market and infected market,

respectively; x and y represent volatility states of the carbon markets, respectively;

xT and yT represent the market capacity under different market volatility states,

respectively; ,i tx , ,j tx , ,i ty , and ,j ty represent returns of the risk sourced market and

infected market under the market states of x and y;  xi ,  xj ,  yi , and  yj represent

corresponding mean values of returns;  xi ,  xj ,  yi , and  yj represent the standard

deviation of returns;  / iy x represents the market correlation coefficient of the adjusted

volatility state transformation;  x and 
y represent the unconditional correlation between

the two markets; and 2
x,is and 2

,y is represent the variance of the risk sourced market under

different market volatility states.

To test whether risk contagion of co-skewness attribute occurs from carbon market

to its infected markets, the original hypothesis that there is no high order moment risk

contagion is assumed to be:

 1 2 1 2
12 0( ) : ( , ) ( , )y xi j i jH CS r r r r  (3.12）

 1 2 1 2
12 1( ) : ( , ) ( , )y xi j i jH CS r r r r  （3.13）

 2 1 2 1
21 0( ) : ( , ) ( , )y xi j i jH CS r r r r  （3.14）
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 2 1 2 1
21 1( ) : ( , ) ( , )y xi j i jH CS r r r r  （3.15）

In the absence of the risk contagion channels of co-skewness, the contagion

coefficients are verified for obeying the chi-square distribution, and the coefficients

significance is used to determine whether co-skewness contagion relationship occurs under

different market volatility trend:

2
12 21 1, ( ) dfCS CS i j   （3.16）

where the Lagrange polynomials that validate 12 21,CS CS obey the chi-square

distribution validation are denoted as:









,, 1 2 2
12 2

1

1( ) [ ( ) ( ) ]
4 2

T
jj tii t

t i j

rrTLM CS
T



  





 （3.17）
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3.4.2.2 CK Indicator for Co-Kurtosis Risk Contagion

The co-kurtosis attribute risk contagion is a measure of whether and to what extent

the portfolio consisting of carbon market and its infected markets is affected by extreme

event during the transformation process of carbon market volatility. It is to say, whether

there is a obvious change in the high order moment co-kurtosis contagion coefficient

before and after a change in the market volatility trend under extreme risk factor shocks.

Like the co-skewness indicator, the co-kurtosis risk contagion tests is divided into two

categories: 13CK and 31CK , where 13CK denotes the risk contagion of carbon returns on
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infected market skewness, and 31CK denotes the risk contagion of carbon market skewness

on returns of the infected markets. If the contagion coefficient is statistically significant, it

indicates that there is a risk contagion of co-kurtosis between the carbon market and the

infected markets. The larger contagion coefficient, indicating that the portfolio returns are

exposed to a larger external systematic risk shock, conversely, it indicates that the

systematic risk is low.

The co-kurtosis channels risk contagion are given as the following equation:

 

 

2
1 3 1 3

1 3
13 22

/

( , ) ( , )
( ; , )
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y x xy x
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r r r rr r
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（3.19）
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    

（3.20）

Among them,
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The relevant parameter definitions are consistent with the above. In order to test

whether a risk contagion from sourced carbon market to its infected markets in the co-

kurtosis channels, the original hypothesis that there is no high order moment risk contagion

is assumed to be:

 1 3 1 3
13 0( ) : ( , ) ( , )y xi j i jH CK r r r r  （3.25）

 1 3 1 3
13 1( ) : ( , ) ( , )y xi j i jH CK r r r r  （3.26）

 3 1 3 1
31 0( ) : ( , ) ( , )y xi j i jH CK r r r r  （3.27）

 3 1 3 1
31 1( ) : ( , ) ( , )y xi j i jH CK r r r r  （3.28）

In absence of the risk contagion channels of co-kurtosis, the contagion coefficients

are verified for obeying the chi-square distribution, and the coefficients significance is

used to determine whether co-kurtosis contagion relationship occurs under different market

volatility trend:

2
13 31 1, ( ) dfCK CK i j   （3.29）

where the Lagrange polynomials that validate 13 31,CK CK obey the chi-square

distribution validation are denoted as:
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3.4.2.3 CV Indicator for Co-Volatility Risk Contagion

The co-volatility risk contagion refers to the degree of contagion between the risk

of carbon market and its infected market during transition of carbon market volatility. The

co-volatility risk contagion occurs between the second-order moment variance risk of

carbon market and infected markets. If contagion coefficient is statistically significant, it

indicates the risk contagion phenomenon of co-volatility between carbon market and the

infected markets. Among them, a smaller contagion coefficient indicates that carbon

market risk has a weak impact on the market risk of its infected markets, and the portfolio

can satisfy investors expectation. While a larger contagion coefficient indicates that the

risk of the carbon market can easily trigger risk in the infected markets.

The co-volatility channels risk contagion are given as the following equation:
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Among them,
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In the risk contagion channels of co-volatility, the contagion coefficients are

verified for obeying the chi-square distribution, and the coefficients significance is used to

determine whether co-volatility contagion relationship occurs under different market

volatility trend:

 2 2 2 2
22 0( ) : ( , ) ( , )y xi j i jH CV r r r r  （3.35）

 2 2 2 2
22 1( ) : ( , ) ( , )y xi j i jH CV r r r r  （3.36）

In the absence of risk contagion of co-volatility attributes, the contagion

coefficients are verified for obeying the chi-square distribution, and the significance of the

coefficients is used to determine whether co-volatility risk contagion relationship occurs

under the different market volatility trend transitions:

2
22 1( ) dfCV i j   （3.37）

where the Lagrange polynomials that validate 22CV obey the chi-square

distribution validation are denoted as:
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3.4.2.4 FR Indicator for Low Order Moment Risk Contagion

The low order moment correlation coefficient risk contagion (Forbes Rigobon

Contagion, FR) is a measure that whether there is a significant change in the cross-market

correlation between carbon market and its infected markets base on the low order moment.

If this indicator has statistical significance, it indicates a risk contagion relationship from
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carbon market to infected markets. The risk contagion indicator based on low order

moment attributes is:
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The relevant parameter definitions are consistent with the above. In order to test

whether low order moment risk contagion occurs between carbon market and infected

markets, the original hypothesis that there is no risk contagion of low order moments is

assumed:

 
/0( ) : iy x xH FR   （3.41）

 
/1( ) : iy x xH FR   （3.42）

Without low order moment risk contagion, the contagion coefficients are verified

for obeying the chi-square distribution, and the significance of the coefficients is used to

determine whether risk contagion relationships occur under different market volatility

trend transitions:

2
1( ) dfFR i j   （3.43）
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3.5 HOC-LSTM Carbon Price Forecasting Model in China

According to results of identified risk contagion channels, a High Order risk

Contagion LSTM model (HOC-LSTM) is constructed to forecast the carbon price.

3.5.1 Carbon Price Forecasting Framework Based on HOC

The CAPM pricing model with high order moment attributes points out that

financial asset returns are not only affected by systematic risk, but also by investors limited

rational behaviour and extreme event shocks. Therefore, compared to traditional low order

moment price forecasting models, the CAPM pricing framework with high order moment

can better capture the volatility characteristics of financial assets (Hwang et al., 1999). The

CAPM pricing model for carbon market with high order moment attributes is defined as:

2 3 4
, , ,( )carbon carbon m carbon m carbon mE R S K     （3.44）

Where,
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（3.47）

( )carbonE R represents the excess returns of carbon assets; 2
,carbon m represents the

covariance coefficient of carbon assets and market portfolio returns, that is, the impact of
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the first order central moments (returns) of the portfolio returns on the first order central

moments (returns) of the carbon returns; 3
,carbon mS represents the co-skewness coefficient of

carbon assets and market portfolio, that is, the impact of the second order central moments

(variances) of the market portfolio returns on the first order central moments (returns) of

the carbon asset returns; 4
,carbon mK represents the co-kurtosis coefficient of carbon asset and

market portfolio, that is, the impact of third order central moment (skewness) of the market

portfolio on the first order central moment (return) of the carbon return. , ,   represents

the risk premium coefficient. Co-skewness reflects the asymmetric behaviour of carbon

assets relative to market portfolio, negative co-skewness indicates the probability of carbon

returns declining is higher than the probability of returns rising. Co-kurtosis reflects the the

kurtosis of carbon assets relative to the market portfolio, a higher co-kurtosis indicate

carbon returns are subject to extreme event shocks than the portfolio, implying that carbon

assets have a higher order moment risk. In order to compensate for the holding losses,

investors tend to demand higher premium returns for compensation.

3.5.2 Carbon Price Forecasting Model of HOC-LSTM

The multi-factor CAPM pricing framework of carbon market has significant

nonlinear characteristics, namely the difference in the order moment attribute dimension of

data information, resulting in a complex nonlinear structure between carbon price and its

infected markets. Furthermore, the proposed pricing framework has many parameters need

to be estimated. Based on these two features, this thesis adopts a multi-layer multivariate

long and short-term memory (LSTM) model based on machine learning algorithms to

forecast carbon prices with risk contagion relationships.
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3.5.2.1 Advantages of the LSTMModel

LSTM model is a machine learning method to address issues of gradient explosion

and vanishing, as well as insufficient long memory ability in traditional recurrent neural

networks according to the previous studies that suggested in above literature review section,

such as Hochreiter et al.(1997), Sun et al.(2020), Huang et al.(2021),Kong et al.(2022),Yun

et al.(2023). The neural network structure of LSTM model with special gate structure

stemmed from the optimization and updating of traditional recurrent neural networks.

Figure 3.2: The Structure of RNN

Recurrent Neural Network (RNN) is a kind of chained network with special

memory ability, the current output of the model structure is related to the previous output.

That is, the network structure remembers front-end information of the sequence and

applies it to the current output calculation. In terms of model structure, the nodes between

hidden layers are also no longer unconnected, but are linked. The input to a hidden layer

now includes output from input layer, also includes the output from the previous moment’s

hidden layer. The model structure is shown in Figure 3.2. Figure 3.2 shows a Recurrent

Neural Network (RNN) diagram. It represents the flow of information in an RNN, showing

how hidden states (ht ) are passed through time steps, processing sequential inputs ( Xt )
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and generating corresponding outputs (Xt ). The function of each RNN cell is to process the

input at that time step and updates its hidden state. Compared to classical BP algorithm and

CNN, the biggest advantage of RNN is to achieve memory function of the input

information. However, when the interval between the information of the previous moment

of the financial time series and the current forecasting position is long, the algorithm may

cause the gradient disappearance, thereby making it difficult for the RNN to learn the

features of long-term information. Based on this, during the training process of LSTM, in

addition to continue to pass the hidden layer information backward, but also through the

special design of the Cell structure to transmit past longer period information, so as to

effective control the gradient.

Figure 3.3: The Structure of LSTM

The LSTM model structure is shown in Figure 3.3,where.

Xn=The input to the LSTM cell at the current time step(n);

hn-1=The hidden state from the previous time step(n-1);

LSTM Cell=The core computational unit that updates both the cell and hidden state;
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Cn=The updated cell state, which carries long-term information;

hn=The updated hidden state, which is used for generating outputs passed to the

next time step;

Yn=The output generated at this time step(n).

LSTMs improve upon standard RNNs by introducing a cell state (cn) and three

gating mechanisms that regulate the flow of information: First, the Forget Gate, which

decides what information should be discarded from the previous cell state. Second, the

Input Gate which determines what new information should be added to the cell state. And

lastly, the Output Gate, which controls what information from the cell state should be

output at the current time step. This gating mechanism helps prevent the vanishing gradient

problem, allowing LSTMs to retain information overlong sequences.

According to advantages of LSTM network structure in parameter learning, this

thesis uses it as an empirical fitting and forecasting method to study the carbon price

forecasting framework. Firstly, during processing financial time series, especially time

series data with long memory characteristics, the LSTM model can maximize the capture

of features and information from longer time dimensions into the current structure,

addressing the issue of long-term dependencies in data. Secondly, as a type of recurrent

neural network with a specialized memory function, the LSTM model optimizes and

adjusts the parameter structure by performing forward unsupervised learning and backward

supervised learning process, namely the self-learning and self-adaptation process of the

parameter structure, so as to train the optimal model structure and solve the non-linear

problem of the carbon price forecasting framework. Thirdly, due to the large number of

parameter structure in the forecasting model, especially during the training process of
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neural networks, model gradient may increase as the increasing of the network layers, the

neural network structure has the possibility of gradient explosion or gradient disappearance,

resulting in interruption of the self-learning process. While the LSTM model is designed

through a special threshold structure and activation function, provides a guarantee for the

training of neurons and parameter weights, and can solves the interruption of model

training and weight update , and ensures the effective learning, training and convergence of

the carbon price forecasting framework.

Although LSTM models have the obvious advantages mentioned above, they also

have some drawbacks: Firstly, the model training time is relatively long, which is related to

its relatively complex gate structure and more participation. Secondly, there is a risk of

overfitting, where the LSTM model, due to its strong memory ability, may remember the

noise in the training data during the training process, leading to overfitting. Thirdly, the

problem of gradient vanishing has not been fully resolved. Although LSTM alleviates the

gradient vanishing problem through gating mechanisms, in some cases, especially when

dealing with very long sequences, gradients may still disappear. This requires more

complex optimization algorithms and techniques to solve.

3.5.2.2 Training Process of the LSTMModel

As a special neural network structure, LSTM model consists of an input layer,

output layer and hidden layer. As for forecasting carbon price with the high order moment

risk contagion, the input layer data mainly refers to the high order moments infected

markets that recognized by the above models. The output layer mainly refers to the carbon

returns, which is also a label item for supervised learning in the process of parameter

training and model optimization. On the one hand, the hidden layer includes the features

and weights of the input layer learned by the network structure, that is, the short-term
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memory capability of the model. On the other hand, it also includes the special cell

structure that can remember the long-term carbon price infected markets. Among them, the

long memory function of the cell structure is primarily achieved through specially designed

gate mechanisms, specifically forget gates, input gates, and output gates.

Note: represents the Kronecker product, which is an operation between two matrices, and⊕
represents the logical operation of yes or no.

Figure 3.4 : The Training Structure of LSTM Model

In the LSTM training process (as shown in Figure 3.4), the forget gate first

determines which parts of the previous network output should be forgotten. It maps the

current input Xt and the hidden layer ht-1 to a value between 0 (forget everything) and

1(keep everything) by sigmoid activation function(σ), thus obtaining forget gate output ft.

Secondly, the input gate determines which information should be added to the current

memory unit Cellt. It uses sigmoid activation function to obtain the preservation of original

input Xt and previous moment of hidden layer ht-1 in structure of this layer it . And then, the

output of this layer(ot) is obtained through the tanh function C̃ t, and it × C̃ t represent the
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preservation characteristics of the information in this layer. Combined with the return

information of the forgetting gate, the characteristics of the input information are

summarized. Thirdly, the output gate is used to decide how many neuron Cells are filtered,

that is, a sigmoid activation function is used to obtain a value in the interval of 0 and 1, and

then the current memory cell, cellt is processed through the tanh function to obtain the

output of this layer ht. The multi-layer LSTM model is a network stack of LSTM model by

adding hidden layers and memory cell neurons on top of a single layer.

The output of forget gate (ft) is determined by screening the original infected

markets including high order moment term and the hidden layer features. The training

structure of forget gate is as follows:

1( [ , ] )t f t t ff W h x b    (3.48)

The output of input gate is determined by saving and updating the input data. The

training structure of input gate is as follows:

1( [ , ] )t i t t ii W h x b    (3.49)


1( [ , ] )t C t t CC tanh W h x b   (3.50)


1t t t t tC f C i C    (3.51)

The data filtering output of the output gate (ot) under the current memory neural

unit is as follows:

1( [ , ] )t o t t oo W h x b    (3.52)
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( )t t th o tanh C  (3.53)

Where the above formula weight functions need to be calculated separately during

the learning process. f fx fhW W W  , i ix ihW W W  , c cx chW W W  , o ox ohW W W  .

The input of the output layer is i
t yi tY W h and the output is ( )o i

t tY Y . ti , C̃ t , and C̃ t

represent the information update vector of the input gates, the candidate vector, and the

output gate update vector of current state respectively. ht represents the final hidden layer

output of LSTM model; fW , iW , CW and oW denote weight vectors; fb , ib , Cb and ob

represent the bias of the training process; represents the sigmoid activation function.

This study utilized LSTM model to estimate the cross market risk contagion

relationship between carbon market and its infected markets, such as energy markets, and

capital. In this respect, the Higher-Order Coupled Long Short-Term Memory (HOC-LSTM)

is an advanced variation of LSTM designed to improve sequence modeling by

incorporating higher-order interactions between different elements in the LSTM cell. It

enhances the learning capability of standard LSTMs by capturing complex dependencies in

sequential data. The characteristics of HOC-LSTM model and its comparative models are

summarized in Table 3.2. The comparative models are described in Section 3.6.

3.6 Select of the Comparative Models

To compare the superiority of the proposed HOC-LSTM model in fitting and

forecasting China carbon price, the following commonly used machine learning classifiers

were selected as the comparative benchmarks. During the experiment, the neural network

structure and some parameters were adopted above design. As shown in Table 3.2.
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Table 3.2: The characteristics of HOC-LSTM model and its comparative models

Models Characteristics Advantages Disadvantages

GRU (Gated

Recurrent Unit)

1. Combines input and forget gates

into a single update gate

2. Uses a reset gate for short-term

dependencies.

3. Eliminates cell units

1.Simpler structure

2.Fewer parameters,

faster training

3. Suitable for long time

series data

May not capture

some complex long-

term dependencies as

effectively as LSTM

MLP (Multi-

Layer

Perceptron)

1. Each layer performs a

nonlinear transformation through

an activation function.

2. Trained using the

backpropagation algorithm

1.Strong nonlinear

modeling ability

2. Excellent regression

and prediction capability

3.Flexible for various

types of data

1.Non-convex loss

function can lead to

different results

2. Slow training,

prone to local minima

3.Requires setting

many parameters.

GBDT (Gradient

Boosting

Decision Tree)

1.Trains weak classifiers based on

the negative gradient of the current

loss function

2. Combines weak classifiers into a

stronger model

1. Strong predictive

performance

2. Handles nonlinear

problems well

1.Training can be

time-consuming

2.Sensitive to noise,

requiring careful

tuning

ETR (Extra

Trees Regressor)

1.Does not use random sampling

for training data, instead uses all

available data

2.Randomly selects features for

building decision trees

1.Faster training time

compared to RF

2.Excellent regression

results

1.Sensitive to outliers

in some cases

2.Requires careful

tuning of parameters

BPNN (Back

Propagation

Neural Network)

1.Optimizes network structure and

parameters through supervised and

unsupervised learning

2.Strong ability to model nonlinear

relationships

1. Strong nonlinear

mapping ability

2.Flexible network

structure

3.Excellent regression

ability

1.Slow learning

speed

2.Prone to getting

stuck in local minima

3. Requires manual

selection of network

layers and neurons

HOC-LSTM

1.Uses gates to optimize memory

retention

2.Effective for handling long-term

dependencies in sequential data

1.Can capture long-term

dependencies effectively

2. Ideal for time series.

1.Complex model

structure

2.Large number of

parameters
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3.6.1 Gated Recurrent Unit Neural Network

Gated recurrent unit (GRU) neural network is another improved structure of RNN

model, which can better capture longer memory characteristic of the time series data. The

construction of this model is used to solve issues of insufficient long memory and gradient

explosion in the process of back propagation training (Cho et al.,2014; Zhu et al.,2023).

Compared to the special input gate, forget gate, and output gate structures of LSTM model

as suggested in previous research of Hochreiter et al.(1997) and Yun et al.(2023), the GRU

model further integrates gate structure of LSTM to make the model structure more concise.

That is, the input gate and forget gate are combined into a new update gate, which

determines which information should be discarded and added. The reset gate, on the other

hand, decides the amount of information to forget from past time series, aiding in capturing

short-term dependencies in the input time series.

Different from LSTM models that rely solely on cell units to obtain long term data

memory characteristic, GRU model discards the cell units and uses the hidden layers to

transmit information. Generally, the GRU model is a effective variant of LSTM networks,

with a simpler structure and fewer parameter and sample requirements, and also has the

advantage of faster training and fitting performance. So, it can solve the problem of long

dependencies in traditional RNN networks.

3.6.2 Multi-Layer Perceptron Neural Network Model

Essentially, the Multi-layer perceptron (MLP) neural network model is a typical of

artificial neural network (ANN), which consists of a feed-forward neural network with one

or more hidden layers (Fan et al.,2015; Zhu et al.,2024). As for the MLP network, each
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layer undergoes nonlinear transformation through an activation function apart from the

input layer.

As a neural network structure based on back-propagation algorithm, the MLP

structure includes: input layer, hidden layer and output layer. Among them, input layer

neurons are used to receive the high order moment risk contagion price information , the

hidden layer and output layer contain functional neurons that can compare the received

price with a certain threshold, and then process it through an activation function to

generate the output of the neurons. According to Fan et al.(2015), the training method of

MLP is the back-propagation algorithm, which has the greatest advantage of improving the

network data learning ability and non-linear price forecasting ability. However, the hidden

layer of the MLP model has a non convex loss function, and different random initial

weights may lead to different errors. Additionally, the MLP model requires preset a series

of initial parameters, such as the number of hidden neurons, hidden layers, and the number

of iterations.

3.6.3 Gradient Boosting Decision Tree Model

Gradient boosting decision tree model (GBDT) is a type of ensemble algorithm,

whose basic classifier is the classification and regression tree (CART), and the ensemble

method is gradient boosting based on the previous studies of Sun et al.(2020). Its idea is

inspired by the gradient descent method, which trains a newly added weak classifier based

on the negative gradient information of the current loss function, and then combines the

trained weak classifier with the existing model to obtain a new ensemble model.

The gradient boosting algorithm that uses decision trees as the weak classifiers is

called GBDT, sometimes also known as multiple additive regression tree (MART).
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Actually, the gradient boosting and random forest (RF) are both belong to ensemble

algorithms. The difference is that the random forest algorithm improves the forecasting

performance by using a large number of trees in parallel each time, while when the size of

the trees reaches a certain level, the performance cannot be further improved. However, the

gradient boosting algorithm assigns a weight value to each classification result in a serial

manner, and finally obtains the final result through accumulation to achieve satisfactory

results.

3.6.4 Extra Trees Regressor Model

Extra trees regressor (ETR) model is a regressor that integrates multiple decision

trees. Different from the idea of the traditional random forest (RF) model, the ETR model

has two main advantages, firstly, as for each decision tree's training set, the RF model uses

random sampling bootstrap to select the sampling set as the training data, while ETR

model generally does not use the random sampling method. Secondary, as for model

ensemble idea, the RF model applies the Bagging model to obtain the sampling data, while

the ETR model uses all samples with randomly selected characteristic (Yahşi et al.,2019;

Yun et al.,2020). Because the data sampling are random, the ETR model has better

regression results and better generalization ability than the RF model to some extent.

Therefore, ETR model is better than RF model about forecasting effect and training cost.

3.6.5 Back Propagation Neural Network

The back propagation neural network (BPNN) model is a classic algorithm for

learning and training multi-layer neural networks, achieving parameter optimization and

structural adjustment of network models, and improving the regression mapping ability. Its

essence is to establish the input-output relationship between price data and its influencing
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factors data, and then extract the structural price data characteristic by the positive

supervised learning and negative unsupervised learning processes according to the

previous studies that listed in Literature review section,such as the research of Shen et

al.,2015; Zhang et al.,2020; Yun et al.,2023. During the training process, gradient boosting

algorithm is used to optimize model parameter, map and fit input and output data, and

enhance effect of price forecasting. The core of model is using error function to calculate

gradient of each training parameter, and conducting gradient to optimize the parameters

and reduce the losses.

The significant advantages of BPNN model are the nonlinear mapping ability and

flexible network structure. As for the network structure, the quantity of hidden layers and

neurons can be set according to characteristics of input data, as a result, the forecasting

ability of the BPNN model is excellent. However, in some applications of the price

forecasting, the BPNN model also has theoretical shortcomings such as slow learning

speed, easy falling into local minima, and subjective selection of network layers and

neurons nodes.

3.7 Evaluation Criteria of the Proposed Forecasting Model

In order to evaluate the performance of the carbon price forecasting framework,

highlight the rationality of considering the risk contagion relationship of the high order

moment attribute in theory framework, this study adopts the following evaluation

indicators to measure and analyse the performance of regression classifier.
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The Kendall correlation coefficient is define as:
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0.5 ( 1)
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n n

Kendall  
 (3.57)

where n is the number of items, and P denotes the sum of the number of items

ranked after the given item by both rankings.The correlation coefficient value is from 0 to

1. The closer the coefficient is to 1, the stronger the correlation is.

In the above evaluation criteria, the Root-Mean-Square Error (RMSE) measures the

deviation between true returns and predicted returns. Mean Absolute Error (MAE)

measures square of difference between true and predicted returns, and then sums and

averages it, it is often used to evaluate the loss function in linear regression analysis. Mean

Absolute Percentage Error (MAPE) evaluates the extent to which the predicted returns

deviate from the true returns, and is often used to judge the stability and accuracy of

regression classifiers. The above three indicators are more commonly used to evaluate the

strength of the model. The larger the value indicates that the forecast and actual returns

deviation is larger, suggesting worse model performance. As for correlation coefficients,

the Kendall correlation is suitable for measuring the relationship between two sequential

variables, when the data does not follow a normal distribution, the Kendall correlation

coefficient is more accurate than the Pearson correlation.
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3.8 Summary of the Chapter

This chapter describes the research framework, data collection, methods

constructed and used of the study. The target of this study is to construct a model for risk

contagion and price forecasting in China carbon market based on high order moment

attribute. Time series data is used in the study, the daily transaction price of Hubei carbon

market is selected for China carbon price data, this study selects the product instruments of

carbon finance homogeneous market, capital market and energy market as carbon pricing

factors. The study period covers 10 years, which is from the year 2014 to 2024. Mainly

studying the risk contagion relationship from sourced carbon market to its infected markets,

as well as forecasting carbon price under the impact of high order moment risk contagion.

This thesis adopts a machine learning LSTM to forecast carbon asset prices with risk

contagion relationships.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

The chapter is an empirical analysis based on high order moment risk contagion

model and price forecasting model designed in Chapter 3. Firstly, this thesis conducts the

basic descriptive statistical analysis on all the sample and variables to grasp the basic price

characteristics of carbon market and its infected markets. Secondly, measures risk

contagion relationship between carbon market and infected markets, especially high order

risk contagion channels that represent the effects of asymmetric information and extreme

factors on carbon prices. And also compare differences with the type of low order moment

risk contagion. Thirdly, incorporates the identified high order moment risk contagion

factors into the HOC-LSTM model to improve the carbon price forecasting accuracy and

robustness.

4.2 Descriptive Statistical Analysis and Data Preprocessing

Descriptive statistics can help us understand the basic characteristics of research

data and provide a foundation for subsequent data analysis and model construction. The

collection range of all sample data in this thesis is from April 28, 2014 to January 24, 2024.

After excluding the inconsistent data, a total of 2337 price data were obtained, the price

trend of China carbon market and its infected markets can be shown in Figure 4.1.

Furthermore, 2336 returns data can be obtained by using the operation of first-order

difference, the return trend of China carbon market and its infected markets can be shown

in Figure 4.2.
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Figure 4.1: The Price Trend of Carbon Market and its Infected Markets
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Figure 4.2: The Return Volatility of Carbon Price and its Infected Markets
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According to the basic descriptive statistics results in Table 4.1, this thesis can

summarize the following findings: Firstly, in terms of average returns, the European

carbon price EUAF has the highest return of 0.104, while the China carbon price HBEA

has a relatively low return of 0.021, which is only one-fifth of the European carbon price.

The market return of crude oil is the lowest of all the sample, that the value is -0.013.

Table 4.1: Basic Statistical of China Carbon Price and its Infected Markets

Mean Std.Dev. Skewness Kurtosis ADF JB-Stat ZBDS(10) Obs.

HBEA 0.021 3.777 -0.208 13.110 40.615 9965.856*** 40.563*** 2336

JMF 0.034 2.438 -0.808 9.691 49.371 4611.777*** 29.782*** 2336

JTF 0.032 2.336 -0.833 8.975 50.609 3745.413*** 23.217*** 2336

Oil -0.013 3.016 -8.035 213.798 47.695 4350.220*** 40.407*** 2336

CSI300 0.018 1.389 -0.842 9.4333 46.564 4304.193*** 22.823*** 2336

EUAF 0.104 2.857 -2.109 35.486 49.242 1044.515*** 21.867*** 2336

Note: * * * indicates the significance under the 1% level.

Secondly, in terms of standard deviation, the standard deviation of China carbon

price is the highest, that the value is 3.777, while the standard deviation of CSI300, which

reflects the macroeconomics, is relatively the lowest. So, this thesis believe that the high

market variance and low market returns of China carbon price indicate a significant return

risk and market uncertainty. Generally, market risk is a compensation for returns, higher

risks usually correspond to higher returns. After comparing the return and standard

deviation of all the sample, a surprising finding is that the carbon prices do not seem to

conform to this conclusion, which may indicate irrational trading behavior in carbon

market, thesis findings are completely consistent with the research of Yun et al (2020).
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Thirdly, regarding skewness and kurtosis, the market skewness of all samples is

negative, and the kurtosis is significantly greater than the critical value of 3. In particular,

the skewness and kurtosis of China carbon price are -0.208 and 13.110, respectively. This

finding indicates that the price of China market and infected markets have obvious

characteristics of sharp peaks and thick tails and fluctuating clusters, which means the

extreme external factors with low occurrence probability can easily trigger the price

changes in carbon market. According to Yun et al.(2020), a negative skewness indicates a

leftward bias in the distribution of market return, that means a significant outlier on left

side of distribution. A higher kurtosis is usually related to the low-frequency outliers in the

return series. If the variance fluctuation is largely caused by the outliers, then the

probability of return series having a higher kurtosis is also high.

Fourthly, in terms of the stationarity test, the unit root Augmented Dickey-Fuller

(ADF) test results of China carbon market and its infected markets are not significant,

meaning that all the sample return sequences accept the null hypothesis of the existence of

unit roots. So price of China carbon market and its infected market are non-stationary

series. This conclusion is completely consistent with the majority of research that listed in

above literature part, that is carbon price series are basically non-stationary.

Fifthly, in terms of the normality distribution test, the results show that the Jarque-

Bera (JB) statistic of China market and its infected market are significant at 1% level, so

this thesis should reject the null hypothesis of normal return distribution, as a result, all

sample series are non normality. In addition, according to the Quantile Quantile plots of

each series ( as shown in Figure 4.3), it can also be found that there is a significant

difference between the sample percentile and the theoretical percentile, indicating that
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there is a systematic bias in the return distribution of each series, and show the

characteristic of the non-normality.

Finally, in terms of the non-linear test, when the embedding correlation dimension

is 10, the Brock Dechert Sheinkman (BDS) statistical results of all series show significance

at 1% level, indicating that the return series of China market and its infected markets are

non-linear.

In summary, this thesis concludes that price of China carbon market and its infected

markets have features of sharp peaks and thick tails, fluctuation clustering, non normal,

nonlinear and non-stationary.



114

Figure 4.3: Q-Q Distribution of Carbon Price and its Infected Market Prices



115

4.3 Test High Order Moment Risk Contagion of China Carbon Market

4.3.1 Price Trend of China Carbon Market

To explore high order moment risk contagion relationship between China carbon

market and its infected markets under different volatility states, this thesis uses the Markov

state transition model to divide the market volatility states and design different market

trends.

4.3.1.1 Select the State Transition Model

This thesis uses the experimental comparison method to determine the suitable

volatility state transformation model. That is, referring to the experience of Hamilton

(1989), this thesis test the data fitting ability of each Markov state model when the state

number is 3 and 4, and the autoregressive lag order is 1, 2, 3 and 4. The reason does not

select the state of 1 and 2 is that, the Markov mechanism transition model requires the

states number to be greater than 1, while it is obvious that 2 states cannot fully characterize

the state volatility division of the carbon market and cannot obtain more accurate risk

contagion characterization. Therefore, this thesis only measures cases where the volatility

states are 3 and 4.

As can be seen from Table 4.2, when the number of Markov state is 3, the

autoregressive lag order is 1, the tail residual follows a normal distribution assumption, and

the number of model parameters is 18, the value of akaike information criterion (AIC),

bayesian information criterion (BIC) and Hannan-Quinn Criterion (HQ) are 18.7836,

122.4028, and 19.6575, respectively, which are the smallest values among all the data.

This indicates that the MS (3) - AR (1) - N model can fit China carbon price data well, and

is suitable for identifying the fluctuation status and features of China carbon price. This
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indicates that Markov state transition model of MS (3) - AR (1) - N can relative accurately

fit China carbon price data, and is suitable for identifying the volatility status and market

trend of China carbon market.

Table 4.2: Parameter Estimation Comparison of Different Markov State Models

Transition

Models

Residual

Distribution

Number of

Parameters
Likelihood AIC BIC HQ

MS(3)-AR(1)
T 21 -5488.0616 24.7793 145.6684 25.7988

N 18 -5476.3631 18.7836 122.4028 19.6575

MS(3)-AR(2)
T 24 -5473.0071 30.7848 168.9438 31.9500

N 21 -5469.8959 24.7860 145.6751 25.8055

MS(3)-AR(3)
T 27 -5439.9652 36.7969 192.2258 38.1077

N 24 -5463.1481 30.7884 168.9474 31.9536

MS(3)-AR(4)
T 30 -5435.591 42.7986 215.4973 44.2550

N 27 -5460.1448 36.7895 192.2184 38.1003

MS(4)-AR(1)
N 28 -5435.1261 38.7987 199.9842 40.1580

T 32 -5448.7731 46.7937 231.0057 48.3472

MS(4)-AR(2)
T 36 -5451.6946 54.7926 262.0311 56.5403

N 32 -5450.1248 46.7932 231.0052 48.3467

MS(4)-AR(3)
T 40 -5401.5329 62.8111 293.0761 64.7530

N 36 -5438.9415 54.7973 262.0358 56.5450

MS(4)-AR(4)
T 44 -5399.5888 70.8118 324.1033 72.9479

N 40 -5424.9103 62.8025 293.0674 64.7444
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4.3.1.2 Recognize Market State and Price Trend

According to the selected model above, this thesis continues to use the MS (3) - AR

(1) - N model to recognize the market volatility state of China carbon market. As a result,

three market states with average standard deviations of 2.9346%, 8.1299% and 0.8410%

can be obtained (as shown in Table 4.3). By comparing the frequency differences of the

three states, this study defines them as low volatility state (State 1), high volatility state

(State 2) and stable state (State 3). The transition probability changes of the three states

throughout the entire sample period are shown in Figure 4.4.

Table 4.3: State Classification of Carbon Price Based on the MS (3)-AR (1)

State
Average

Volatility (%)

State

Classification

Transition

Probabilities

State

Duration
Obs.

State1 2.9346*** Low volatility 0.85 6.89 1101

State2 8.1299*** High volatility 0.82 5.56 264

State3 0.8410*** Stability 0.88 8.13 971

Note: *** means the significant in the level of 1%.

Specifically, the average volatility of the low volatility state (State 1) is 2.9346%,

with a transition probability of 0.85 and a state duration period of 6.89, which is total of

1101 sample points. The average volatility of high volatility state (State 2) is 8.1299%,

with a transition probability of 0.82 and a duration period of 5.56, and a total of 264

sample points were obtained. The average volatility of stable state (State 3) is 0.8410%,

with a transition probability of 0.88 and a duration period of 8.13, and a total of 971

sample points were obtained.
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Figure 4.4: Smooth Probability Curve of the Three Volatility State Recognized by the MS(3)-AR(1) Model
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Furthermore, this study find that the average volatility of the high volatility state

(State 2) is 10 times greater than average volatility of the stable state (State 3) and 2.8

times the low volatility state (State 1). Therefore, this study defines transition between high

volatility state (State 2) and stable volatility state (State 3) as rapid market change, that is

transition from high volatility state (State 2) to stable volatility state (State 3) is considered

as a rapid declining market trend, and the transition from stable state (State 3) to high

volatility state (State 2) is considered as a rapid rising market trend. Similarly, the

transition between low volatility state (State 1) and stable volatility state (State 3) is

defined as slow market change, that is transition from low volatility state (State 1) to stable

volatility state (State 3) is considered as a slow declining market trend, and the transition

from stable state (State 3) to low volatility state (State 1) is a slow rising market trend. The

carbon market trend classification can be shown in Table 4.4.

Table 4.4:Market Trend Classification Results of China Carbon Market

Market State Market Trend State Transition Direction Specific Trends

State2-State3 Rapid change
From State3 to State2 Rapid rising trend

From State2 to State3 Rapid declining trend

State1-State3 Slow change
From State3 to State1 Slow rising trend

From State1 to State3 Slow declining trend

4.3.2 The High Order Risk Contagion under the Market Rapid Change

The carbon market volatility state transition implies a switching of carbon price

risk, during this process, new risk exposures and profit opportunities can be released.

Especially the extreme shocks of the carbon price volatility can encourage investors to

engage in cross market investment portfolios and fund allocation through the irrational

trading, consequentially, the high order risk contagion can be produced(Zhang et al.,2020).

The carbon market rapid change indicates a drastic change in market price risk, which
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means that investors may face a rapidly changing market situation and serious challenges

for avoiding market risks. It can be said that quick decision-making is more important than

how to make decisions in this changing situation (Chevallier,2012). Due to the fact that

rapid market volatility do not leave enough time for investors to conduct rational analysis

and decision-making research, as a result, the irrational characteristics of investor trading

motivation are more evident in the process of rapid change situation.

Research has found that in a rapid change market situation, there is not only a

significant risk contagion relationship between China carbon market and infected markets

in low order moment attributes, but also a significant risk contagion in the majority of high

order moment channels (as shown in Tables 4.5 and 4.6). This evidence indicates that high

order moment risk factors originated from market asymmetric and extreme shocks can

spread across markets. Therefore, only depend on the traditional low order moment

channels to determine the existence of risk contagion and conduct price forecasting may be

difficult to obtain accurate conclusions.

4.3.2.1 Risk Contagion Analysis on the Rapid Rising Market Trend

When the carbon market volatility is in a rapid rising market trend, it means that the

market uncertainty is rapid increasing, and price signals usually hidden more systemic risk

factors, that posing an urgent need for risk aversion according to the classical Prospect

Theory proposed by Tversky & Kahneman (1979). As an emerging policy market, the

China carbon market was established later than the European carbon market, the market-

oriented mechanism need to be further improved. Therefore, it is easy to trigger some

systemic risks and become a risk contagion sourced market. To avoid those systemic risks,
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carbon market investors can diversify their risks through cross market transactions,

resulting in a high order moment risk contagion phenomenon to its infected markets.

Table 4.5: Risk Contagion Test Results of Carbon Market Based on State3-State2

HBEA-JMF HBEA-JTF HBEA-Oil HBEA-CSI300 HBEA-EUAF

FR 0.0005 0.0058 0.0117 0.0007 0.0435

CS12 5.7055** 3.4529*** 51.0723*** 0.0408 12.8467***

CS21 3.3755*** 5.6102*** 0.0323 0.0248** 0.2981

CK13 0.0102 22.3302* 2527.4*** 21.3872 599.7096***

CK31 2.8141*** 2.5781*** 1.3978 0.1248 0.0455**

CV22 3.5584*** 6.7437*** 15.7527*** 0.0027 14.7678***

Note: *,**,*** means the significant in the level of 10%,5% and 1%, respectively.

(1) Basic analysis of research results

It can be concluded from Table 4.5 that when the carbon market under the rapid

rising trend, there are obvious contagion phenomenon from sourced carbon market to JMF

in the channel of CS12, CS21, CK31 and CV22, the contagion coefficients are 5.7055,

3.3755, 2.8141 and 3.5584, respectively. In terms of the risk contagion from sourced

carbon market to JTF market, there are significant risk contagion phenomenon in the

channel of CS12, CS21, CK13, CK31 and CV22, the contagion coefficients are 3.4529,

5.6102, 22.3302, 2.5781 and 6.7437, respectively. In terms of the risk contagion from

sourced carbon market to Oil market, there are significant risk contagion phenomenon in

channel of CS12, CK13 and CV22, the contagion coefficients are 51.0723, 2527.4 and

15.7527, respectively. In terms of the risk contagion from sourced carbon market to

CSI300 market, there are significant risk contagion phenomenon in the channel of CS21,

the contagion coefficients are 0.0248. In terms of the risk contagion from sourced carbon
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market to EUAF market, there are significant risk contagion phenomenon in channel of

CS12,CK13,CK31 and CV22, the contagion coefficients are 12.8467, 599.7096, 0.0455

and 14.7678, respectively.

(2) Comparative analysis of research conclusions

Specifically, as shown in Table 4.5, firstly, because carbon market is a risk

contagion source market, there is obviously high order moment risk contagion in the

majority of contagion channels. In particular, the significant risk contagion between carbon

and JMF and JTF market occur in major of high order moment channels, but not in the low

order moment channel. This explanation indicates that carbon market is easily transmitted

systemic risk to the JMF and JTF market by investors' cross market operations when facing

extreme market risks. Similarly, investors of JMF and JTF market are also tend to regard

the carbon market as the portfolio tools, resulting in contagion relationship. In fact, the

nonlinear dynamic relationship between China's carbon market and energy market has

been verified by many literature studies,such as Chang et al.(2019),Han et al.(2019),Ji et

al.(2019),Jie et al.(2021), which to some extent supports the findings of this study.

Secondly, there are three significant risk contagion channels from the carbon

market to the Oil market. The possible reason is that the carbon market investors tend to

choose Oil product as the risk management tool, while the Oil market can diversify market

risks through more channels, not limited to the carbon market.

Thirdly, the risk contagion from the carbon market to CSI300 market is significant

only in the CS21 channel. Specifically, there is a notable risk contagion relationship with a

contagion coefficient of 0.0248 in this channel. The possible reason is that, as an indicator

reflecting China's macroeconomic situation, the CSI300 reflects the macroeconomic trend,



123

which is guiding the price changes and risk volatility of the carbon market, as a result, the

price trend of China carbon price is relatively consistent with the CSI300. As a matter of

fact, the CSI300 market usually hidden macroeconomic events such as extreme events and

policy black swan events can transmit risks to the carbon market through the high order

moment attributes.This conclusion is completely consistent with the majority of research

that listed in above literature part, such as Liu et al.(2021), Luo et al.(2024), Sun et

al.(2019), that is Macroeconomic indicators are important external references for leading

the carbon market.

Finally, the China carbon price and EUAF are homogeneous products, while in

terms of market influence, market capacity, transaction scale and market-oriented

construction, the China carbon market is still relatively insufficient. The asymmetric and

extreme shocks in the European carbon market will largely be transmitted to the China

carbon market through the high-order moment channels, while the risk contagion that from

China market to European carbon market is relatively weak. For example, the China

carbon market only has an risk contagion impact on European carbon market through

channel of CS12,CK13,CK31 and CV22, with the coefficient are 12.8467, 599.7096,

0.0455 and 14.7678, respectively.

4.3.2.2 Risk Contagion Analysis on the Rapid Declining Market Trend

The rapid declining market trend means the risk is gradually decreasing, and the

market uncertainty is also gradually decreasing. During this process, investors have more

time to assess the market risk, which make the investment portfolios and risk management

operations more rational (Zhang et al.,2019;Zhang et al.,2020). Although the carbon

market and its infected markets are facing a decreasing asymmetric risk and extreme risks
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caused by irrational shocks during the rapid market fluctuations, these contagion

phenomena cannot be ignored in this process.

Table 4.6: Risk Contagion Test Results of Carbon Market Based on State2-State3

HBEA-JMF HBEA-JTF HBEA-Oil HBEA-CSI300 HBEA-EUAF

FR 0.0177 0.0002 0.0001 0.0076 0.0508

CS12 5.6457** 3.4223*** 50.1257*** 0.0406 12.146***

CS21 3.3401*** 5.5604*** 0.0317 0.0247** 0.2818

CK13 4.0624 51.2922* 2726.7*** 21.5646 311.5333***

CK31 0.0629*** 0.7619*** 2.1802 0.1002 31.7965**

CV22 3.7324*** 5.2181*** 11.1737*** 0.0030 3.2836***

Note: *,**,*** means the significant in the level of 10%,5% and 1%, respectively.

(1) Basic analysis of research results

It can be concluded from Table 4.6 that when the carbon market under the rapid

declining trend, there are significant risk contagion phenomenon from the sourced carbon

market to JMF market in the channel of CS12, CS21, CK31 and CV22, the contagion

coefficients are 5.6457, 3.3401, 0.0629 and 3.7324, respectively. In terms of the risk

contagion from the sourced carbon market to JTF market, there are significant risk

contagion phenomenon in the channel of CS12, CS21, CK13, CK31 and CV22, the

contagion coefficients are 3.4223, 5.5604, 51.2922, 0.7619 and 5.2181, respectively. In

terms of the risk contagion from the sourced carbon market to Oil market, there are

significant risk contagion phenomenon in the channel of CS12, CK13 and CV22, the

contagion coefficients are 50.1257, 2726.7 and 11.1737, respectively. In terms of the risk

contagion from the sourced carbon market to CSI300 market, there are significant risk

contagion phenomenon in the channel of CS21, the contagion coefficients are 0.0247. In
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terms of the risk contagion from the sourced carbon market to EUAF market, there are

significant risk contagion phenomenon in the channel of CS12, CK13, CK31 and CV22,

the contagion coefficients are 12.146, 311.5333, 31.7965 and 3.2836, respectively.

(2) Comparative analysis of research conclusions

Specifically, as shown in Table 4.6, firstly, the carbon market has a risk contagion

relationship with the JMF market in major high order moment channels. Secondly, the risk

contagion channels between the carbon market and the JTF market in all the high order

moment channels. Thirdly, the risk contagion between China carbon market and Oil

market occurs in major of high order moment channels. The possible reason is that the

rapid declining trend means a reduction in market risk, the normal or small market risks are

not sufficient to trigger cross market risk contagion, the common investor trading can

enough to reduce the market risk. While for some market asymmetric and extreme risks,

investors may adopt cross market risk management, that leading to risk contagion in high-

order moment channels. Fourthly, during the period of rapid declining market trend, there

is a significant risk contagion relationship between the carbon market and the CSI300

market in the high order channel of CS21. When market volatility is declining, the market

risk factors are basic related to the fundamentals. Therefore, the carbon market and CSI300

market maintain a high order moment channel risk contagion relationship. In this situation,

unless extreme events occur, the whole cross market risk contagion of the carbon market

will remain low. Finally, during the rapid declining trend, the carbon market has an risk

contagion relationship with European carbon prices in major of the high order moment

channels. Due to the lower market risk, it can be confirmed that this contagion is more

related to fundamental factors. Macroeconomic fundamentals are fundamental factors that

affect the volatility of carbon market prices, and the flow of information and spillover
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effects between different markets are related to fundamental factors (Zhang et al.,2018;

Zhang et al.,2023; Zeng et al.,2021).

4.3.3 The High Order Risk Contagion under the Market Slow Change

The carbon market slow change indicates that the market price risk changes

relatively smoothly, and the market situation is conducive to investors making more

effective investment decisions and risk avoidance strategies through cautious analysis. The

research has found that under the market slow change, there is only a risk contagion

relationship between the carbon market and its infected market in some high order moment

channels, while there is no contagion in low order moment channels (as shown in Table 4.7

and Table 4.8). It is worth noting that the number of significant high order moment

contagion channels between the carbon market and its infected market in market slow

change is significantly less than the situation of market rapid change analyzed earlier.

4.3.3.1 Risk Contagion Analysis on the Slow Rising Market Trend

The slow rising market trend means the carbon market risk is gradually increasing,

but the growth is not high and belongs to limited growth. Although the increasing in risk

implies an increasing in market uncertainty, it is may difficult to trigger a significant risk

contagion phenomenon (Zhang et al.,2019; Chevallier,2011). Especially when the whole

macro-market volatility is weak, it is difficult for market fundamentals to cause widespread

risk contagion. As a comparison, the asymmetric risk and extreme risks that sourced from

the carbon market and its infected market may trigger cross market risk transmission, and

final form a risk contagion phenomenon.
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Table 4.7: Risk Contagion Test Results of Carbon Market Based on State3-State1

HBEA-JMF HBEA-JTF HBEA-Oil HBEA-CSI300 HBEA-EUAF

FR 0.0005 0.0015 0.0115 0.0007 0.0428

CS12 1.4786*** 0.2551*** 0.0504*** 0.7077 0.5951

CS21 0.2662 0.3621 0.6070 0.2215*** 0.0037

CK13 20.2555** 16.4573* 88.6551 1.4498 35.4678

CK31 0.1417 1.2033 1.9406 1.0464 0.4633

CV22 1.4553 2.1052 1.5088** 23.3554*** 7.1255**

Note: *,**,*** means the significant in the level of 10%,5% and 1%, respectively.

(1) Basic analysis of research results

It can be concluded from Table 4.7 that when the carbon market under the slow

rising trend, there are significant risk contagion phenomenon from the sourced carbon

market to JMF market in the channel of CS12 and CK13, the contagion coefficients are

1.4786 and 20.2555, respectively. In terms of the risk contagion from the sourced carbon

market to JTF market, there are significant risk contagion channels of CS12 and CK13,

with the coefficients are 0.2551 and 16.4573, respectively. In terms of the risk contagion

from the sourced carbon market to Oil market, there are significant risk contagion

phenomenon in the channel of CS12 and CV22, the contagion coefficients are 0.0504 and

1.5088, respectively. In terms of the risk contagion from the sourced carbon market to

CSI300 market, there are significant risk contagion phenomenon in the channel of CS21

and CV22, the contagion coefficients are 0.2215 and 23.3554, respectively. In terms of the

risk contagion from the sourced carbon market to EUAF market, there is significant risk

contagion phenomenon in the channel of CV22, the contagion coefficients is 7.1255.
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(2) Comparative analysis of research conclusions

Specifically, as shown in Table 4.7, firstly, there are two significant risk contagion

channels between carbon market and JMF, JTF, Oil and CSI300 markets. Secondly, the

contagion risk between China carbon market and Europe carbon market only occurs in the

channel of CV22, and there is no significance in other channels.

4.3.3.2 Risk Contagion Analysis on the Slow Declining Market Trend

The slow declining market trend represents the carbon market risk is gradually

decreasing and ultimately reaching a stable state that consistent with the market

fundamentals. During this trend, various risk factors gradually decrease, investor risk is

controllable, market risk exposure gradually closes, and the investors demand for cross

market speculative arbitrage and risk management decreases. Most investors can only

obtain the fundamentals returns based on the findings of Zhang et al.(2019). That is, the

carbon market and its infected market have risk contagion relationships in some high order

moment channels rather than the low order moment channel.

(1) Basic analysis of research results

It can be concluded from Table 4.8 that when the carbon market under the slow

declining trend, there are obvious contagion phenomenon from sourced carbon market to

JMF market in the channel of CS12,CK13 and CK31, the contagion coefficients are 1.4776,

13.8393 and 0.1615, respectively. In terms of the risk contagion from the sourced carbon

market to JTF market, there is no significant risk contagion phenomenon. In terms of the

risk contagion from the sourced carbon market to Oil market, there are significant risk

contagion phenomenon in the channel of CS12 and CV22, the contagion coefficients are

0.0501 and 1.2907, respectively. In terms of the contagion from the sourced carbon market
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to CSI300 market, there are significant risk contagion phenomenon in the channel of CS21

and CV22, the contagion coefficients are 0.2215 and 23.4001, respectively. In terms of the

risk contagion from the sourced carbon market to the EUAF market, there is significant

contagion phenomenon in the channel of CV22, and the contagion coefficients is 5.086.

Table 4.8: Risk Contagion Test Results of Carbon Market Based on State1-State3

HBEA-JMF HBEA-JTF HBEA-Oil HBEA-CSI300 HBEA-EUAF

FR 0.0050 0.0001 0.0050 0.0001 0.0100

CS12 1.4776* 0.1907 0.0501*** 0.7075 0.5847

CS21 0.2660 0.9084 0.6036 0.2215*** 0.0036

CK13 13.8393** 13.2721 73.2137 0.8508 12.4902

CK31 0.1615*** 1.9209 0.3219 0.5495 2.7933

CV22 1.4735 8.7063 1.2907** 23.4001*** 5.086**

Note: *,**,*** means the significant in the level of 10%,5% and 1%, respectively.

(2) Comparative analysis of research conclusions

Specifically, as shown in Table 4.8, firstly, there is no significant low order

moment risk contagion relationship from carbon market to infected markets. This

conclusion is completely consistent with finding of Fry et al.(2018) that low order moment

channels represented by mean and variance are no longer able to trigger more risk

contagion.

Secondly, carbon market and JMF market have three significant risk contagion

channels. Carbon market and Oil and CSI300 market have two significant risk contagion

channels. Especially there are two high order moment risk contagion channels of CS12 and

CV22 that from carbon market to Oil market. Similarly, there are two high order moment

risk contagion channels of CS21 and CV22 that from carbon market to CSI300 market.
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This is basically consistent with the previous findings in the slow rising market trend, that

there is a obvious contagion risk relationship between Oil market, CSI300 market and

China carbon market in high order moment channels. Finally, there is only a risk contagion

relationship from carbon market and European carbon market in the CV22 channel.

4.3.4 Summary of China Carbon Market Risk Contagion Channels

Based on the above analysis, this thesis finds that there are various style of risk

contagion relationships among China carbon market and infected markets, including the

low order moment contagion channels and the high order moment contagion channels.

Especially when market is in rapid and slow market trend, there are significant

differences in the forms and channels of risk contagion. Actually, as this study mentioned

earlier, the risk contagion is essentially a phenomenon of cross market risk transmission,

while risk contagion in high order moment attributes refers to cross-market risk

transmission arise through market irrationality and extreme risk shocks beyond market

fundamentals (Fry et al.,2014;Chen et al.,2022). Measuring the high order moment

channels risk contagion between the carbon market and infected markets aligns with

special characteristics of the carbon market. Clarifying the specific risk contagion forms is

a necessary condition for understanding carbon price formation path and revealing

nonlinear carbon price driving mechanism.

Based on the previous measure results of contagion among carbon market and

infected markets, this thesis summarizes and identifies specific risk contagion channels that

have commonly significance in different market change state and market trend (Yun et

al.,2020). Furthermore, these risk contagion channels will be incorporated into the

theoretical model of the high order moment risk contagion carbon price forecasting
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framework, and thus support a foundation for the carbon price forecasting research in the

following contents.

According to Tables 4.5, Tables 4.6, Tables 4.7 and Tables 4.8, this thesis obtains

that the following risk contagion channels have obvious stability, the significant high order

moment risk contagion channels of CS12 between carbon market and JMF market, the

significant high order moment contagion channels of CS12 and CV22 between carbon

market and Oil market, the significant high order moment risk contagion channels of CS21

between carbon market and CSI300 market, and the significant CV22 channel between

carbon market and European carbon market. The summary results are shown in Table 4.9.

Table 4.9: Risk Contagion Channels between Carbon and Infected Markets

Contagion Market Risk Contagion Channels

HBEA-JMF CS12

HBEA-JTF -

HBEA-Oil CS12,CV22

HBEA-CSI300 CS21

HBEA-EUAF CV22

4.4 Carbon Price Forecasting Based on the High Order Moment Risk Contagion

To make effective nonlinear price forecasting of China carbon market, reveal the

impact of high order moment risk contagion factors on carbon price formation, this thesis

incorporates the risk contagion factors identified in previous study into the China carbon

price forecasting framework constructed in Chapter 3, and conducts the HOC-LSTM

model for the out of sample forecasting. The experimental operation is a program design

based on Matlab 2018b and Python 3.7. In terms of data processing, the first 80% of all the
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time series data is selected for model training, and the last 20% are used to test the model's

forecasting performance.

4.4.1 Basic Parameter Design of the HOC-LSTMModel

4.4.1.1 Decide the Iteration Number

In the field of computer science, iteration numbers refers to repeatedly performing

the same operation under certain conditions to achieve a optimal goal. For a machine

learning model, iteration is a common used method, which can repeatedly train the model,

continuously adjusts parameters, and ultimately makes the model forecasting results more

accurate (Plakandaras et al.,2011; Zhou et al.,2019; Zhu et al.,2019). When training a

machine learning model, an appropriate iterations number can effectively improve the

forecasting performance and training efficiency of the model.

When determine the iterations number, it is first necessary to design a convergence

condition. When the model forecasting results reaches a certain level, the training stops.

The determination of this convergence condition needs to be based on specific problems.

The loss function is an error criterion in machine learning that determines the iteration loss,

that indicates the error between the model forecasting and actual results. During training a

machine learning model, the gradient descent and other optimal algorithms are commonly

used to minimize the loss function and achieve better forecasting results (Shen et

al.,2015;Zhang et al.,2020; Ren et al.,2020). If the loss function trend starts to slow down,

it can be considered that the model has started to converge, and training can be stopped at

this time.
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Figure 4.5: The Model Convergence Errors in Different Iteration Times

In conducting the experimental methods, this study refers to the experience of Shen

et al.(2015) and Yun et al.(2023), and initializes and trains the HOC-LSTM forecasting

model at the iterations numbers of 2000,1500,1000 and 500 respectively, the convergence

results of the model as shown in Figure 4.5. According to the Figure 4.5, when the number

of iterations is 2000, the model can basically converge quickly, and gradually approaching

the minimum loss value. That is the model loss is basically stable after 2000 times

parameter updating and gradient adjusting. Therefore, this thesis sets the iteration number

of the HOC-LSTM forecasting model to 2000 times.

4.4.1.2 Decide the Learning Rate

Learning rate is a key concept in machine learning model, which affects the speed

and stability of model training, it is one of the key parameters for model optimization.

Briefly, the learning rate controls the update amplitude of a machine learning model
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parameters during the training process. A suitable learning rate can improve the training

efficiency while ensuring the model convergence (Li et al., 2023;Yang et al., 2023).

However, choosing the appropriate learning rate is not an easy task, because a bigger

learning rates may cause the model divergence and difficult to achieve optimal solution,

while a smaller learning rate can ensure the final model convergence, but it may reduce the

model training speed and improve the training costs. Experiments have shown that

different model structures and datasets typically require different learning rate settings.

The fixed step learning rate used in traditional gradient descent algorithms may

cause model training not being able to obtain effectively result, which have weak model

generalization ability. Based on this, this thesis uses the adaptive moment estimation Adam

algorithm to update the model parameters. That is, make larger updates for the low-

frequency parameters and smaller updates for high-frequency data. Furthermore, this thesis

determines reasonable range of parameter updates through momentum adjustment of

moment attributes. By optimizing model based on dynamic learning rate, the model

achieves better robustness. According to the basic formula of adaptive moment estimation

Adam algorithm mentioned earlier, this thesis sets the initial learning rate based on

experimental methods. After setting the initial learning rate, the model algorithm can

determine the dynamically adjusted learning rate based on the difference in the moment

attribute dimensions of the input data, and then obtain the dynamic adjustment parameters.

The specific design is as follows: take the risk contagion factors identified in

previous research into the HOC-LSTM model for parameter training. During the training

process, this thesis refers to the experience of Shen et al.(2015) and Yun et al.(2023), and

conducts the learning rates of 0.0001, 0.0003, 0.0006, 0.0009, 0.01, 0.03, 0.06, 0.09, 0.1,
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0.3, 0.6, 0.9 as the alternative parameter, the average loss function during the supervised

training process is used as the evaluation criterion, and the corresponding loss error

performance of each learning rate is shown in Table 4.10 and Figure 4.6.

Table 4.10: Training Error Comparison of Different Parameter Learning Rates

Learning Rate RMSE MAE Learning Rate RMSE MAE

0.0001 1.7188 1.1778 0.01 2.1220 1.3698

0.0003 1.7926 1.4148 0.03 1.3716 0.9663

0.0006 2.1589 1.5607 0.06 1.5057 1.0751

0.0009 2.7027 2.0412 0.09 1.6907 1.1928

0.001 2.8407 2.1117 0.1 1.6654 1.3071

0.003 2.9907 2.0890 0.3 1.8189 1.1773

0.006 2.1400 1.5148 0.6 2.0307 1.4355

0.009 2.0321 1.4724 0.9 2.1421 1.4402

Note: Bold represents the error loss corresponding to the optimal learning rate.

Figure 4.6: The Model Training Errors Based on Different Initial Parameter Learning Rate
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This study find that when learning rate of adaptive moment estimation (Adam)

algorithm is 0.03, the training errors RMSE and MAE are 1.3716 and 0.9663, respectively,

which are the lowest values of all experimental results. That is, as the learning rate

increases, the average training error gradually decreases and reaches its lowest point at a

learning rate of 0.03. As learning rate reaches after point of 0.03, average error gradually

increases (as shown in Figure 4.6). This evidence indicates that the HOC-LSTM model can

achieve fast fitting performance at a learning rate of 0.03, which can effectively reduce

training losses. Therefore,this study designs the initial learning rate of the HOC-LSTM

forecasting model to 0.03.

4.4.1.3 Decide the Hidden Layers Number

As for the machine learning models, the hidden layer is a hierarchical structure

composed of one or more layers of neurons located between input and output layers. The

function of hidden layer is to enhance learning and generalization abilities of neural

networks by introducing nonlinear transformations. The hidden layer can map input data to

a higher characteristic space, and better understand input data features that need to be

learned and extracted (Le and Bengio, 2008; Li et al.,2024).

Increase the number of hidden layers can help machine learning models capture

complex features more accurately, reduce training errors, but it may also causes complex

network structures and many parameters to be estimated, trigger gradient vanishing or

gradient exploding problems, which may lead to training interruption. However, reduce the

number of hidden layer may also decrease learning capacity of model, making it is not

easy to approach training good result. Some famous studies have shown that neural

networks with two hidden layers can already be sufficient to solve most problems (Le and
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Bengio, 2008). This thesis uses the experimental methods to calculate the model training

errors when hidden layers is 1, 2, 3, 4, 5, 6, 7 and 8. The results suggested that when

hidden layers is 2, the model training errors RMSE and MAE are both the minimum values

of the entire experimental results, that obtain the optimal training performance (as shown

in Figure 4.7). Therefore, this thesis sets the initial hidden layers number of the HOC-

LSTM forecasting model to 2.

Figure 4.7:The Training Errors on Different Hidden Layers Nodes of HOC-LSTM

4.4.1.4 Decide the Neuron Nodes

Fewer neuron nodes in hidden layer may cause under-fitting. In contrast, too many

neuron nodes can also cause over-fitting. When a neural network has a large number of

nodes, the limited amount of information contained in training set is insufficient to train all

the neurons in hidden layer, that resulting in over-fitting (Le and Bengio, 2008; Shen et

al.,2015; Yun et al.,2023; Li et al.,2024). Even training data includes enough information,

design too many neurons in hidden layer can also enhance the training time, it is not easy
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to achieve the expected results. Obviously, choose a suitable hidden layer neuron nodes is

key for a machine learning model. Generally, use the same neuron nodes for all hidden

layers is sufficient for most training cases. For some datasets, design larger first layer

neuron nodes followed by smaller neuron nodes can also obtain expected result, the first

layer can obtain many low-level features, which are then fed into the subsequent layers to

extract high order features.

Table 4.11:Training Errors of HOC-LSTM on Different Hidden Layers and Neuron Nodes

Hidden

Layers

Neuron

Nodes
RMSE MAE

Hidden

Layers

Neuron

Nodes
RMSE MAE

1

2 2.1814 1.7869

4

2 2.5023 2.0493

4 1.5347 0.9957 4 1.4528 1.0366

8 1.5377 1.1744 8 1.9842 1.5448

16 1.6423 1.2069 16 1.2251 0.8930

32 2.0523 1.4718 32 1.3202 0.9366

64 2.0762 1.4904 64 1.5500 1.1241

128 1.9940 1.3735 128 1.2333 0.8170

2

2 1.9613 1.3250

5

2 1.4794 1.2196

4 1.2820 0.9139 4 1.2905 0.9318

8 2.3935 1.5474 8 1.5552 1.0912

16 2.1615 1.6828 16 1.4062 1.0611

32 1.3705 0.9620 32 1.5311 1.0973

64 1.4501 1.1504 64 1.5699 1.1047

128 1.0322 0.7154 128 1.4367 0.9974

3

2 1.4934 1.1821

6

2 2.0940 1.4341

4 1.3201 0.8221 4 1.7711 1.2336

8 1.7715 1.0613 8 2.0890 1.5216

16 1.4448 1.0236 16 1.7011 1.1282

32 1.4272 0.9637 32 1.9104 1.2942

64 1.2083 0.8838 64 1.5126 1.0967

128 1.2464 0.9307 128 1.5120 1.0574

Note: Bold represents the optimal neural network training errors.
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Compared to other neural network networks, the LSTM network is a cyclic chain

structure, that each hidden layer has a similar network structure and neuron nodes. The

function of hidden layer neurons is to learn and map input data, which is similar to the

function of hidden layers number. This study also employs the experimental methods and

refers to the experience of Shen et al. (2015) and Yun et al.(2023) to calculate the training

errors of the forecasting models with neuron nodes of 2, 4, 8, 16, 32, 64,128 and hidden

layers of 1, 2, 3, 4, 5 and 6, respectively. Research indicate that when LSTM model has

two hidden layers and neuron node structure are 128-128, the training error is the lowest.

As shown in Table 4.11, when the neuron structure of HOC-LSTM model is 128-128,

training errors RMSE and MAE are 1.0322 and 0.7154, respectively. Therefore, this thesis

designs the initial hidden layer structure of the HOC-LSTM forecasting model to 128-128.

4.4.2 Carbon Price Forecasting Results Based on the Proposed HOC-LSTMModel

4.4.2.1 Forecast Performance Based on the Errors and Correlation

The HOC-LSTM model and its comparative models constructed in this thesis were

used to conduct the out of sample forecast of the China carbon price. The results are shown

in Table 4.13.

According to the Panel A and Panel B of the Table 4.12, as for the error indicators

of RMSE, MAE and MAPE, the forecasting performance of the suggested HOC-LSTM

model show the relatively lower errors. As for the Kendall correlation indicators, the

proposed HOC-LSTM model is relatively high in the entire experiment, the correlation

between predicted one and the real one is strong.
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Table 4.12: Out-of-Sample Forecasting Error and Correlation of HOC-LSTM Model
Based on the 20% Testing Sample

Model RMSE MAE MAPE Kendall

Panel A:high order risk contagion forecasting results

HOC-LSTM 1.4667 0.9378 0.9746 0.9012

GRU 3.1695 2.4005 8.8951 0.3758

MLP 1.6837 1.1502 1.0832 0.8934

GBDT 1.7162 1.1500 1.3023 0.8944

ETR 1.7525 1.1692 1.1223 0.8759

BPNN 1.8212 1.0833 7.1593 0.6851

Panel B: non high order risk contagion forecasting results

HOC-LSTM 1.6010 1.0765 1.0089 0.9784

GRU 2.6104 1.9204 8.0534 -0.0310

MLP 1.6197 1.0919 1.0410 0.9746

GBDT 2.4931 1.7303 5.9037 0.0670

ETR 1.6620 1.1173 1.4492 0.9602

BPNN 3.1077 1.7105 4.7064 0.0407

Specifically, firstly, as for the forecasting errors based on the high order risk

contagion framework in Panel A of Table 4.12, the forecasting error indicators RMSE,

MAE and MAPE of HOC-LSTM model are relatively minimum values, with the values of

1.4667, 0.9378 and 0.9746, respectively. While the forecasting performance of the MLP

model, GBDT model, ETR model and BPNN model are basically the same, the error

values of RMSE, MAE and MAPE are significantly greater than the performance of the

HOC-LSTM model. For example, the forecasting error indicators RMSE, MAE and MAPE

of MLP model are 1.6837, 1.1502 and 1.0832, respectively. The forecasting error

indicators RMSE, MAE and MAPE of GBDT model are 1.7162, 1.1500 and 1.3023,
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respectively. The forecasting error indicators RMSE, MAE and MAPE of ETR model are

1.7525, 1.1692 and 1.1223, respectively. The forecasting error indicators RMSE, MAE and

MAPE of BPNN model are 1.8212, 1.0833 and 7.1593, respectively. Furthermore, the

GRU model performs poorly, the forecasting error of GRU model is the largest, the results

suggest that carbon price prediction effect of GRU model is poor, and it is difficult to

obtain more accurate conclusions based on this model. This conclusion is completely same

with the studies of Yun et al. (2023) that the GRU-type single and hybrid models are

commonly weaker than other machine learning models, especially the LSTM-type models.

In terms of the Kendall correlation indicators, based on the Panel A of Table 4.12,

in the high order risk contagion forecasting framework, the Kendall correlation between

the predicted carbon price of the HOC-LSTM and the real price is 0.9012, this value is

bigger than the correlation of other comparative models, it shows that the correlation

between predicted one and the real one is stronger. Furthermore, the Kendall correlation

between the predicted carbon price of the GRU model and the real price is 0.3758, which is

the lowest of the entire sample. While other comparative models shown smaller correlation,

that is, the Kendall correlation between the predicted carbon price of the MLP model and

the real price is 0.8934, the Kendall correlation between the predicted carbon price of the

GBDT model and the real price is 0.8944, the Kendall correlation between the predicted

carbon price of the ETR model and the real price is 0.8759. The Kendall correlation

between the predicted carbon price of the BPNN model and the real price is 0.6851. These

findings suggest that these four models have a relatively consistent forecasting

performance of the carbon prices. The conclusion can provide effective explanation and

mechanism analysis for revealing the effect of high order moment risk contagion on carbon

price. In fact, the network training and forecasting ability of LSTM model is theoretically



142

superior to MLP, BP and other models, and this experimental result is completely

consistent with the theoretical conclusion and some findings in previous studies of Yun et

al.(2023), Yang et al.(2023) and Zhu et al.(2024).

Therefore, as for the forecasting results in capturing the effect of high order

moment risk contagion on China carbon price, the HOC-LSTM model appears the

relatively lower errors, and a smaller dynamic deviation between predicted and actual price

(as shown in Figure 4.8). From the correlation plots of the forecasting and actual value of

HOC-LSTM model and its comparative models, the HOC-LSTM model has a better

correlation, while the forecasting and actual value of GRU and BPNN model are more

dispersed, indicating a bad correlation (as shown in Figure 4.9). This indicates that

compared to other models, HOC-LSTM model can not only capture nonlinear

characteristics of China carbon price, but also reveal the impact mechanism of the high

order moment risk contagion on the carbon price, especially the complex price driving

mechanism. Therefore, the forecasting effect of proposed HOC-LSTM model can provide

an effective technical tools for investors, emission enterprises to take the carbon trading,

quantify investments, and risk management. This conclusion is completely consistent with

the findings of Yun et al. (2020), that is, the forecasting model considering high order

moment risk contagion is significantly better than the forecasting models without

considering risk contagion, and the forecasting errors is also significantly smaller.
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Figure 4.8: The China Carbon Price Out-of-Sample Forecasting Curve Based on the Impact of High Order Risk Contagion
(The 20% Testing Sample of HOC-LSTM Model and its Comparative Models)
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Figure 4.9: The Correlation Between Forecasting Value and Actual Value Based on the Impact of High Order Risk Contagion
(The 20% Testing Sample of HOC-LSTM model and its comparative models)
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Secondly, according to the Panel B of the Table 4.12, the forecasting

performance of HOC-LSTM model remains stable and excellent in RMSE, MAE and

MAPE based on the non high order moment risk contagion forecasting framework, the

finding is completely same with result in Figure 4.10, and further proving that the HOC-

LSTM model constructed in this thesis has a robust performance. For example, as

shown in Panel B of the Table 4.12, the forecasting error indicators RMSE, MAE and

MAPE of HOR-LSTM model are 1.6010, 1.0765 and 1.0089, respectively. The

forecasting error indicators RMSE, MAE and MAPE of GRU model are 2.6104, 1.9204

and 8.0534, respectively. The forecasting error indicators RMSE, MAE and MAPE of

MLP model are 1.6197, 1.0919 and 1.0410, respectively. The forecasting error

indicators RMSE, MAE and MAPE of GBDT model are 2.4931, 1.7303 and 5.9037,

respectively. The forecasting error indicators RMSE, MAE and MAPE of ETR model

are 1.6620, 1.1173 and 1.4492, respectively. The forecasting error indicators RMSE,

MAE and MAPE of BPNN model are 3.1077, 1.7105 and 4.7064, respectively.

In terms of the Kendall correlation indicators, according to the Panel B of Table

4.12, the Kendall correlation between the predicted carbon price of the HOC-LSTM

model and the real price is 0.9784, which is bigger than other comparative models. The

Kendall correlation of GRU model is -0.0310. The Kendall correlation between the

predicted carbon price of GBDT model and BPNN and the real price is 0.0670 and

0.0407, respectively. These models have almost no correlation. The Kendall correlation

between the predicted carbon price of MLP and ETR models and real price is 0.9746

and 0.9602, respectively. As shown in Figure 4.11, high correlation means that the trend

consistency between the predicted carbon price and the actual value is high, which can

provide direction reference for market investment and financing.
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Figure 4.10:The China Carbon Price Out-of-Sample Forecasting Curve that Without Impact of High Order Risk Contagion
(The 20% Testing Sample of HOC-LSTM Model and its Comparative Models)
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Figure 4.11: The Correlation Between Forecasting Value and Actual Value Without Impact of High Order Risk Contagion
(The 20% Testing Sample of HOC-LSTM Model and its Comparative Models)
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Thirdly, after comparing the RMSE, MAE and MAPE errors results on Panel A and

Panel B of the Table 4.12, this thesis finds that it can provide more accurate explanation for

the carbon premium formation by incorporating the high order moment risk contagion

factors into price forecasting model. That is, the high order moment risk contagion factors

are indispensable component to explain the carbon price, and ignore those risk contagion

factors will significantly reduce the carbon price forecasting ability. For example, the

forecasting errors RMSE, MAE and MAPE of HOC-LSTM model in Panel A are 1.4667,

0.9378 and 0.9746, respectively, which are obviously lower than the forecasting errors in

Panel B. Therefore, considering high order moment risk contagion relationship from risk

source carbon market to infected markets can significantly enhance forecasting performance.

This conclusion also indicates that carbon price is not only related to low order moment risk

factors, but high order moment risk contagion factors that commonly ignored by previous

scholars are also important price driving factors, these conclusion are completely

consistently with the findings of Fry et al.(2014), Yun et al.(2020) and Chen et al.(2022).

The superior performance of the HOC-LSTM model give support for investors and

emission reduction firms to analyze market, forecast profit trends and make risk

management decisions.

Therefore, based on the analysis above, this thesis concludes that the HOC-LSTM

model has obvious advantages in forecasting China carbon price both in the high order and

non high order risk contagion forecasting frameworks. This evidence indicates that HOC-

LSTM model can effectively fit and map complex nonlinear, non normal, and non-

stationary China carbon price data, out of sample forecasting effect is satisfactory. As for

the purpose of this study, it focuses more on the model forecasting error, that is, the model

that can bring smaller errors is the superior model. Actually, in order to further demonstrate
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the robustness of the conclusions in this thesis, sample adjustment testing and W testing will

continue in next step.

4.4.2.2 Forecast Performance Based on the W Test

To estimate the contemporaneously correlation forecast errors problems between the

proposed HOC-LSTM and its comparative models, this thesis uses the w test that suggested

by Granger and Newbold (2004), and adopted in Liew (2006). By conducting the w test, it

can be given the relative errors and the statistical significance of one model over another.

Based on this, this thesis constructs three new error indicators Z-RMSE, Z-MAE and Z-MAPE.

Among them, Z-RMSE is calculated by dividing RMSE of HOC-LSTM model by RMSE of

other comparative models. Z-MAE is calculated by dividing MAE of HOC-LSTM model by

MAE of other comparative models. Z-MAPE is calculated by dividing MAPE of HOC-LSTM

model by MAPE of other comparative models. If this value is greater than 1, it indicates

that the error of the suggested model proposed in this thesis is greater than that of other

comparative models, as a result, the prediction effect of HOC-LSTM model is poor.

Otherwise, the model in this thesis has good superiority.

Furthermore, following Granger and Newbold's (2004) , this study constructs two

error sequences, 1 2i i ix e e  and 1 2i i iz e e  , 1, 2, , .i H  where, 1ie and 2ie indicate the

forecasting errors between the proposed HOC-LSTM model and a comparative model.

Given that the first two assumptions above are valid, under the null hypothesis of equal

forecast accuracy, xi and zi should be uncorrelated. Consider: 2 2
1 2( )xz i i i iEx z E e e    , If

xz is positive, it indicates that the Z-RMSE error of HOC-LSTM is larger than comparative

models, while if xz is negative, it indicates that the error of HOC-LSTM is smaller.

Assuming that xzr represents the Kendall correlation coefficient between 1ie and 2ie , and
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according to Granger and Newbold (2004), the test statistic 2/ (1 ) / ( 1)xz xzr r H  follows

the t-distribution under H-1 degrees of freedom.

Table 4.13:W Test Results of HOC-LSTM Model Based on the 20% Testing Sample

Model Z-RMSE Z-MAE Z-MAPE W test P value

Panel A: High order risk contagion w test results

GRU 0.4628 0.3907 0.1096 -7.7486*** 0.0000

MLP 0.8711 0.8153 0.8997 -0.2674*** 0.0065

GBDT 0.8546 0.8155 0.7484 -0.2729*** 0.0060

ETR 0.8369 0.8021 0.8684 -0.2729*** 0.0060

BPNN 0.8053 0.8657 0.1361 -0.9516*** 0.0093

Panel B: Non high order risk contagion w test results

GRU 0.6133 0.5606 0.1253 -4.2510*** 0.0000

MLP 0.9885 0.9859 0.9692 -0.0602 0.3444

GBDT 0.6422 0.6221 0.1709 -0.1991 0.3208

ETR 0.9633 0.9635 0.6962 -0.1991 0.3208

BPNN 0.5152 0.6293 0.2144 -7.0943*** 0.0000

Note: *** means the significant in the level of 1%.
Z-RMSE is calculated by dividing RMSE of HOC-LSTM model by RMSE of other comparative models.
Z-MAE is calculated by dividing MAE of HOC-LSTM model by MAE of other comparative models.
Z-MAPE is calculated by dividing MAPE of HOC-LSTM model by MAPE of other comparative models.

The results shown in Panel A of Table 4.13 that, as for the w test under high order

moment risk contagion, the relative errors Z-RMSE of the GRU, MLP, GBDT, ETR and

BPNN model are all less than 1, with values of 0.4628, 0.8711, 0.8546, 0.8369 and 0.8053,

respectively. The relative errors Z-MAE of the GRU, MLP, GBDT, ETR and BPNN model

are also all less than 1, with values of 0.3907, 0.8153, 0.8155, 0.8021 and 0.8657,

respectively. The relative errors Z-MAPE of the GRU, MLP, GBDT, ETR and BPNN model
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are also less than 1, with values of 0.1096, 0.8997, 0.7484, 0.8684 and 0.1361, respectively.

This indicates that the carbon price forecasting performance of the HOC-LSTM model

proposed in this study is better than other comparative models, and forecasting error is

smaller based on the w test results. This result is completely same with discussion results in

4.4.3.1. Furthermore, the w test values for the GRU, MLP, GBDT, ETR, and BPNN model

are -7.7486, -0.2674, -0.2729, -0.2729 and -0.9516, respectively, and there are statistical

significance in all the comparative models according to the p value in Table 4.14.

Similarly, in Panel B of Table 4.13, as for the w test under non high order moment

risk contagion, the relative errors Z-RMSE of the GRU, MLP, GBDT, ETR, and BPNN model

are also less than 1, with values of 0.6133, 0.9885, 0.6422, 0.9633 and 0.5152, respectively.

The relative errors Z-MAE of the GRU, MLP, GBDT, ETR, and BPNN model are also less

than 1, with values of 0.5606, 0.9859, 0.6221, 0.9635 and 0.6293, respectively. The relative

errors Z-MAPE of the GRU, MLP, GBDT, ETR, and BPNN model are also less than 1, with

values of 0.1253, 0.9692, 0.1709, 0.6962 and 0.2144, respectively. Those evidence indicate

that carbon price prediction performance of HOC-LSTM model is relatively better than

other comparative models. Furthermore, w test values for the comparative models of GRU,

MLP, GBDT, ETR and BPNN model are -4.2510, -0.0602, -0.1991, -0.1991 and -7.0943,

respectively, which indicate statistical significance only in the models of GRU and BPNN.

Therefore, according to the results of the w statistical test analyzed above, the HOC-

LSTM model constructed in this study not only has relatively good forecasting accuracy,

but also the forecasting results still have significant statistical significance. Those

explanation mean that proposed HOC-LSTM model has obvious effect and reliability in

solving price forecasting problem in China carbon market compared to other models.
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4.4.3 Re-Test of Forecasting Performance Based on Readjustment of Training Data

To further demonstrate out of sample forecasting advantage of HOC-LSTM model

and provide more credible conclusions, following the idea of Zhang et al.(2020) and Yun et

al.(2023), this study readjusts the ratio of training and testing data. Based on the initial 80%

training data, this study continues reduce the ratio of training set, and test forecasting

performance of HOC-LSTM model on 70% of the training data respectively, and 30% data

for testing respectively. Based on the experiment design, if the results are consistent with

previous analysis, it indicates that forecasting superiority of the HOC-LSTM model has

strong robustness, and the model conclusion is reliable. It is worth noting that this study

only readjust the ratio of the training set and test data, while design of other neural network

structures and initial parameters remained consistent with the previous research.

Table 4.14: Out-of-Sample Forecasting Errors and Correlation of HOC-LSTM Model
Based on the 30% Testing Sample

Sample

Classification
Model RMSE MAE MAPE Kendall

70% training

sample and

30% testing

sample

HOC-LSTM 2.1356 1.3208 0.8875 0.9580

GRU 2.5316 1.5589 5.0271 0.5784

MLP 2.2545 1.4124 0.9222 0.9513

GBDT 2.2065 1.3863 0.9500 0.9560

ETR 2.4694 1.4557 0.8995 0.9420

BPNN 2.3141 1.4744 2.8997 0.6828
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Figure 4.12: The China Carbon Price Out-of-Sample Forecasting Curve Based on the High Order Risk Contagion
(The 30% Testing Sample of HOC-LSTM Model and its Comparative Models)
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Firstly, the results have put that, as shown in Table 4.14, when the ratio of training

and testing data is designed at 70% and 30%, the HOC-LSTM model has the smallest

RMSE, MAE and MAPE forecasting errors compared with other comparative models. As

shown in Figure 4.12, the curve fitting of predicted price and the real price is completely the

same with minor errors. The forecasting errors of RMAE, MAE and MAPE of HOC-LSTM

model are 2.1356, 1.3208 and 0.8875, respectively. While other comparative models have

relatively higher error, that is the forecasting error indicators RMSE, MAE and MAPE of

GRU model are 2.5316, 1.5589 and 5.0271, respectively. The forecasting error indicators

RMSE, MAE and MAPE of MLP model are 2.2545, 1.4124 and 0.9222, respectively. The

forecasting error indicators RMSE, MAE and MAPE of GBDT model are 2.2065, 1.3863

and 0.9500, respectively. The forecasting error indicators RMSE, MAE and MAPE of ETR

model are 2.4694, 1.4557 and 0.8995, respectively. The forecasting error indicators RMSE,

MAE and MAPE of BPNN model are 2.3141, 1.4744 and 2.8997, respectively. Those

evidence indicate that no matter the different ratio of training data, it does not affect HOC-

LSTM model for prediction China carbon price. The proposed model can effectively depict

the high order moment risk infection factors triggered by market asymmetric and extreme

shock, that this finding has also been proved in previous studies that listed in literature

review such as Fry et al.(2018) and Yun et al.(2020).

Secondly, as for the Kendall correlation indicators, the proposed HOC-LSTM model

is relatively higher than other comparative models. Specifically, the Kendall correlation

between the predicted carbon price of the HOC-LSTM and the real price is 0.9580, the

Kendall correlation between the predicted carbon price of the GRU model and the real price

is 0.5784, which is the lowest of the entire sample, this conclusion is completely sample

with previous analysis. The Kendall correlation between the predicted carbon price of the
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MLP model and the real price is 0.9513, the Kendall correlation between the predicted

carbon price of the GBDT model and the real price is 0.9560, the Kendall correlation

between the predicted carbon price of the ETR model and the real price is 0.9420, which is

the biggest value of the sample. The Kendall correlation between the predicted carbon price

of the BPNN model and the real price is 0.6828.

Table 4.15:W Test Results of HOC-LSTM model Based on the 30% Testing Sample

Model Z-RMSE Z-MAE Z-MAPE W test P value

GRU 0.8436 0.8473 0.1765 -1.8484*** 0.0003

MLP 0.9473 0.9351 0.9624 -0.5222*** 0.0000

GBDT 0.9679 0.9528 0.9342 -1.5374*** 0.0000

ETR 0.8648 0.9073 0.9867 -1.5374*** 0.0000

BPNN 0.9229 0.8958 0.3061 -0.7941*** 0.0076

Note:*** means the significant in the level of 1%.
Z-RMSE is calculated by dividing RMSE of HOC-LSTM model by RMSE of other comparative models.
Z-MAE is calculated by dividing MAE of HOC-LSTM model by MAE of other comparative models.
Z-MAPE is calculated by dividing MAPE of HOC-LSTM model by MAPE of other comparative models.

Thirdly, as for the w test based on the last 30% of the training sample in Table 4.15,

the relative errors Z-RMSE of the GRU, MLP, GBDT, ETR, and BPNN model are also less

than 1, with values of 0.8436, 0.9473, 0.9679, 0.8648, and 0.9229, respectively. The relative

errors— Z-MAE of the GRU, MLP, GBDT, ETR, and BPNN model are also less than 1, with

values of 0.8473, 0.9351, 0.9528, 0.9073, and 0.8958, respectively. The relative errors

Z-MAPE of the GRU, MLP, GBDT, ETR, and BPNN model are also less than 1, with values

of 0.1765, 0.9624, 0.9342, 0.9867 and 0.3061, respectively. Those evidence indicate that

carbon price prediction performance of HOC-LSTM model is relatively better than other

comparative models. Furthermore, w test values for the comparative models of GRU, MLP,
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GBDT, ETR and BPNN model are -1.8484, -0.5222, -1.5374, -1.5374 and -0.7941,

respectively, which indicates statistical significance in all the comparative models. Those

explanation mean that proposed HOC-LSTM model has obvious reliability in solving price

forecasting problem in China carbon market.

4.4.4 The Economic Implications of the Empirical Results

Firstly, carbon pricing is an important policy tools for addressing climate issues, and

has significant practical implications for sustainable development of society. The carbon

market is a market-oriented mechanism to promote carbon emission reduction. Carbon

market participants are set limits on greenhouse gas emissions, so the participants who

exceed the emission quota are required to purchase emission rights, while those with

emissions below the quota can sell their excess quotas in the carbon market

(Chevallier,2012; Aatola et al.,2013; Zhu et al.,2024). This cap and trade mechanism can

creates supply and demand of emission allowance, discovers market prices for greenhouse

gas emissions, and guides carbon market participants to reduce carbon emissions that below

government set emission limits at reasonable costs.

Secondly, carbon pricing can achieve a "carbon emitter pays" approach, effectively

reducing global carbon emissions according to the research of Adekoya et al.(2021) and Qiu

et al.(2023). The forecasting price of carbon emission rights inherits the principle of

"polluter pays", by setting economic costs for carbon emission behavior, and assuming the

environmental damage caused by carbon emissions. This internalization process is known

as carbon emission pricing, which imposes clear economic responsibilities on carbon

emission behavior, thereby addressing challenges such as free riding and moral hazard, and

gradually realizing the principle of "carbon emitter pays". The gradual promotion of this
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mechanism on a global scale has laid a solid foundation for sustainable human development

and provided solutions for global cooperation.

Thirdly, the determining factor of carbon price is balance between market

allowance supply and demand, as well as the emission reduction costs of various industries.

The carbon market can be divided into two segments: the primary and secondary markets.

Much like the stock and bond markets, the primary market is where carbon emission

allowances are created and issued. These allowances can be obtained through either free

distribution or auction, with the government typically holding dominant control. The

secondary market, on the other hand, is where carbon assets and carbon derivatives are

traded and circulated. The primary market serves as the foundation and prerequisite for the

secondary market (Conrad et al.,2013; Zhu et al.,2018). Carbon emission allowances and

credits must first pass through the primary market before they can be traded in the

secondary market.

Fourthly, the focus of this study is studying the formation and determination

mechanism of carbon prices in the secondary market. It considers the effect path of high

order moment risk contagion on carbon prices, and constructs a machine learning model to

effectively forecast carbon prices in the secondary market. Research has found that there is

a risk contagion relationship between carbon market and its infected markets through high

order moment channels, which has an undeniable impact on the carbon prices trends. The

risk contagion of this high order moment attribute is closely related to the market

asymmetry and high sensitivity to policy shocks of carbon market (Fry & Hsiao, 2018;

Elsayed et al., 2022; Tsai et al.,2024;Wang et al.,2024). Further research has used these

identified high order moment risk contagion relationships as influencing factors for out of
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sample forecasting of carbon prices. The results show that using machine learning model

HOC-LSTM can effectively and accurately forecast China's carbon prices with less error

and higher accuracy. Therefore, this is a reliable price forecasting model. For investors,

especially those in secondary market, carbon price changes are more complex. Obtaining

effective and superior forecasting models to quantify and analyze carbon prices can improve

market decision-making efficiency, increase investor market profits, and enhance the

foresight of market decisions. So, forecasting carbon price in secondary market conforms to

economic laws and practical management needs.

4.5 Summary of the Chapter

Based on the identification results of the high order moment risk contagion and the

forecasting effect of proposed HOC-LSTM model, the main findings of this chapter are as

follows:

Firstly, no matter the market volatility is under the rapid or slow trend, there is only

high order moment risk contagion channels between carbon market and its infected markets.

Therefore, revealing carbon price driving mechanism only through low order moment risk

contagion channels may difficult to provide complete evidence for explaining risk

premiums.

Secondly, the HOC-LSTM model constructed in this study has a significant

superiority in fitting and forecasting the high order moments risk contagion factors, and

indirectly convinced the rationality of taking the risk contagion relationship into the price

forecasting models. It is also an indispensable factors in explaining carbon price formation

mechanism and exploring driving mechanism of carbon premium.
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Thirdly, carbon price forecasting performance of HOC-LSTM model has strong

stability and robustness, that is, no matter how ratio of training data changes, it does not

affect the carbon price forecasting results of HOC-LSTM model. The model can effectively

catching high order moment risk contagion relationship that triggered by information

asymmetric and extreme shock.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter provides an overall of the study on risk contagion and price

forecasting of China carbon market based on high order moment attribute. The study

addresses two different objectives. The first objective is to recognize risk contagion

between China carbon market and its infected markets in manner of high order moment

attribute. The second objective is to forecast the China carbon price by the proposed high

order risk contagion machine learning model (HOC-LSTM) to prove the risk contagion is

useful to improve the forecasting performance. This chapter begins with main findings,

followed by discussions on economic and policy implications especially analyzing the

origin of carbon price forecasting issues, the measurement results. Furthermore, limitations

of the study are discussed, and some future suggestions are presented. Finally, concluding

with a summary of this study.

5.2 Main Findings

As an innovative mechanism to address global climate change, the creation of

carbon markets is based on various agreements of the international community fulfills its

emission reduction responsibilities, and develops into policy tools to promote the operation

of finance markets. Compared to other financial markets, the carbon market is highly

susceptible to major black swan events such as energy policies, emission reduction quota,

global climate negotiations and financial crises in the capital market sector. However,

because of low efficiency of carbon market that concluded in previous studies of Zhang et
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al.(2019) and Yun et al.(2023) , trading tools of the carbon market do not reflect all value

information. Especially, under the promote of the irrational investors, there is a clear

market asymmetry effect on carbon market. Therefore, carbon price forecasting research

should incorporate the effect of the market asymmetric and event change into the

forecasting framework.

Based on the identification results of the high order moment risk contagion and

carbon price forecasting effect of proposed HOC-LSTM model, main findings of this study

are as follows:

(1) Test risk contagion relationship from risk source carbon market to its infected

markets in the manner of high order moment attribute.

Because of heterogeneity and asymmetry of carbon price fluctuations, this study

mainly measures high order moment attribute risk contagion relationship between carbon

market and infected markets under market rapid and slow trend. The results suggest that

there is no risk contagion relationship in low order moment channels, but significant risk

contagion relationship through high order moment attributes have detected, including the

significant high order moment risk contagion channels of CS12 from carbon market to

JMF market, the significant high order moment contagion channels of CS21 and CV22

from carbon market to Oil market, the significant high order moment risk contagion

channels of CS21 from carbon market to CSI300 market, and the significant CV22 channel

from carbon market to European carbon market. Those finding indicates that previous

carbon price forecasting studies through low order moments attribute may be insufficient

to accurately reveal the carbon premium formation. Incorporating risk contagion

relationship between carbon markets and infected markets into price forecasting
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framework can help improve the forecasting accuracy (Kumar et al., 2003; Tjøstheim et al.,

2013; Støve et al., 2014; Zhang et al., 2023).

(2) Construct a machine learning carbon price forecasting model that suitable for

capturing the impact of high order moment risk contagion on carbon price.

Based on the tested high order moment channel risk contagion relationship between

carbon and its infected markets. The high order moment CAPM financial asset price

forecasting framework is extended from two factors to multiple factors, and then the high

order risk contagion carbon price forecasting model is formed. This model not only reveals

the high order moment impact relationship of infected markets on carbon price, but also

reflects the nonlinear impact path of high order moment attribute risk contagion on carbon

price ( Fama & French, 2017; Mosoeu and Kodongo, 2022).

Constructing high order moment risk contagion carbon price forecasting model has

characteristic of multiple parameters and complex nonlinear network structures, which

require machine learning model to extract deep features and improve the fitting

performance (Yun et al., 2020). Furthermore, LSTM model has advantage of processing

financial time series and preventing gradient vanishing and exploding(Sun et al., 2020;

Adekoya et al., 2021). This evidence indicates that HOC-LSTM model is suitable for

capturing the impact of high order moment risk contagion on carbon price.

(3) The HOC-LSTM model performance better in forecasting China carbon price

than other comparative models.

Based on identified high order moment attribute risk contagion relationship

between carbon market and its infected markets, this study reconstructed carbon price
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forecasting model, and the machine learning HOC-LSTM model is carried out to forecast

carbon price.

According to the empirical analysis in chapter 4, the results show that the

forecasting error indicators RMSE, MAE, MAPE of the HOC-LSTM model are smaller

than other comparative models, the Kendall correlation indicator is also high value in the

entire experiment. Furthermore, sample adjustment testing and W testing are conducted to

further demonstrate the robustness of the HOC-LSTM model. This evidence indicates that

HOC-LSTM model can effectively fit and map complex nonlinear, non normal, and non-

stationary China carbon price data that with impact of high order moment risk contagion,

out of sample forecasting effect is satisfactory. This conclusion indirectly proves risk

contagion relationships between carbon market and infected markets are also a key element

for explaining carbon price formation mechanism. Furthermore, those finding not only

convinced the forecasting ability of HOC-LSTM model in fitting the complex carbon price,

but also give stronger evidence that the price forecasting framework integrates the high

order moment risk contagion can provide a more accurate explanation of carbon premium.

5.3 Policy Implications

Under the background of the global capital flows and cross market allocation of

carbon assets, this study considers the risk contagion among carbon market and its infected

markets, studies carbon price forecasting issue under impact of high order moment risk

contagion. Based on the research findings of this study, the following are several policy

implications aimed at improving the operational efficiency and stability of the carbon

market, and providing reference for future carbon price forecasting.
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(1) Establish and improve a high order moment risk contagion monitoring

mechanism between carbon market and infected markets

Policy makers should develop and implement effective risk management policies,

monitor and respond to high order risk contagion phenomena in carbon market, and

establish risk contagion monitoring mechanisms. By establishing a carbon market risk

warning system, real-time monitoring of market dynamics, timely detection and response

to high order moment risk contagion, corresponding policy measures can be taken in a

timely manner to prevent market risks and stabilize carbon prices. In addition, the Chinese

government should cooperate with the international community, share and exchange risk

management experience, and jointly enhance the stability of the global carbon market.

Firstly, the government agencies should strengthen carbon market risk dynamic

analysis of the fundamental prices and risk information, introduce market risk trigger

warning mechanisms and crisis response mechanisms. Especially, effective real-time

monitoring mechanisms for carbon market risks should be established to ensure the

tracking and response to the risk contagion process caused by unexpected or policy events.

Secondly, government agencies should strengthen the market-oriented nature of

carbon asset pricing and make institutional arrangements for serving carbon pricing. The

establishment of the carbon market is policy dependent and dominant, while its operation

process, especially the pricing mechanism, needs to be carried out in accordance with the

market-oriented mechanisms. Therefore, focusing on government service measures for

carbon pricing, some policies should continue to improve the institutional norms for the

operation of the carbon market. Some feasible measures, such as strengthening the

innovation of quota allocation system, information disclosure system, report review system,
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national carbon trading registration management system, reporting and verification system,

and other systems. The effective legal regulations will ensure promotion of trading market,

enhance ability to monitor and control risk and better serve the development of carbon

trading.

(2) Build and promote a multi factor carbon price forecasting framework

Given the impact of high order moment risk contagion on carbon price, it is

recommended that policy makers construct and promote a multi factor carbon price

forecasting framework. This framework should incorporate the high order moment

characteristics of carbon market and various factors, such as energy policies, emission

reduction quotas, global climate negotiations, and financial crises. This will help to have a

more comprehensive understanding of the price fluctuations in the carbon market, improve

market predictability, and reduce market volatility caused by unexpected events.

(3) Promote the application of HOC-LSTM model in carbon price forecasting

This study indicates that the HOC-LSTM model has significant advantages in

carbon price forecasting. The government can promote the promotion and application of

models through policy guidance. Encourage and support the application of HOC-LSTM

model in carbon price forecasting to improve the accuracy carbon price prediction. The

government can organize training and promotion activities to introduce the advantages and

application methods of the HOC-LSTM model to carbon market participants. At the same

time, the actual effectiveness of the model can be verified through pilot projects, and

comprehensive promotion can be carried out after success.

Incorporating high order moment risk contagion correlation among carbon market

and infected markets into forecasting framework to enhance forecasting accuracy.This
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conclusion suggests that it is reasonable to explore carbon price formation mechanism

from channel of high order moment risk contagion. When making the carbon market

decisions, apart from focus on the systemic risks caused by fundamental factors, it is also

necessary to analyze impact of investor irrationality and external policy events.

Government agencies should pay more attention to the price driving relationship between

carbon market and its infected markets, and provides a technical analysis basis for market

traders to catch price trend and forecast price changes.

(4) Enhance the financial knowledge and risk management capabilities of market

participants

The irrational investor behavior in the carbon market may lead to asymmetric

effects in the market. Policy makers can reduce the negative impact of irrational behavior

on the market by strengthening regulation and guidance. For example, through training and

education, enhance market participants' understanding and risk management capabilities,

strengthen their ability to cope with market fluctuations and risk contagion. The

government can also cooperate with universities and financial institutions to regularly hold

training courses and seminars to popularize carbon market knowledge and risk

management techniques. Meanwhile, convenient learning channels can be provided to the

public through online courses and open resources.

On the one hand, the entire process from carbon trading registration, trading

condition review to transaction completion to real-time monitor the market information, to

reveal the potential risk points that may cause significant anomalies. On the other hand,

introducing the specialized investment management institutions into the carbon market to

provide more professional services. With the improvement of carbon asset management
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efficiency, the activity and market liquidity of carbon trading products will also improve.

These management measures have important significance for the emerging China carbon

market.

5.4 Conclusion

The topic of this study is solving the price forecasting issues in China. The

contribution of this study are designing a high order risk contagion carbon price

forecasting theoretical framework, constructing a new non-parametric method for testing

risk contagion relationship among carbon market and infected markets, constructing a high

order moment risk contagion model (HOC-LSTM ) to forecast the carbon price. After

constructing the machine learning model, the conclusion found that the carbon price

forecasting theoretical framework with high order moment risk contagion can effective

improve the carbon forecasting accuracy. This indicates that theoretical framework of this

study contributes to significantly improve carbon price forecasting accuracy.

5.5 Future Research

Firstly, using price data from national unified carbon market to forecast the China

carbon price as the maturity and improvement of China carbon market.

Secondly, using data mining methods to obtain unstructured pricing factors such as

policy factors, extreme market factors, and international negotiation factors, and

incorporating these factors into price forecasting models to improve accuracy.

Thirdly, genetic algorithm and whale optimization algorithm can be used to

optimize and improve the training process of HOC-LSTM model, so as to provide the

model's out of sample generalization ability and enhance the accuracy.
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Fourthly, the risk measurement involved in price forecasting and the

interdependence between risks contagion need to be further optimized and expanded in

future research. In addition, considering the significant volatility of the carbon market at

different stages and its susceptibility to policy events, in the future, structural fracture

event analysis methods can be considered to more profoundly reveal the event dynamics

behind carbon price fluctuations.

5.6 Limitation of the Study

The study has several limitations that should be noted. Firstly, in terms of sample

selection, this study conducts the price of Hubei carbon market as the dependent variable.

In theory, for studying the issue of China carbon prices forecasting, it is better to use the

national unified carbon market price that officially started operating in July 2021. This may

limit the selection of representative indicators. This problem is related to the current lack

of unified carbon market price data.

Secondly, in terms of the influencing factors of carbon price, although the study

considers the high order moment contagion relationship between the carbon market and its

infected market, there are still many unpredictable factors in the market, such as policy

changes, changes in international relations, etc., which are difficult to fully incorporate into

the model.

Thirdly, in the construction of the HOC-LSTM model, although our model has a

relatively small forecasting errors and has advantages in forecasting China carbon price,

the superiority is not significant. This may be related to the fact that the proposed model

has more parameters and lacks improvement in optimization algorithms.
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