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Abstract
In the realm of landslide susceptibility prediction, the challenge of overfitting and over-
estimation has persisted despite various modeling attempts. This study aims to elevate 
the predictive capabilities of the Extreme Gradient Boosting (XGBoost) and Random 
Forest (RF) models for landslide susceptibility assessment through the innovative appli-
cation of Bayesian Optimization (BO). Using data from Penang Island in Malaysia, we 
comprehensively incorporated topographical, hydrological, human, and environmental fac-
tors influencing landslides. Leveraging Geographic Information System (GIS) tools, we 
meticulously constructed spatial databases encompassing all pertinent landslide condition-
ing elements. Our findings unveil the remarkable performance of the optimized XGBoost 
model, achieving an astounding 100.0% Success Rate (SR) and an impressive 97.1% Pre-
diction Rate (PR). In comparison, the optimized RF model achieved an SR of 99.7% and 
a PR of 96.3%, while the stacked models followed closely with an SR of 96.8% and a PR 
of 95.6%. These conclusive results underscore the transformative potential of addressing 
overfitting and overestimation challenges through the strategic combination of stacking and 
hyperparameter optimization. The improved accuracy of these algorithms bears immense 
significance, extending to applications in site selection, engineering structure health moni-
toring, and disaster mitigation, thus elevating the importance of Landslide Susceptibility 
Maps (LSMs) in safeguarding communities and infrastructure.
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1 Introduction

In Malaysia, landslides rank as the second most catastrophic natural disaster following 
floods. Despite the absence of significant earthquakes, the country continues to experience 
large-scale landslides primarily triggered by gravity and relentless heavy rainfall. The rapid 
development since the 1980s has made locating suitable low-lying areas for urban expan-
sion increasingly challenging. This has led to heightened development in highland and 
steep terrain regions adjacent to densely populated cities, consequently elevating the risk of 
landslides for urban residents.

In Malaysia, landslides, such as shallow slides, mudflows, debris flows, and rockfalls, 
are common occurrences during or after heavy rainfall (Rahman and Mapjabil 2017). To 
mitigate the economic impact of these events, hazard mapping, historical data analysis, 
and prioritized hazard reduction planning are crucial. Therefore, developing a Landslide 
Susceptibility Map (LSM) is essential for assessing landslide risk and implementing risk 
reduction strategies, as it identifies potential landslide-prone areas (Senouci et  al. 2021). 
Furthermore, landslide susceptibility reflects the likelihood of landslides occurring due to 
various factors (Reichenbach et al. 2018).

Machine learning algorithms have significantly improved landslide prediction accuracy 
and adaptability (Bui et  al. 2018). These techniques encompass traditional models like 
Logistic Regression (LR), Artificial Neural Networks (ANN), Support Vector Machine 
(SVM), and K-Nearest Neighbor (KNN). While LR is widely utilized but performs best in 
less complex scenarios with smaller sample sizes (Yilmaz 2010), SVM excels with small 
datasets but is impractical for large-scale data (Fang et al. 2020). ANNs, despite their com-
plexity, may struggle with certain landslide comparisons (Agrawal & Dixit 2023). At the 
same time, KNN is straightforward but costly as the sample size increases (Mutlu et  al. 
2019).

Hybrid models, integrating multiple models or optimization techniques, have gained 
popularity for their improved prediction performance (Ado et  al. 2022). They employ 
methods like Artificial Bee Colony (ABC) Optimization, Genetic Algorithms (GA), Par-
ticle Swarm Optimization (PSO), and Bayesian Optimization (BO). Deep learning algo-
rithms like Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) 
have also shown promise in landslide susceptibility analysis (Paoletti et  al. 2018). CNN 
automatically extracts meaningful features, while RNN is suitable for national-scale analy-
sis but not regional-scale (Zhu et al. 2017).

Ensemble machine learning techniques, such as boosting and bagging, enhance land-
slide vulnerability assessment by combining multiple classifiers (Bui et al. 2016). Boosting 
sequentially adds classifiers to control bias and variance, while bagging generates multi-
ple decision trees (Pham et al. 2020). Random Forest (RF) is a popular bagging ensemble 
method, and Extreme Gradient Boosting (XGBoost) is a well-known boosting method.

The selected technique must be effective in dealing with the nonlinear relationship 
between the landslide conditioning factors and the occurrences of landslides. It is one of 
the few characteristics that must be considered in choosing an appropriate approach to be 
employed (Mezaal et al., 2018). Next, the method of choice must manage geographic het-
erogeneity, consume numerous input parameters, and manage numerous output parameters 
such as classification and regression (Taalab et al. 2018). It is also crucial to consider pre-
diction accuracy as well as non-linearity issues. The advantage of choosing many machine 
learning models over just one is that the hybrid-ensemble technique emphasizes each mod-
el’s strengths while minimizing its flaws (Chen & Li 2020).



Natural Hazards 

Overestimation and overfitting are common challenges in LSM (Agrawal & Dixit 2023). 
Overestimation reduces map precision and wastes resources (Rabby et al. 2020). Maintain-
ing model accuracy while simplifying complexity is challenging, and addressing overfit-
ting requires further research. Hence, hyperparameter optimization can help in creating an 
accurate yet less complex model.

The nonlinear relationship between the landslide conditioning factors and the landslide 
susceptibility can be addressed by the "black box" model RF (Sahin 2022). RF is more 
capable of addressing the overestimation problem. On the other hand, the XGBoost model 
outperforms the RF in coping with class imbalance and is more resistant to overfitting due 
to its structure (Wang et  al. 2020). Thus, establishing heterogeneous ensemble learning 
through stacking the two classifiers can further improve the capacity to predict homog-
enous learners (Susan et al. 2021).

Therefore, this research study aims to address overestimation and overfitting using 
a hybrid ensemble of RF and XGBoost with BO Hyperparameter techniques to develop 
an LSM for Penang Island, Malaysia. There were ten additional conditioning factors and 
model performance was evaluated using a confusion matrix, statistics, and the area under 
the Receiver Operating Characteristic (ROC) curve (AUC). Accordingly, the resulting 
LSM is valuable for urban planning, infrastructure development, and land use planning to 
reduce landslide hazards (Susan et al. 2021).

2  Study area

This research focused on Penang Island, located in Malaysia (Fig. 1). The study area lies to 
the northwest of the peninsula. The island is 306  km2 in area, and a river separates it from 
the mainland. The island is located between latitudes 5°15’N and 5°30’N and longitudes 

Fig. 1  Penang Island study areas in Malaysia
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100°10’E and 100°20’E, where the study area is located. Most of the bedrock in the 
research area is composed of granite. As a result, 443 landslide locations have been discov-
ered on Penang Island.

3  Methodology

3.1  Data collection

The initial phase of this methodology was data collection, followed by creating a landslide 
inventory map, establishing spatial databases for landslide conditioning factors, assessing 
the significance of these factors, modeling and validating landslide susceptibility models, 
and ultimately producing the final susceptibility map (Fig. 2). Multiple data sources were 
utilized in this study, with a strong reliance on open-source software such as RStudio and 
Geographic Information Systems (GIS), including ArcMap 10.4 and QGIS 3.8.

Data for this study was primarily sourced from publicly available resources. Google 
Earth Pro was employed to determine altitude information for the study areas. GPS 
Exchange Format (GPX) file format features generated from these elevation points were 
imported into ArcMap to create a Digital Elevation Model (DEM) at a 1:250,000 scale, 
utilizing ArcMap’s interpolation capabilities. Simultaneously, Landsat 8 imagery with spa-
tial resolutions of 30  m in multispectral and 15  m in panchromatic bands was obtained 
from the United States Geological Survey (USGS) Earth Explorer. Meanwhile, road net-
work data was extracted from OpenStreetMap. Landslide locations were identified using 
the National Aeronautics and Space Administration (NASA) Global Landslides Catalogue. 
Subsequently, all datasets were projected to UTM-Zone 47N with the WGS84 Datum.

3.2  Landslide inventories

Landslide inventory mapping is fundamental in landslide prediction and susceptibility 
mapping (Pradhan et  al. 2010; Roslee et  al. 2012). This study employed a pre-existing 
landslide inventory map, augmented with the latest landslide data from NASA Landslide 
Catalogues. To acquire non-landslide grid cells, we explored three techniques from the lit-
erature: (i) the seed cell approach, (ii) random selection from landslide-free areas, and (iii) 
selecting sites with slopes less than 2° (Huang et  al. 2017). Our approach utilized Grid 
Unit Extraction to randomly select areas within the study region, aligning with the second 
method.

3.3  Landslides Conditioning Factors (LCFs)

The choice of landslide conditioning factors significantly influences the predictive capabili-
ties of machine learning algorithms for landslide susceptibility. Previous studies on LSM 
utilizing machine learning approaches ( Chen et al. 2018a, b, c; Moayedi et al. 2019) have 
employed various combinations of these factors. However, the selection criteria for these 
factors should consider their (i) relevance to landslide occurrences, (ii) measurability, (iii) 
non-redundancy, and (iv) alignment with the geomorphological characteristics of the study 
area (Ayalew & Yamagishi 2005). In this study, we have identified ten variables for inclu-
sion, drawing from existing literature and the expertise of subject-matter specialists.



Natural Hazards 

3.3.1  Topographical factors

Topographical characteristics encompass slope angle, slope length, profile curvature, 
and plan curvature, all derived from DEMs. Elevation plays a pivotal role, impacting 
both human activities and various biophysical attributes, consequently influencing land-
slide occurrences. Studies have even pinpointed specific elevation levels as prone to land-
slides in certain basins (Gómez & Kavzoglu 2005). Moreover, elevation influences other 

Fig. 2  Research methodology flowchart
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landslide-related factors like slope, curvature, and Stream Power Index (SPI) (Chen et al. 
2018a, b, c).

A DEM is a 3D representation of terrain elevation. DEMs are critical for LSM, provid-
ing elevation-based data for deriving landslide conditioning factors. In this study, our DEM 
was constructed from Google Earth elevation point data using the "Interpolation Tool," 
specifically Inverse Distance Weighted (IDW), resulting in a 30 m × 30 m grid. The eleva-
tions on Penang Island range from 0 to 797.41 m (Fig. 3a).

Slope angle is a significant factor influencing landslides due to its impact on mois-
ture concentration, pore pressure, and hydraulic continuity at a regional scale (Ayalew & 
Yamagishi 2005; Duman et al. 2006). Each process plays a role in slope instability (Chen 
et al. 2017a, b). On Penang Island, slope angles vary from 0° to 59.62° (Fig. 3b). Curvature 
is another influential factor, directly controlling water flow velocity and erosion processes 
(Chen et al. 2017a, b; Duman et al. 2006). Plan curvatures on Penang Island range from 
-3.29 to 3.68 (Fig. 3c), while profile curvatures vary from -6.43 to 5.80 (Fig. 3d).

The slope length gradient (LS) component combines slope length (L) and slope steep-
ness (S) to determine soil erosion rates. Additionally, longer slopes accumulate more run-
off, and steeper slopes exhibit higher runoff velocities, leading to erosion (Das et al. 2022). 
In addition, slope lengths on Penang Island span from 0 to 124.09 (Fig. 3e).

3.3.2  Anthropogenic and environmental factors

This study considers additional anthropogenic, environmental, and geographic factors, 
including the distance to a road, distance to a stream, and the Normalized Difference Veg-
etation Index (NDVI). Proximity to highways is a significant determinant of landslide loca-
tions, as both natural and man-made slopes near roads are susceptible to this hazard (Rozos 
et  al. 2011). Anthropogenic factors, such as road cuts, excavation, and additional load, 
can induce soil instability, potentially triggering landslides (Pourghasemi et al. 2012). We 
employed the Euclidean distance technique to create a distance-to-road layer, with values 
ranging from 0 m to 1253.2 m for Penang Island (Fig. 3f).

Streams can impact an area’s stability by eroding slopes, making the presence of natural 
drainage systems a potential indicator of landslide-prone locations (Ahmed et  al. 2020). 
On Penang Island, stream elevations range from 0 m to 779.21 m (Fig. 3g). NDVI maps 
were generated using Landsat 8 satellite images from 2021, sourced from the USGS Earth 
Explorer. Moreover, NDVI plays a vital role in water retention and improving the shear 
resistance and soil cohesiveness of lithological masses (Sidle & Ochiai 2013). For Penang 
Island, the NDVI values range from -0.19 to 0.59 (Fig. 3h).

3.3.3  Hydrological factors

This study incorporates two key hydrological indicators: the SPI and the Topographic Wet-
ness Index (TWI). SPI serves as an essential predictor of landslides by assessing a surface’s 
erosion potential (Chen & Li, 2020b; Moayedi et  al. 2019; Pirasteh & Li 2017). While 
Positive SPI values indicate minimal erosion risk, negative values signify a higher potential 
for erosion (Pirasteh & Li 2017). Across the research regions, SPI spans from 0 to 101,102 
for Penang Island (Fig. 3i).
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On the other hand, TWI provides insights into terrain characteristics, runoff volume, 
and soil conditions (He et  al. 2019). In this study, TWI was selected as an additional 
conditioning factor due to its ability to elucidate the interplay between topography and 

Fig. 3  Landslide conditioning spatial databases: a DEM, b slope angle, c plan curvature, d Profile curva-
ture, e slope length f distance from Road, g distance from stream, h NDVI, i SPI, j TWI
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moisture (Z. Wang et  al. 2020). TWI value on Penang Island ranges from 3.2 to 25.3 
(Fig. 3j).

3.4  Feature selection

In the feature selection process, variables or attributes that hold greater significance and 
relevance to the target class are retained, while those that lack significance are eliminated. 
This feature selection process offers several key advantages, including mitigating the curse 
of dimensionality, expediting learning, enhancing generalization capabilities, and produc-
ing comprehensible models and explanations (Ao 2008). In this study, the Multicollinearity 
test and the Boruta model were employed to ascertain the significance of each landslide 
conditioning component.

To assess multicollinearity among the variables, we utilize the Variance Inflation Factor 
(VIF) and Tolerance (TOL) approaches. These methods have been frequently employed in 
prior studies (Ado et al. 2022; Amiri et al. 2019; Chen et al. 2018a, b, c; Gao et al. 2020; 
Rabby & Li 2020; Saha & Saha 2022). The "olsrr" package and the "ols_vif_tol()" function 
within RStudio are used to execute the multicollinearity tests for VIF and TOL concern-
ing the landslide conditioning variables (Hebbali & Hebbali 2017). As a result, these tests 

Fig. 3  (continued)
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effectively identify redundant components that should be eliminated (Devkota et al. 2013; 
O’brien, 2007).

However, it is essential to note that the absence of a direct relationship between cer-
tain factors does not necessarily imply their lack of significance in influencing landslides 
(Chan et al. 2022). Hence, we employ the Boruta model for feature selection in this project. 
Boruta, based on wrapper-based approaches, serves as a robust Factor Optimization Pro-
cess (FOP) (Amiri et al. 2019). The Boruta model is implemented using the "Boruta" pack-
age in RStudio (Kursa & Rudnicki 2010).

3.5  Correlational analysis

After confirming the chosen conditioning factors, a more in-depth analysis of the relation-
ship between the parameters selected and the occurrence of landslides was conducted. The 
correlational study was performed using Frequency Ratio (FR) analysis, similar to previous 
studies (Huang et al. 2020; Rabby & Li 2020; Xiao et al. 2019).

3.6  Modeling

The modeling process was conducted using RStudio software, version 4.3.0. Both the 
landslide datasets and the ten spatial databases were imported into R. The datasets for 
each study area were randomly divided into three sets: 70% for training, 15% for testing, 
and 15% for validation. It is worth noting that there is no specific criteria or universally 
accepted rule of thumb for determining the dataset splitting ratio, as observed in previous 
studies (Achour & Reza 2020; Hussain et al. 2021; Saha et al. 2021; Sahin, 2022b).

3.6.1  Extreme gradient boosting (XGBoost)

In recent years, the open-source gradient boosting method, XGBoost, has been employed 
in data science. The XGBoost adheres to the gradient boosting principle, which combines a 
set of weak learners’ predictions to produce a strong learner using an additive training tech-
nique (Chen & Guestrin 2016). The XGBoost model requires several parameter selections 
to generate predictions. However, the model’s effectiveness always depends on choosing 
the best parameters.

3.6.2  Random forest

For classification, regression, and unsupervised learning, RF is regarded as a potent 
ensemble learning technique (Chen et al. 2017a, b), while LSM has extensively used this 
technique (Chen et al. 2018a, b, c; Sun et al. 2020). In ensemble models, numerous weak 
learners are typically trained, and their combined outputs are then used to produce more 
accurate predictions. The RF algorithm builds weak learners in the form of decision trees.

3.6.3  Bayesian hyperparameter optimization

Enhancing the accuracy of machine learning models hinges on effective hyperparameter 
optimization. This procedure seeks to identify the optimal hyperparameter values based 
on an evaluation index (Sun et al. 2020). Widely adopted methods for hyperparameter 
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optimization encompass grid search, random search, and Bayesian optimization (BO) 
(Sameen et al. 2020). Furthermore, this study employed BO for hyperparameter optimi-
zation, selecting the best-performing hyperparameters for final training and testing of 
the respective machine-learning models.

BO had been widely used in previous LSM studies conducted in Fengjie 
County,China (Sun et  al. 2020), Wuqi County, China (Wang et  al. 2021) and Anhua 
County, China (Yang et al. 2023). All the stated previous LSM studies had only empha-
sized the improvement of machine learning models (RF, XGBoost and logistic regres-
sion) prediction performances because of the BO. However, similar studies did not 
highlight the effectiveness of hyperparameter optimization using BO in minimizing the 
occurrence of overfitting in the machine learning models.

Besides, it is crucial to determine which acquisition function to use in the BO for 
optimal results in the hyperparameter optimization process. Somehow, in the previous 
studies of LSM by Sun et  al. (2020), Wang et  al.(2021) and Yang et  al. (2023) they 
did not address which acquisition functions of BO namely the upper confident bound 
(UCB), probability improvement (PI) and expected improvement (EI) suitable to be 
used in the BO.

Therefore, in this research, the focus of implementing the BO as a method of opti-
mizing the RF and XGBoost models was to minimize the occurrence of overfitting due 
to the models’ complexity and to determine the most suitable function acquisition for 
BO.

3.6.3.1 Upper confident bound (UCB) Bayesian optimization creates a posterior distri-
bution of functions, called the Gaussian process (GP) that best describes the function that 
needs to be optimized (Rana et al. 2017). Posterior distribution improves as more obser-
vations are collected, and the algorithm becomes more convinced about which parameter 
space areas are worth exploring (Wu et al. 2019).

As the iteration process continues, the algorithm balances its needs for exploration 
and exploitation while considering what it learns about the target function. A GP is fit-
ted to the known samples (points already investigated) at each step, and the posterior 
distribution, together with an exploration method like Upper Confidence Bound (UCB) 
(Srinivas et al. 2012).

The UCB, one of the most used acquisition functions. Therefore, by using this UCB 
acquisition function in this study an optimized RF and XGBoost model named RF_BO_
UCB and XGBoost_BO_UCB will be developed.

3.6.3.2 Probability improvement (PI) Function probability improvement (PI) tries to 
explore near the current optimal value point to find the points most likely to prevail over 
the current optimal value (Kushner 1964). The search process continues until the number of 
iterations of the algorithm reaches the upper limit (Wu et al. 2019). Thus, by using this PI as 
acquisition function in this study an optimized RF and XGBoost model named RF_BO_PI 
and XGBoost_BO_PI will be developed.

3.6.3.3 Expected improvement (EI) The expected improvement (EI) acquisition function 
balances exploration and exploitation by quantifying the expected value of improvement 
over the current best observation. If the improvement of the function value is less than 
the expected value after the algorithm is executed, then the current optimal value point 
may be the local optimal solution, and the algorithm will find the optimum value point in 
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other positions of the domain (Wu et al. 2019). By using this EI acquisition function in 
this study optimized RF and XGBoost models named RF_BO_EI and XGBoost_BO_EI 
will be developed.

3.6.3.4 RF and XGBoost hyperparameters For RF, the BO process focused on tuning two 
key hyperparameters: "mtry," representing the number of sampled predictors at each step, 
and "min_n," indicating the minimum number of instances required in a node to enable 
further splitting. Additionally, number of trees (ntree) and nodesize were set to default value 
which is 500 and to 14 respectively (Hussain et al. 2022; Sun et al. 2021; Wang et al. 2021; 
Wu et al. 2019). The "tune_bayes" function was employed for BO in RF (Duval et al. 2022).

For XGBoost, the "ParBayesianOptimization" package facilitated the BO of hyperpa-
rameters. It necessitated the definition of an objective function that the optimizer could 
utilize, along with input from the hyperparameters themselves. The study tuned seven 
XGBoost hyperparameters: "nrounds," "eta," "gamma," "min_child_weight," "max_
depth," "subsample," and "col_sample_bytree" (Can et al. 2021; Wang et al. 2021). Fol-
lowing the definition of the objective function, parameter boundaries were established to 
guide the optimizer’s search process. The optimal values of hyperparameters of both RF 
and XGBoost are summarized in Table 1.

3.7  Performance evaluation

To assess the performance of the landslide susceptibility models, a well-established method 
known as the ROC curve and its associated AUC were employed (Ahmed et al. 2020; Chen 
et al. 2018a, b, c). The ROC curve indicates a binary classifier system’s performance, illus-
trating sensitivity in relation to the false positive rate. Meanwhile, sensitivity measures a 
model’s ability to correctly identify true positives among the sum of true positives and 
false negatives. Conversely, specificity gauges the ratio of true negatives to the sum of true 
and false positives. Moreover, the ROC curve is constructed by plotting the true positive 
percentage on the y-axis against the cumulative distribution function of the false positive 
percentage on the x-axis.

Table 1  Summarizes the 
hyperparameters optimal 
values obtained from different 
Acquisition Functions of BO in 
RF and XGBoost

Classifier Hyperparameter Optimal values

UCB PI EI

XGBoost nrounds 69 25 21
colsample_bytree 0.9040207 0.8259445 0.8259445
subsample 1 0.942043 0.942043
max_depth 10 2 2
gamma 0.1 0.06856842 0.08526783
eta 0.2 0.2 0.2
min_child_weight 1 24.51712 24.51712

RF ntree (default) 500 500 500
node size (default) 14 14 14
mtry 10 10 10
min_n 1 1 1



 Natural Hazards

The calculated AUC value falls into various classifications: poor (50%-60%), average 
(60%-70%), good (70%-80%), very good (80%-90%), and excellent (90%-100%) (Adnan 
et  al. 2020a, b). In addition to the ROC and AUC assessment, a confusion matrix was 
generated to quantify several statistical indices, including overall accuracy, precision, and 
recall (Adnan, et al. 2020a, b; Ahmed et al. 2020).

4  Results and discussion

4.1  0.1.1 Multicollinearity test and Boruta

Table 2 summarizes the findings of the multicollinearity diagnostics study conducted on 
the entire dataset of Penang Island, including the training and test datasets. For Penang 
Island, the slope was discovered to have the highest VIF value (1.78) and the lowest TOL 
value (0.56). On top of that, the SPI has the highest TOL (0.90) and the lowest VIF (1.11). 
All landslide conditioning factors had TOL < 0.1 or VIF > 10 values. As a result, the find-
ings revealed no collinearity issues among the ten landslide factors.

Moreover, as illustrated in Fig. 4 and detailed in Table 3, all the landslide condition-
ing factors have been verified as significant for Penang Island. This aligns with findings 
from LSM in the Abha Basin (Youssef & Pourghasemi 2021) and the Muzzafarabad dis-
trict (Hussain et al. 2022), where both slope and the DEM exhibited greater influence on 
risk incidence compared to other contributing factors. Consequently, employing the Boruta 
Model, these ten criteria were selected for the subsequent round of feature selection, reaf-
firming their significance. Notably, these ten factors have also been included as contribu-
tory variables in previous Malaysian studies (Han et  al. 2021; Nhu et  al. 2020; Pradhan 
2013; Shahabi & Hashim 2015).

4.2  Random forest

The optimized RF models utilizing different BO’s acquisition functions, RF_BO_UCB, 
RF_BO_EI and RF_BO_PI yielded the same the Out-of-Bag (OOB) error. By corre-
sponding to hyperparameter values of mtry = 10 and min_n = 1 with 500 trees and ten 

Table 2  Variance inflation factor 
(VIF) and tolerance (TOL) of the 
landslide conditioning factors

Variables Tolerance (TOL) Variance Infla-
tion Factor 
(VIF)

Slope 0.56 1.78
Plan Curvature 0.58 1.72
TWI 0.64 1.57
Profile Curvature 0.66 1.51
NDVI 0.72 1.38
DEM 0.74 1.36
Slope length 0.78 1.29
Distance from Road 0.88 1.14
Distance from Stream 0.90 1.12
SPI 0.90 1.11
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variables considered at each split, the OOB error was 9.26%, resulting in a trained 
model OOB accuracy of 0.9073726 which is equivalent to 90.74%. Additionally, K-fold 
cross-validation was applied. The tenfold cross-validation results for the Penang Island 
optimized RF models exhibited models’ accuracy of 0.901 and a kappa value of 0.802.

Fig. 4  Boruta model’s chart plot on the importance of variables

Table 3  Feature selection by 
Boruta model

Landslide conditioning factors Minimum 
importance

Maximum 
importance

Decision

Slope 44.91 50.72 Confirmed
DEM 36.59 40.08 Confirmed
TWI 25.52 28.55 Confirmed
SPI 15.47 19.49 Confirmed
Plan Curvature 13.56 15.58 Confirmed
NDVI 11.56 15.60 Confirmed
Slope Length 12.30 13.73 Confirmed
Profile Curvature 10.69 13.36 Confirmed
Distance from Road 8.77 12.17 Confirmed
Distance from Stream 5.34 9.19 Confirmed
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Meanwhile, for the unoptimized RF model, the cross-validation accuracy and kappa 
are 0.8965574 and 0.783373 respectively. Besides, the OOB error of the unoptimized 
RF is 10.18% resulting in OOB accuracy of 89.82% which is slightly lower than the 
optimized RF. These results signify the RF model’s strong predictive accuracy. The 
sensitivity, specificity and precision values of the optimized RF and unoptimized RF 
models are in the range between 0.8–1.0 indicating that the model are robust in predic-
tion effect of the landslides samples.

Tables  4 present statistical findings from the prediction of both unoptimized and 
optimized RF models on the validation datasets. Regardless of utilizing different func-
tion acquisition in the RF_BO_UCB, RF_BO_PI and RF_BO_EI the same results for 
Success Rate (SR) and Prediction Rate (PR). Notably, the difference between the train-
ing dataset’s AUC value, representing the SR, and the testing dataset’s AUC value, 
representing the PR, was a mere 3.38% meanwhile the difference of SR and PR of the 
unoptimized RF model was 3.94% (Table  5). Therefore, it can be observed that the 
optimization process had reduced as much as 0.56% of the overfitting rate.

The identical results for the performance of RF_BO_UCB, RF_BO_EI and RF_BO_
PI suggest that the RF model’s performance is driven more by the dataset character-
istics and RF’s intrinsic robustness than by differences in acquisition functions. The 
optimization landscape for these hyperparameters is likely smooth and well-behaved, 
leading to convergence on the same values regardless of the acquisition function 
(Probst et al. 2019).

As a conclusion, both optimized and unoptimized RF models had exhibited great 
performance in predicting the landslide occurrence. Somehow, based on overall result 
including the excellent cross-validation accuracy, OOB accuracy, the AUC and the 
minimal overfitting rate the optimized RF model will be chosen to produce the LSM 
for this study.

Table 4  Statistics for optimized 
and unoptimized RF prediction 
on validation datasets

Statistics RF Optimized RF

RF_BO_UCB RF_BO_PI RF_BO_EI

Accuracy 0.9015 0.8906 0.8906 0.8906
Kappa 0.8027 0.781 0.781 0.781
Precision 0.9483 0.8696 0.8696 0.8696
Sensitivity 0.9552 0.9153 0.9153 0.9153
Specificity 0.8462 0.8696 0.8696 0.8696

Table 5  Success rate and 
Prediction rate of optimized and 
unoptimized RF

Models Performance evaluator AUC (%)

Success rate Prediction rate

RF 100.00 96.06
RF_BO_UCB 99.70 96.30
RF_BO_PI 99.70 96.30
RF_BO_EI 99.70 96.30
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4.3  Extreme gradient boosting

The XGBoost models’ hyperparameters were also optimized by using BO of different 
acquisition functions which produced three different models of optimized XGBoost mainly, 
XGBoost_BO_UCB, XGBoost_BO_PI and XGBoost_BO_EI. Besides, the XGBoost mod-
els were trained by 10 K-fold cross-validation strategy. The optimized XGBoost models 
were then compared to the untuned XGBoost model which only incorporate default value 
of hyperparameters provided by the Caret Package.

The results of cross-validated resampling revealed an accuracy of 0.9451,0.8925, 0.8656 
and 0.8657 for the XGBoost, XGBoost_BO_UCB, XGBoost_BO_PI and XGBoost_
BO_EI. Meanwhile, the cross-validation kappa value of XGBoost, XGBoost_BO_
UCB, XGBoost_BO_PI and XGBoost_BO_EI are 0.8091, 0.7850, 0.7131 and 0.73134 
respectively.

Detailed information, including the statistical metrics for the models’ prediction on the 
validation datasets, can be observed in Table 6. The optimized and unoptimized XGBoost 
models’ sensitivity, specificity, and accuracy values fall between 0.85 and 1.00, suggest-
ing that the models are reliable for predicting the impact of landslides events. Notably, the 
AUC curve for the SR surpassed the PR by 4.99% for the unoptimized XGBoost model. 
Meanwhile the optimized XGBoost models had minimized the overfitting range as much 
as 1.89% to 2.56% from the unoptimized XGBoost model as indicated in Table  7. This 
discovery effectively highlights how Bayesian hyperparameter optimization mitigates the 
risk of overfitting in XGBoost models. In conclusion, XGBoost models, both optimized 
and unoptimized, performed exceptionally well in forecasting the occurrence of landslides. 
In some way, the XGBoost_BO_UCB model will be selected as the optimized XGBoost 
model to generate the LSM for this investigation based on the overall results, which include 
the outstanding cross-validation accuracy, the AUC, and the small overfitting rate.

Table 6  Statistics for optimized and unoptimized XGBoost prediction on validation datasets

Statistics XGBoost Optimized XGBoost

XGBoost_BO_
UCB

XGBoost _BO_PI XGBoost _BO_EI

Accuracy 0.9474 0.9141 0.9242 0.9167
Kappa 0.8939 0.8277 0.8486 0.8335
Precision 0.9531 0.8986 0.8986 0.8857
Sensitivity 0.9552 0.9322 0.8955 0.8806
Specificity 0.9385 0.8986 0.9538 0.9538

Table 7  Success rate and 
prediction rate of optimized and 
unoptimized XGBoost

Models Performance evaluator AUC (%)

Success rate Prediction rate

XGBoost 100.00 95.01
XGBoost_BO_UCB 100.00 97.10
XGBoost _BO_PI 100.00 96.90
XGBoost _BO_EI 99.00 96.57
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The UCB acquisition function performs better than the PI and EI because UCB explic-
itly controls the trade-off between exploration and exploitation which makes it well-suited 
for complex, multimodal hyperparameter landscapes like XGBoost. This flexibility allows 
UCB to explore less-certain regions while still exploiting promising areas, leading to better 
optimization results (Srinivas et al. 2012). In contrast with RF, XGBoost is more sensitive 
towards the tuning of its hyperparameters. This causing small changes in its hyperparam-
eters will lead to significant change in its performance.

4.4  Stacked model

The best optimized models of XGBoost and RF were stacked together by using generalized 
linear model (glm) as the metaclassifier. As the result, the cross-validation resample accu-
racy and kappa result of the trained stacked model for Penang Island had an accuracy of 
0.9063 and kappa of 0.8106. The statistics of the stacked model for validation datasets are 
presented in Table 8. The stacked model had exhibited extremely good precision value,0.9 
which is equivalent to 90% of the time the model able to correctly predict the landslide 
points. Notably, the PR AUC exceeded the SR prediction by a mere 1.17%, as indicated in 
Table 9. This marginal difference signifies effective mitigation of overfitting through the 
stacking approach.

4.4.1  Correlational analysis with frequency ratio

Table 10 illustrates the FR model results, which assesses the relationship between landslide 
occurrence and its influencing factors. The FR value serves as an indicator of the over-
all spatial correlation between the predictor variable and landslides. In the case of Penang 
Island, the FR analysis revealed a negative correlation between landslide occurrence and 
elevation, with landslides being most frequent at elevations between 78 and 200 m above 
sea level. This phenomenon can be attributed to increased precipitation, lower tempera-
tures, and accelerated weathering as elevation rises, all promoting landslide development 
(Gruber & Haeberli 2007).

On Penang Island, curvatures, particularly profile curvature, exhibited a substantial 
association with landslides, with landslides occurring in the range of 0.708 to 5.793 for 

Table 8  Statistics of stacked 
model

Model Statistics Scores

Stacked XGBoost-RF Accuracy 0.8693
Kappa 0.7384
Precision 0.9000
Sensitivity 0.8434
Specificity 0.9000

Table 9  Success rate and 
prediction rate for stacked model

Model Performance evaluator AUC (%)

Success rate Prediction rate

Stacked XGBoost-RF 96.8 95.6
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Table 10  Frequency ratio

Factors Classes No. points % of points Class area % of class area Ratio FR

Slope 15.898–24.08 42,300 16.10 33,877 10.11 1.59 0.25
24.08–59.616 16,200 6.16 13,115 3.92 1.57 0.24
9.352–15.898 76,500 29.11 62,893 18.77 1.55 0.24
3.741–9.352 88,200 33.56 78,585 23.46 1.43 0.22
0–3.741 39,600 15.07 146,521 43.74 0.34 0.05

DEM 515.974–797.414 1800 0.68 20,722 6.19 0.11 0.02
343.983–515.974 10,800 4.11 27,241 8.13 0.51 0.10
0–78.178 85,500 32.53 177,087 52.86 0.62 0.13
200.135–343.983 50,400 19.18 46,007 13.73 1.40 0.28
78.178–200.135 114,300 43.49 63,934 19.09 2.28 0.46

TWI 13.277–25.294 1800 0.68 10,715 3.20 0.21 0.05
10.338–13.277 13,500 5.14 45,235 13.50 0.38 0.10
8.350–10.338 39,600 15.07 83,464 24.92 0.60 0.15
6.534–8.350 116,100 44.18 112,494 33.58 1.32 0.34
3.249–6.534 91,800 34.93 83,083 24.80 1.41 0.36

SPI 21,013.298–
42,819.551

900 0.34 146 0.04 7.86 0.78

1585.909–
7533.069

3600 1.37 3672 1.10 1.25 0.12

0–1585.909 258,300 98.29 330,504 98.66 1.00 0.10
7533.069–

21,013.298
0 0.00 626 0.19 0.00 0.00

42,819.551–
101,101.718

0 0.00 43 0.01 0.00 0.00

Plan
Curvature 0.538–3.683 12,600 4.79 6749 2.01 2.38 0.28

 − 3.290 to − 0.555 9900 3.77 5437 1.62 2.32 0.28
 − 0.555 to − 0.145 37,800 14.38 30,241 9.03 1.59 0.19
0.128–0.538 37,800 14.38 38,641 11.53 1.25 0.15
 − 0.145 to 0.128 164,700 62.67 253,923 75.80 0.83 0.10

NDVI 0.404 to 0.586 139,500 53.08 127,634 38.13 1.39 0.39
0.292–0.404 75,600 28.77 83,301 24.89 1.16 0.32
0.010–0.168 25,200 9.59 63,241 18.89 0.51 0.14
0.168–0.292 22,500 8.56 56,527 16.89 0.51 0.14
0 0 0.00 4020 1.20 0.00 0.00

Slope Length 6.324–15.085 8100 3.08 58 12 1.73 1.78 0.33
15.085–32.603 1800 0.68 1413 0.42 1.62 0.30
1.460–6.326 19,800 7.53 23,877 7.13 1.06 0.19
0–1.460 233,100 88.70 303,746 90.67 0.98 0.18
32.603–124.087 0 0.00 143 0.04 0.00 0.00

Profile Curvature  − 0.251 to 0.133 152,100 57.88 247,240 73.80 0.78 0.10
 − 6.439 to − 0.827 4500 1.71 4127 1.23 1.39 0.18
0.1328–0.708 63,900 24.32 53,357 15.93 1.53 0.20
 − 0.827 to − 0.251 28,800 10.96 22,802 6.81 1.61 0.21
0.709–5.793 13,500 5.14 7465 2.23 2.31 0.30



 Natural Hazards

profile curvature and 0.328 to -0.555 and 0.538 to 3.683 for plan curvature. Both profile 
and plan curvature influence slope erosion by regulating water flow velocity (Aghdam et al. 
2016).

Landslides were discovered to be more likely on slopes exceeding 10º, with moderately 
steep slopes (15º-25º) being the most susceptible, possibly indicating a threshold range 
(Nakileza & Nedala 2020). Additionally, in the western highlands of Uganda, Nseka et al.
(2019) identified additional landslides on slopes ranging from 25º to 35º. Bizimana & Son-
mez (2015) suggested that areas with slope angles greater than 14º on convex slopes and 
more than 41º on concave slopes are most prone to landslides.

The SPI value exhibited the strongest correlation with landslides in the range of 
21,013.3 to 42,819.6, while TWI demonstrated significant associations only within the 
range of 3.2 to 6.5 for Penang Island. Moreover, the data from FR revealed that the cor-
relation between distance from the road and landslides decreases as the distance increases, 
consistent with the findings of Lei et al. (2020). Although the correlation value is lower 
in the range of 68.8 m to 589.7 m, it was observed that the correlation value is high in the 
range of 589.74 m to 1,253.2 m on Penang Island, in alignment with research indicating 
that most landslides occur within a 1000-m radius of a road (Wang et al. 2022).

Conversely, the correlation between factors and landslide occurrence on Penang Island 
increases as the distance from the stream grows. The maximum distance from the stream 
on the island is 427.8 m, which is still considered too close to the stream. Proximity to the 
river enhances slope base erosion strength, impacting slope stability(Yalcin 2008). Lastly, 
the FR analysis revealed that, for Penang Island, NDVI values had the most substantial 
positive association with landslide occurrence, falling within the range of 0.4 to 0.5

4.5  Model comparisons

The performance evaluation of the models on both validation and testing datasets clearly 
demonstrates that the optimized XGBoost model outperforms both the optimized RF 
model and the stacked model consisting of both optimized RF and XGBoost. In terms of 
overall accuracy, the optimized XGBoost model consistently achieved the highest accuracy 
rate of 0.9141, followed by optimized RF with 0.8906 and the stacked model with 0.8693.

Table 10  (continued)

Factors Classes No. points % of points Class area % of class area Ratio FR

Distance from 
Road

589.740–
1,253.1960

12,600 4.79 6749 2.01 2.38 0.28

0–68.803 9900 3.77 5437 1.62 2.32 0.28
68.803–191.666 37,800 14.38 30,241 9.03 1.59 0.19
353.844–589.740 37,800 14.38 38,641 11.53 1.25 0.15
191.665–353.844 164,700 62.67 253,923 75.80 0.83 0.10

Distance from 
Stream

296.406–427.803 44,100 16.78 43,467 12.98 1.29 0.24

427.803–779.213 16,200 6.16 16,056 4.79 1.29 0.24
189.456–296.406 51,300 19.52 65,177 19.46 1.00 0.19
91.672–189.456 63,000 23.97 87,419 26.10 0.92 0.17
0–91.672 88,200 33.56 122,872 36.68 0.92 0.17
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For the SR AUC, optimized XGBoost achieved a perfect score of 100%, while opti-
mized RF scored 99.7%, and the stacked model reached 96.8% (Fig. 5). Similarly, in terms 
of the PR AUC, optimized XGBoost excelled with 97.1%, followed by optimized RF with 

Fig. 5  Success rate AUC of three 
models

Fig. 6  Prediction rate AUC of 
three model
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96.3%, and the stacked model with 95.6% (Fig. 6). Overall, the final findings had shown 
that all models exhibited outstanding prediction performance, with accuracy above 0.80 
and AUC scores exceeding 90%.

Comparative analysis with previous research by Cao et al.(2020) supports the superior-
ity of the XGBoost method, as it outperformed RF and SVM algorithms with the high-
est AUC score. Additionally, a study on the Karakorum Highway, Pakistan (Hussain et al. 
2022) demonstrated a slight advantage of XGBoost over RF, with only a 0.8% difference 
in AUC score. While the stacked model performed well, it did not surpass the individual 
base models. This finding aligns with a study by (Dou et al. 2019), where a stacked SVM 
exhibited lower performance, highlighting that ensemble machine-learning models may 
not always yield superior results.

Furthermore, stacking two models may have a limited impact on powerful learners 
like XGBoost and RF. However, significant improvements can be observed when stacking 
involves learners with varying performance levels, as demonstrated in a study by Nhu et al. 
(2020).

Regarding overfitting, the optimized XGBoost and optimized RF models exhibit mini-
mal overfitting compared to the unoptimized models of RF and XGBoost. In comparison, a 
study on Rangamatti Hill, Bangladesh, by Rabby et al. (2020) achieved reduced overfitting 
percentages of 4.64% for XGBoost and 4.52% for RF using grid search optimization.

In this study, BO effectively minimized the percentage rates of overfitting in both opti-
mized XGBoost and RF models as shown in Fig. 7. The stacked model of the two opti-
mized models exhibited the lowest overfitting rate at 1.2% compared to the overfitting 
rate of optimized RF (3.38%) and XGBoost (2.9%). Thus, BO proved to be a successful 
advanced hyperparameter optimization strategy for XGBoost and RF models.

4.6  Final landslide susceptibility maps

The Janks natural breakpoint approach (Jaafari et al. 2014) was employed to categorize 
landslide susceptibility into two classes, non-susceptible and susceptible, based on the 
outcomes of three algorithms. This approach was utilized to produce landslide suscep-
tibility zoning maps for each algorithm. The categorization scores for the three models 
ranged from 0 to 1, signifying non-susceptible and susceptible zones. Notably, although 

Fig. 7  Overfitting rate of all models
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XGBoost outperformed RF and the stacked models, XGBoost had experienced an over-
estimation issue  where it overestimates the "non-susceptible" area, as shown in map 
Fig. 9 compared to the prediction map produced by RF in Fig. 8 and the stacked model 
in Fig. 10. This aligned with the findings of Rabby et al.(2020), which indicated that the 
XGBoost model tends to overestimate susceptibility. Interestingly, the XGBoost model 
designated as high as 65.89% of the study area as a susceptibilite zone meanwhile the 
stacked and RF models only classify 56.48% and 56.00% respectively as susceptible 
zones (Fig.  11). This portrayed an overestimation issue in XGBoost model. Accord-
ing to Abedini & Tulabi (2018), the smallest territory should typically be allocated to 

Fig. 8  Penang Island LSM via 
optimized random forest predic-
tion

Fig. 9  Penang Island LSM via 
optimized XGBoost prediction
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the zone with the highest susceptibility. Overestimate zoning, even if the susceptibility 
model exhibits good accuracy, can diminish its practical relevance (Reichenbach et al. 
2018).

The stacking of both optimized RF and XGBoost models had managed to overcome the 
overestimation issues in XGBoost as the percentage difference in the classification of both 
susceptible and non-susceptible classes between the RF and stacked model are less than 
1%. This was achieved by sustaining the true and false positives of both models in check, 
thus averting overestimation.

Additionally, this finding had been justified by Wang et al. (2020) who discovered in their 
study that the overestimation issue could be mitigated by stacking two models. This illustrates 
that the overestimation problem can be minimized through the stacking strategy and the use of 
optimized models. While optimized XGBoost outperformed other models in this study, it allo-
cated a relatively high percentage of the study area as a susceptible zone, indicating potential 

Fig. 10  Penang Island LSM via 
RF-XGBoost stacked model 
prediction

Fig. 11  Percentage of susceptibility areas covered by LSM generated by all models
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overestimation. Interestingly, the stacking strategy, where two models were combined, slightly 
reduced the overestimation observed in XGBoost.

5  Conclusion

The results of our experiments offer valuable insights into the prediction efficiency and accu-
racy of our proposed model, as assessed through various performance measures. We have 
identified essential internal landslide conditioning factors, including DEM, slope angle, slope 
length, profile curvature, plan curvature, SPI, TWI, distance from roads, and proximity to 
streams, based on Boruta and FR analyses.

Among the models evaluated, optimized XGBoost consistently outperformed optimized 
RF and the stacked model. While all models demonstrated outstanding predictive capabili-
ties, optimized XGBoost achieved the highest overall accuracy, followed by optimized RF and 
the stacked model, with only slight differences in AUC scores. Furthermore, BO proved to be 
an effective hyperparameter optimization method, enhancing the performance of both opti-
mized RF and XGBoost models. Moreover, BO, coupled with stacking, effectively reduced 
the occurrence of overfitting and overestimation.

Our results underscore the potential for further research in this direction. To enhance pre-
diction accuracy, we recommend the development of more high-resolution landslide condi-
tioning spatial databases. Additionally, exploring the integration of other machine learning 
models to create optimal hybrid models presents a promising avenue for future investigations.

In conclusion, our study demonstrates significant advancements in predictive modeling for 
landslide susceptibility assessment. By optimizing model performance and mitigating overfit-
ting and overestimation, we have contributed to the evolving field of landslide risk assessment. 
However, further research and resource allocation is essential to unlock the full potential of 
this approach and continue improving landslide prediction accuracy.
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