
REVIEW

A joint learning classification for intent detection
and slot filling from classical to deep learning: a review

Yusuf Idris Muhammad1 • Naomie Salim1
• Anazida Zainal1 •

Sinarwati Mohammad Suhaili2

Received: 4 June 2024 / Accepted: 4 May 2025
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025

Abstract
In a dialogue system, the natural language understanding component plays a critical role in enabling effective
communication. The two core tasks within this component are intent detection and slot filling. Intent detection
identifies the user’s goal, while slot filling extracts relevant information to fulfill that goal. Traditionally, these
tasks were approached separately or in a pipeline-like manner. However, recent studies have emphasized the
benefits of solving them jointly due to their natural interconnections. This study explores the evolution of joint
learning models for intent detection and slot filling from 2008 to 2024, covering both classical and deep learning
approaches. It discusses the limitations of classical models, which led to the rise of deep learning techniques, and
introduces a new taxonomy for joint learning classifying joint learning architectures. Key benchmark datasets,
evaluation metrics, and the challenges faced by joint models are also analyzed. Finally, the review identifies open
research questions and proposes directions for future exploration in this field.

Keywords Intent detection � Slot filling � Dialogue system � Joint learning

1 Introduction

Dialogue systems have become essential tools for human–computer interaction, enabling users to communicate
with machines using natural language [1]. Over the years, these systems have advanced significantly due to
improvements in natural language processing (NLP), artificial intelligence, and user interface design [2]. In such
systems, user input is first processed through an automatic speech recognition module before being interpreted by
the natural language understanding (NLU) component [3].

The NLU component plays a critical role in understanding the semantics of user utterances [4]. It focuses on
two key tasks: intent detection and slot filling [5]. Intent detection is a classification problem that identifies the
user’s goal by predicting the intent class while capturing semantic, syntactic, and contextual relationships
between the words in the utterance [6, 7]. Slot filling, on the other hand, is a sequence labeling problem that
extracts relevant entities required to fulfill the identified intent [8]. For example, in the query ’will it be warmer
now in covenant life?’, the intent would be ’get-weather,’ with slots such as ’condition_temperature,’ ’time
range,’ and ’city’ providing specific details. Semantic frames, such as the one shown in Table 1, represent this
structured information, while the inside-outside-beginning (IOB) tagging format helps extract the slots efficiently.

Traditionally, intent detection and slot filling have been addressed as separate tasks, with models developed
independently before being integrated into a complete system [9]. While this modular approach offers clarity, it
introduces several limitations. For instance, treating the tasks independently overlooks the inherent interaction

Neural Computing and Applications https://doi.org/10.1007/s00521-025-11329-9

123

Neural Computing and Applications

http://orcid.org/0000-0002-5498-889X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-025-11329-9&domain=pdf
https://doi.org/10.1007/s00521-025-11329-9

between intents and slots, which can otherwise enhance system performance when modeled jointly [10]. As
demonstrated in Table 1, identifying slots like temperature and location can guide the system to detect the intent
more accurately. Joint learning models capture these interdependencies, resulting in improved performance for
both tasks [11]. Moreover, traditional pipeline systems often suffer from error propagation, where errors in one
task affect the other, and fine-tuning them independently can be time-consuming [8, 12, 13]. Joint learning
models address these challenges by sharing representations across tasks, improving both efficiency and perfor-
mance [14].

The significance of joint learning is further underscored by its real-world applications. For instance, in con-
versational agents, voice-controlled systems, information retrieval tools, and domain-specific assistants in
healthcare, finance and other sectors, joint learning of intent detection and slot filling, can efficiently handle
complex queries, offering personalized responses with higher accuracy [13, 15, 16].

Over the years, significant advancements have been made in joint learning for intent detection and slot filling
across several dimensions. Early models used classical machine learning techniques such as conditional random
fields (CRFs) [17], support vector machines (SVMs) [18], maximum entropy models (MEMs) [19] and hidden
Markov models (HMMs) [20]. These techniques have been succeeded by deep learning models like convolutional
neural networks (CNNs) [21], recurrent neural networks (RNNs) [22], and Transformer architectures [23], which
capture both local and global text dependencies [24]. Additionally, early models used lexical features for word
representation, but the development of non-contextual embeddings like word2vec, Glove, and contextual
embeddings such as ELMo (Embeddings from Language Models), and BERT (Bidirectional Encoder Repre-
sentations from Transformers), has significantly enhanced semantic understanding by incorporating more
information [25].

The learning strategies for joint learning models have also evolved, from implicit approaches that model
interactions indirectly to explicit approaches that directly capture dependencies between intent detection and slot
filling. More recently, fused approaches combine elements from both strategies to further improve performance
[26–28]. Benchmark datasets such as ATIS (Air Travel Information Systems) and SNIPS have driven this
progress by providing platforms for evaluation, while newer datasets like DSTC (Dialogue State Tracking
Challenge) and Facebook NLU reflect the growing complexity of modern task-oriented dialogue systems.

This review provides an exploration of the literature, methodologies, and advancements in joint learning
models for intent detection and slot filling from classical to deep learning models. Although several review
studies have been published on natural language understanding tasks, such as [29] which describes the general
overview of spoken language understanding in the era of neural networks, [1], outlines the fundamental
framework of existing dialogue systems and provides a brief overview of the recent developments in several
distinct subtasks of dialogue systems, such as natural language generation, dialogue management and natural
language understanding, [30] which surveys the datasets for task-oriented dialogue systems, [31] surveyed the
text representation used in NLP. A systematic review of the recent advances in deep learning-based dialogue
system was reported in [32], while [33] provided a review of joint learning models for intent detection and slot
filling, their survey focuses on neural network advancements within spoken language understanding.

This paper extends the review to include both classical and deep learning models, providing a historical
perspective from 2008 to 2024. Additionally, this paper introduces a novel taxonomy for classifying joint learning

Table 1 An example of a
semantic frame with query,
slots, intent, and domain

Query Will it be Warmer now in Covenant Life

Slots O O O B-
condition_temperature

B-
timeRange

O B-city I-city

Intent GetWeather

Domain Weather

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

models, focusing on how these architectures evolve and interconnect over time to address intent detection and slot
filling tasks. Furthermore, this review incorporates an analysis of benchmark datasets, their associated challenges
and evaluation metrics. Finally, it highlights emerging challenges in the field and proposes new directions for
future research.

The remainder of this paper is organized as follows: Sect. 2 discusses the technological advancements in joint
learning models. Section 3 reviews classical models for joint learning classification, highlighting their perfor-
mance and the limitations. Section 4 focuses on the deep learning models for joint learning. Section 5 introduces
a new taxonomy for joint learning architecture. Section 6 reviews the datasets used for the joint learning
classification of intent detection and slot filling. Section 7 discusses the challenges of joint learning classification
datasets. Section 8 discusses evaluation metrics, while Sect. 9 explores the application areas of joint learning
models for intent detection and slot filling. Section 10 identifies open challenges and future directions. Finally,
Sect. 11 concludes the paper.

2 Overview of the joint learning technological advances

The development of joint learning models for intent detection and slot filling has evolved substantially, shifting
from classical machine learning techniques to deep learning architectures. This section provides an overview of
the technological advances in joint learning models, highlighting the transition from classical approaches to
modern deep learning frameworks. Table 2 summarizes the key features, technologies, learning approaches, and
datasets used in various studies.

2.1 Classical approaches (2008–2012)

Between 2008 and 2012, the foundation for joint learning models was built using classical machine learning
techniques. Models such as CRFs [17], SVMs [18], MEMs [19] and HMMs [20] were extensively employed for
joint learning intent detection and slot filing. These models relied heavily on manually engineered linguistic
features, such as n-grams, prefixes, suffixes, part-of-speech (POS) tags, and semantic trees. The interaction
between the two tasks was largely implicit, meaning the tasks interacted only at the encoder level. The ATIS
dataset emerged as the benchmark for evaluating these models, providing a standardized dataset for spoken
language understanding. In 2012, a dialog dataset derived from personal assistant systems was introduced,
expanding the evaluation of these models to more practical scenarios.

2.2 Emergence of deep learning approaches (2013–2015)

The period from 2013 to 2015 marked a turning point with the adoption of deep learning techniques. These
methods significantly improved performance by reducing reliance on manual feature engineering and allowing
the automatic extraction of semantic and syntactic features. Models during this phase incorporated word
embeddings, lexical items, and named entities, which enriched input representations. In 2013, CNNs were applied
for joint learning to extract features directly from the text, coupled with CRFs for slot filling tasks [34]. By 2014,
recursive neural networks (RecNNs), were employed to model the hierarchical dependencies within utterances,
leveraging n-grams and named entities features [35]. By 2015, joint learning models had fully embraced neural
network architectures, integrating CNNs for feature extraction with RNNs to capture both local and global
dependencies. The ATIS dataset remained the primary benchmark for this period, while the Microsoft Cortana
dataset was introduced to evaluate the robustness of models in real-world virtual assistant applications.

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

Table 2 Overview of the joint learning models literature

Year Number
of
papers

Features Technologies Learning
approach

Dataset References

2008 1 n-grams, words CRF implicit ATIS [17]

2009 1 Semantic tree SVM implicit ATIS [18]

2010 1 n-grams, words, suffixes, prefixes,
POS tags

CRF, MEMs implicit ATIS [19]

2012 1 n-grams CRF, HMM implicit Dialog dataset
from personal
assistant system

[20]

2013 1 Words CNN, CRF implicit ATIS [34]

2014 1 n-grams, lexical, Name entity CNN, RecNN implicit ATIS [35]

2015 1 Word embeddings CNN, RNN implicit ATIS, Microsoft
Cortana

[36]

2016 5 Glove, char embeddings, word
embeddings, word2vec, 1-hot
encoding, lexicon, NE

CNN, (Bi)RNN,
(Bi)GRU, (Bi)LSTM,
attention

implicit ATIS, SNIPS,
Microsoft
Cortana

[37–41]

2017 4 Char embeddings, word
embeddings

CNN, sparse attention,
hiBiLSTM

implicit ATIS, Microsoft
Cortana

[42–45]

2018 14 Glove, word2vec, POS tags,
lexical, rules

(Bi)LSTM, (Bi)GRU,
CNN, Attention, self-
attention

implicit,
explicit-
unidirectional

ATIS, TRAINS,
SNIPS,
ALEXA
domains

[46–59]

2019 20 Word2vec, Glove, BERT
embeddings, ELMo, gazetteer,
word embeddings, char
embeddings, dependency parse

(Bi)LSTM, (Bi)GRU,
CNN, CRF, BERT,
MLP, RCNN, Attention,
self-attention, multi-
head attention

implicit,
explicit-
unidirectional,
explicit-
bidirectional

ATIS, SNIPS,
FRAMES,
DSTC4, CAIS,
NLPCC2018,
AMIE-incabin

[14, 60–79]

2020 14 Word2vec, Glove, BERT
embeddings, ELMo, word
embeddings, char embeddings,
dependency parse, POS, Regular
Expressions, external
knowledge

(Bi)LSTM, (Bi)GRU,
CNN, CRF, BERT,
MLP, Attention, self-
attention, graph attention

implicit,
explicit-
unidirectional,
explicit-
bidirectional,
fused

ATIS, SNIPS,
TOP, DSTC4,
CSID,
TRAINS,
Facebook NLU,
KVRET

[27, 28, 79–89]

2021 13 NE, POS, ELMo, BERT,
FastText, Glove, word2vec

(Bi)LSTM, (Bi)GRU,
CNN, CRF, BERT,
RoBERTa, Stacked
LSTM/GRU, MLP,
Attention, self-attention,
graph attention

implicit,
explicit-
unidirectional,
explicit-
bidirectional,
fused

ATIS, SNIPS,
TRAINS, MIT
Restaurant,
ChatData, MIT
movie

[6, 11, 27, 90–99]

2022 15 Word2vec, Glove, BERT
embeddings

BERT, RoBERTa,
(Bi)LSTM, attention,
GCN, Graph attention

implicit,
explicit-
unidirectional,
explicit-
bidirectional,
fused

ATIS, SNIPS,
TOP, CAIS,
PhoATIS,
SMP-ECDT

[15, 100–113]

2023 14 BERT embedding, word2vec,
Glove

BERT, RoBERTa, GCN,
Graph attention, FFN

implicit,
explicit-
unidirectional,
explicit-
bidirectional,
fused

ATIS, SNIPS,
AGIS, CAIS,
SMP-ECDT

[9, 10, 12, 114–124]

2024 3 BERT BERT, GCN, (Bi)LSTM/
GRU, hierarchical
attention

implicit,
explicit-
unidirectional,
Fused

ATIS, SNIPS [26, 125–127]

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

2.3 Emergence of recurrent architectures and attention mechanisms (2016–2018)

Between 2016 and 2018, recurrent neural network encoder-decoder architectures gained prominence, particularly
for sequence-to-sequence tasks. The introduction of attention mechanisms during this period allowed models to
selectively focus on specific parts of the input sequence, improving both intent detection and slot filling. Models
explored both unidirectional and bidirectional architectures, such as long short-term memory (LSTM) and gated
recurrent unit (GRU), alongside embeddings like Glove and ELMo.

In this period, new datasets such as SNIPs and TRAINS provided a wider variety of benchmarks for training
and evaluation. Furthermore, sparse and self-attention mechanisms emerged as powerful tools to manage lan-
guage complexity, capturing global dependencies within input sequences. Additionally, explicit unidirectional
learning approaches were introduced, enabling the model to capture directional dependencies between intent
detection and slot filling.

2.4 Emergence of advanced architectures (2019–2024)

The advent of transformer-based models marked a significant advancement in joint learning. The BERT revo-
lutionized the field by providing deep bidirectional context understanding, which improved both accuracy and
generalization. Additionally, CRFs were reintroduced alongside deep learning architectures to further enhance
sequence labeling performance, demonstrating synergy between classical and deep learning methods.

During this period, datasets expanded to reflect the growing complexity of task-oriented systems, including
FRAMES, DSTC4, CAIS (Chinese AI Speaker), TOP (Task Oriented Parsing), Facebook NLU, etc. Furthermore,
the use of graph attention networks and few-shot learning techniques were introduced to address challenges of
data scarcity and model generalization. New variants of BERT, such as RoBERTa, alongside fused learning
approach were introduced to enhance learning efficiency and model performance.

3 Classical models for joint learning classification

Classical models play an essential role in the early stages of developing joint learning models for intent detection
and slot filling. These models, which are often based on statistical and machine learning principles, offer effective
solutions for analyzing and processing natural language data. They employed basic nonparametric techniques to
capture the crucial features embedded within the spoken language. These extracted features then acted as inputs
for subsequent classification or regression models. Examples of such models are CRFs [128], MEMs [129],
SVMs [130], HMMs [20] and logistic regression, which formed the foundation of early approaches to joint
learning classification.

3.1 Conditional random fields

Conditional random fields are probabilistic graphical models widely used for sequence labeling tasks, such as
part-of-speech tagging [131] and named entity recognition [132]. CRFs model the conditional probability of a
label sequence y given an observation sequence x, PðyjxÞ. This allows them to capture dependencies between
labels and optimize predictions locally, leading to more accurate results [131]. CRFs also offer flexibility by
incorporating a variety of contextual features and using a discriminative training approach, often outperforming
generative models such as HMMs [133]. The conditional probability in CRFs is defined as:

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

P yjxð Þ ¼ 1

Z xð Þ exp
X

t

w:; yt; yt�1; xð Þ
 !

ð1Þ

where w represents the learned weights, and ; yt; yt�1; xð Þ is the feature function that captures dependencies
between adjacent labels yt and yt�1, along with observation sequence x, and Z xð Þ is the partition function, which
sums over all possible label sequences y0 for a given observation sequence x.

X

y0
exp

X

t

w:; yt0; yt�10; xð Þ
 !

ð2Þ

The partition function normalizes the probability distribution, ensuring that the sum of all possible label
sequences equals 1. However, calculating Z(x) can be computationally expensive, as it requires summing over all
possible label sequences, which becomes especially challenging for long sequences or large datasets [134]. This
is a key limitation of CRFs, as computing the partition function grows exponentially with the sequence length.

The earliest study on joint-learning classification utilized tri-angular CRFs to capture the interdependence
between sequence labeling and sequence classification [17]. The proposed model represents two tasks in a single
graphical model consisting of three layers: token features, sequence labeling, and sequence classification label
layers. The key innovation lies in the utilization of parameter sharing, which is a technique that maximizes the
likelihood of labeled training data. A hybrid approach was adopted in [19] to integrate MEMs and CRFs. The
MEMs functioned as generative models for obtaining the target domain, whereas CRF served as a discriminative
model for extracting the slots.

CRF is used in joint models for slot filling tasks because of its effectiveness in sequence-labeling problems
[135–137]. Despite the shift toward deep learning, there has been a recent resurgence of interest in CRFs within
the context of deep learning models. Several contemporary joint learning approaches [6, 78, 86, 121, 136, 138]
have highlighted the renewed significance and value of CRFs in addressing specific challenges and enhancing the
performance of deep learning models for joint intent detection and slot filling tasks. This resurgence highlights the
benefits of integrating classical and deep learning approaches to further advance the field.

3.2 Maximum entropy models

Maximum entropy models are discriminative models based on the principle of maximum entropy, which suggests
that the most unbiased probability distribution, given a set of constraints, is the one with largest entropy. MEMs
are used in NLP due to their flexibility in feature representation and discriminative training [139]. Consider a
sequence of observations O1;O2; . . .:On with the objective of assigning tags S1; S2; . . .; Sn to these observations in
a manner that maximizes the conditional probability PðS1; S2; . . .; SnjO1;O2; . . .:;OnÞ. In the MEM, this proba-
bility is decomposed into Markov transition probabilities. This implies that the likelihood of transitioning to a
specific label at a given position depends solely on the observation at that position, and the label assigned to the
previous position.

P S1; S2; . . .; SnjO1;O2; . . .;Onð Þ
Yn

t¼1
P StjSt�1;Otð Þ ð3Þ

Each transition probability originates from a common distribution P sjs0;Oð Þ: For every potential label value of
the preceding label s0, the likelihood of a specific label s is structured like that of a maximum entropy classifier:

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

P sjs0;Oð Þ ¼ Ps0 sjoð Þ 1

Z o; s0ð Þ exp
X

a

kafa o; sð Þ
 !

ð4Þ

In this context, fa o; sð Þ represents feature functions that can be either real-valued or categorical, and Z o; s0ð Þ
denotes a normalization term that guarantees that the distribution sums to one. This distribution aligns with the
maximum entropy probability distribution that adheres to the constraint that the empirical feature expectation
matches the model expectation.

Ee fa o; sð Þ½ � ¼ Ep fa o; sð Þ½ � for all a ð5Þ

One of the key strengths of MEMs is their ability to incorporate a wide variety of features, including
overlapping and non-independent ones. This flexibility allows for the integration of rich contextual information,
which is crucial for accurately labeling sequences in NLP [129]. Moreover, MEMs do not assume independence
between features, allowing them to capture more complex dependencies in the data. However, despite these
advantages, the computational complexity of MEMs can be a challenge. Training these models, which involves
iterative methods like gradient descent, can be time-consuming, especially for large datasets [140]. Another
limitation of MEMs is the label bias problem [141]. In MEMs the probabilities of outgoing transitions from a
given state are normalized locally. As a result, these transitions are only compared against one another, without
accounting for competing transitions from other states. This local competition can limit the model’s ability to
properly handle long-range dependencies across states, leading to performance bottlenecks in sequence prediction
tasks [141].

Despite these challenges, MEM was used for frame classification in [19]. It served as classifier where the label
was predicted on the input utterance. MEM was applied in a two-pass strategy: first for domain classification, and
then CRFs were used for slot filling. The two approaches, which employed MEM, resulted in significantly better
accuracy with a limited amount of data.

3.3 Hidden Markov models

Hidden Markov models are statistical models designed to represent systems with hidden states [142]. In an HMM,
the system is modeled as a Markov process, where each state is hidden, but the observable data provide insight
into these states. This structure makes HMMs useful for tasks involving sequences, where understanding the
order and the relationship between elements is essential [129].

It consists of a set of hidden states S ¼ s1; s2; . . .; snf g and a set of observable symbols O ¼ o1; o2; . . .; omf g:
The transitions between hidden states are governed by the transition probabilities A ¼ aij

� �
; where aij ¼ P sjjsi

� �
;

and the emission probabilities B ¼ bj otð Þ
� �

, where bj Otð Þ ¼ P otjsj
� �

; which represents the likelihood of
observing ot given the hidden state sj. This allows HMMs to model the joint probability of the hidden state
sequence and the observed data, making it possible to infer the most likely sequence of hidden states using
algorithms such as forward–backward for inference and Viterbi for decoding.

P O; Sð Þ ¼ P s1ð Þ
YT

t¼2
P stjst�1ð ÞP otjstð Þ ð6Þ

HMMs are particularly useful in tasks where maintaining the context between sequential elements is important
[143]. Their probabilistic framework allows them to incorporate uncertainty and variability, which is common in
real-world data [144]. However, despite these advantages, HMMs also have several limitations [141]: the
assumption that state transitions depend solely on the current state can be restrictive, especially for tasks that

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

require capturing long-range dependencies in sequences. Additionally, HMMs rely on limited feature sets,
focusing on current observation and the previous state, which may reduce their accuracy when richer information
is required.

To overcome some of these challenges, researchers have developed variations and enhancements to the basic
HMM framework. For example, in [20], multilayer HMMs have been proposed to incorporate hidden intentions
and prior knowledge, improving their performance in joint intent detection and slot filling.

3.4 Support vector machines

Support vector machines are supervised learning algorithms used for classification and regression tasks [145]. In
NLP, SVMs have been successfully applied to tasks like text classification [146], sentiment analysis [147], and
named entity recognition [148]. They are particularly useful in dealing with high-dimensional data by leveraging
feature vectors such as the Bag-of-words, TF-IDF, and semantic tree. This makes them effective for scenarios
where the vocabulary size is large, as commonly encountered in NLP tasks.

SVMs work by solving an optimization problem to maximize the margin between two classes, which can be
formulated as:

min
1

2
wj jj j2 subject to yi w:xi þ bð Þ� 18i ð7Þ

where w is the weight vector, xi represents the input feature vectors, yi denotes the labels, and b is the bias term.
The goal is to find the optimal hyperplane w. xþ b ¼ 0 that maximizes the margin between the data points of
different classes. By doing so, SVMs can classify data points with improved generalization performance.

SVMs have been used for intent detection and slot filling [18]. In this context, the input features are obtained
using a semantic tree, which is then passed to SVMs to obtain the intent and slots. Despite their success,
traditional SVMs rely on manual feature engineering, which fails to capture the nuanced, context-dependent
relationships between words. Additionally, SVMs do not perform well on large-scale dataset [149].

Table 3 provides a summary of the classical models used for joint learning classification of intent detection and
slot filling, with their features, datasets and performance.

While these models played a role in the early development of joint learning classification for intent detection
and slot filing, they also possess several inherent limitations that impact their performance, scalability and
adaptability, especially compared to modern deep learning approaches. These limitations can be summarized as
follows:

Feature Engineering Dependency [34, 150]: Classical models heavily rely on manually crafted features to
perform tasks. Feature engineering requires significant domain expertise and effort to extract relevant linguistic
patterns from raw data. This process can be time-consuming, and the quality of features directly impacts model
performance.
Limited Ability to Capture Complex Contextual Relationships [141, 151]: Classical models like HMMs and
MEMs assume independence between input features or between current and previous states in sequences,
which can restrict their ability to capture long-range dependencies or context. This assumption oversimplifies
the relationships within data, leading to reduced accuracy in tasks that require understanding complex
interactions between words. While CRFs can capture local dependencies between labels, they are still limited in
their ability to fully represent entire sequences.
Scalability Issues [152, 153]: Classical models struggle to handle large datasets due to their computational
complexity. For example, calculating the partition function in CRFs or training MEMs with iterative methods
like gradient descent can be computationally expensive, especially as the dataset size grows. SVMs, which

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

perform well with high-dimensional datasets, also face difficulties scaling large-scale data due to their reliance
on optimization techniques that become inefficient with more data points.
Inflexibility in Handling Unseen Data [154, 155]: Classical models are generally less flexible in generalizing to
unseen data or handling variations in language. They typically perform poorly when faced with out-of-
vocabulary words, unseen contexts, or domains that differ from the training data. This lack of adaptability limits
their usefulness in real-world applications where data distributions frequently shift.
Complex Training Process [34]: The training of classical models can be challenging due to the computational
complexity and the optimization methods they rely on. For example, CRFs require summing over all possible
label sequences to normalize the probability distribution, which becomes computationally expensive for longer
sequences. Similarly, MEMs rely on iterative optimization, which can be slow, especially for large complex
datasets.
Poor Handling of Data Scarcity [133]: While classical models, like SVMs are more robust to data scarcity than
others, they generally do not perform well with limited labeled data. These models rely heavily on the quality
and quantity of the training data, and their performance reduces when faced with sparse annotations.

These limitations have led to the development of alternative approaches, particularly deep learning approaches.

4 Deep learning models for joint learning classification

The success of joint learning for intent detection and slot filling lies in the choice of architectures and models that
can effectively capture complex relationships between tasks. This section discusses various neural network-based
approaches, including RecNNs, RNNs, CNNs, and transformer-based models, as well as their application in joint
learning models. Additionally, the essential role of attention mechanisms in enhancing the capabilities of joint
learning models is explored.

4.1 Recursive neural networks

Recursive neural networks are types of neural network designed to process structured data, such as trees or
graphs, by applying same weights recursively. In natural language processing, RecNNs breaks down sentences
into phrases and words, progressively combining these lower representations into higher level ones [156]. For
example, if two child node representations h1; h2 are combined to form a parent node representation hp, the
process is expressed as:

Table 3 Classical joint model’s performance

References Model Features Dataset Performance

Intent detection Slot filling

Accuracy
(%)

Error rate
(%)

(F1-score)
(%)

[17] CRFs n-grams ATIS 93.07 – 94.42

[18] SVMs Semantic tree ATIS 92.63 – 94.50

[19] MEM ? CRF Lexical/word
suffices

ATIS – 0.11 61.0

[20] HMMs n-grams Dialog dataset from personal assistant
system

84.52 – 58.18

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

hp ¼ f W : h1; h2½ � þ bð Þ ð8Þ

where W represents the shared weights matrix, b is the bias term, and f is a nonlinear action function. The
architecture consists of input layers representing basic units like words, hidden layers that combine child node
representation into parent nodes, and an output layer that delivers a final representation for classification as shown
in Fig. 1.

RecNN was proposed for joint intent detection and slot filling in [35], due to its ability to represent syntactic
information in discrete and continuous space. To classify user intent, the dot product of the internal vectors from
the leaf to the root is computed and passed to the softmax function to obtain the posterior over the intent labels.
To perform the slot filling task, token-wise classification was applied to each word by using tree-derived features.
This feature is computed by multiplying the output vector from the leaf to the root by a weight vector associated
with the syntactic type of node. The resulting product was then summed up to generate a vector, which was
subsequently passed to the maximum-entropy classifier to predict the IOB label for each word. After training the
entire model, the Viterbi optimizer was applied to optimize the sentence-level tag sequence.

Although the model has achieved state-of-the-art performance, RecNNs face challenges in handling long-range
dependencies and can be computationally expensive due to their recursive nature [157]. Moreover, their reliance
on accurate syntactic parse trees means that errors in parsing can lead to suboptimal performance [158].

4.2 Recurrent neural networks

Recurrent neural networks are designed to process sequential data, making them ideal for tasks involving time
series and natural language text [22]. What distinguishes RNNs from other architectures is their ability to
maintain a memory of previous inputs through recurrent connections, allowing them to capture patterns and
dependencies over time. This memory enables RNNs to perform well on tasks that require understanding the
sequential nature of data such as language modeling [159], machine translation [160], sentiment analysis [161],
and speech recognition [162].

This flexibility arises from their inherent structure, which enables them to operate on inputs of different
lengths, using sequential processing. Moreover, RNNs possess a hidden state that evolves as the network
sequentially processes each input. This hidden state serves as the context for capturing the relevant information

Fig. 1 RecNNs iteratively
construct higher-level rep-
resentations from lower-
level representations

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

from past inputs. Consequently, RNNs can leverage this contextual information to make predictions or to
generate outputs at each step.

RNNs excel in intent detection and slot filling tasks because these tasks rely on understanding the context
provided by a sequence of words [163]. In intent detection, the network’s recurrent structure allows it to analyze a
user’s input in the context of prior words or phrases, making it easier to infer the user’s intent [164]. Similarly, in
slot filling, the sequential processing of RNNs helps in recognizing the relationships between words, thereby
accurately identifying relevant slots in sentences [20, 135]. Furthermore, RNNs offer flexibility to incorporate
additional linguistic features and contextual information into the model architecture [165], enhancing their
performance in intent detection and slot filling tasks. RNNs have several variants:

4.2.1 Basic RNNs model

The fundamental RNN model, known as the Elman network [166], consist of three layers: input, hidden, and
output. The hidden state ht at any given time step t is computed as the function of the current input xt and previous
state ht�1, making the process recurrent as shown in Fig. 2.

ht ¼ f U � xt þW � ht�1ð Þ ð9Þ

where ot, is current output, U and V are the weight matrices shared across time, and f is a nonlinear activation
function, such as ReLU, tanh, or sigmoid.

The hidden state of the RNNs is represented as ht in Eq. (9) serve as the memory of the network that gather
information from the preceding time steps. This feature allows RNNs to effectively handle sequences, thereby
addressing the limitations of feedforward neural networks.

While basic RNNs offer solutions for processing sequential data by maintaining the memory of past inputs,
they also face challenges in effectively utilizing both past and future information, optimizing delay parameters,
and integrating multiple network outputs to improve the prediction accuracy [24]. To address, these limitations,
[167] proposed bidirectional RNNs (BiRNNs). This model processes the input in both forward and backward
directions, allowing the network to consider past and future context in separate hidden layers, as shown in Fig. 3.
The outputs of these two RNNs are merged at each time step to generate a richer representation of the sequence.

ht
!¼ f Vf � ht�1

��!þ Uf � xt þ bh

� �
ð10Þ

ht
 ¼ f Vb � htþ1

 �� þ Ub � xt þ bh

� �
ð11Þ

where ht
!
;Vf ;Uf and ht

;Vb;Ub. are the hidden states and weight matrices for forward and backward hidden

states, respectively.
Both simple RNNs and BiRNNs have been observed to encounter a significant obstacle known as the van-

ishing gradient problem, which hinders their ability to effectively learn from long-range contextual information
[168, 169]. To address this limitation, specialized RNN variants have emerged, including LSTMs and GRUs
[170].

Fig. 2 Basic RNN [32]

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

4.2.2 Long short-term memory

LSTM was proposed to overcome the vanishing gradient problem of a basic RNN [170]. This model consist of
three gates: input, forget and output gate as shown in Fig. 4 [171]. The input gate itð Þ; determines what new
information to add to the long-term memory also known as cell state ctð Þ. The forget gate ðftÞ, back propagate
errors through unlimited number of time steps by discarding parts of the cell states that are insignificant to the
context and retaining the significant part, while the output gate otð Þ, controls the output of the LSTM at each time
step, which is based on the current cell state ctð Þ and the hidden states htð Þ as per the equations below:

it ¼ f wi � xt þ ui � ht�1 þ bið Þ ð12Þ

ft ¼ f wf � xt þ uf � ht�1 þ bf
� �

ð13Þ

ot ¼ f wo � xt þ uo � ht�1 þ boð Þ ð14Þ

ct0 ¼ f wc � xt þ uc � ht�1 þ bcð Þ ð15Þ

ct ¼ ft � ct�1 þ it � ct0 ð16Þ

ht ¼ ot � r ctð Þ ð17Þ

where f is the activation function, ct; ct�1 are the long-term memory in the current and previous states,
respectively, and ht; ht�1 are the current and previous states of short-term memory, respectively.
wi;wf ;wo;wc; ui; uf ; uo; uc are the weight matrices, and bi; bf ; bo; bc are the biases.

Despite the success of LSTM in addressing many challenges in recurrent neural networks, they also
encountered certain limitations when processing sequential data. One key issue is the exponential decay of
memory, where the forget gate may discard useful information too quickly when processing longer sequences
[173]. Another challenge is saturation of memory cells [174]. LSTMs accumulate information in their internal
states, and if this grows without control, it can saturate the output function, making learning inefficient.

4.2.3 Gated recurrent neural network

To provide a computationally efficient alternative to LSTM, [175] proposed a GRUs that utilizes two gates
instead of three, and a single memory cell instead of two as shown in Fig. 5. GRUs regulate the flow of
information over time by incorporating an update gate zt to determine the portion of the new input to add to the
previous hidden state and a reset gate rt, thereby determining how much previous hidden state information is
discarded as per the following equations.

Fig. 3 BiRNN architecture

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

zt ¼ r wz � xt þ uz � ht�1ð Þ ð18Þ

rt ¼ r wr � xt þ ur � ht�1ð Þ ð19Þ

ht0 ¼ tanh w � xt þ rt � u � ht�1ð Þ ð20Þ

ht ¼ zt � ht�1 þ 1� ztð Þ � ht0 ð21Þ

where zt is the update gate, rt is the reset gate, and ht is the hidden state.
RNNs models are used in joint learning classification studies because of their suitability for capturing temporal

dependencies. Researchers have applied RNNs using various methodologies
[28, 37, 39–41, 54, 77, 82, 92, 98, 176]. In some studies, RNNs served as word-level classifiers, where inter-
mediate hidden states are utilized for slot filling, and a weighted sum of these hidden states forms a context
representation for intent detection. In other studies, RNNs act as sentence-level classifiers, where the last hidden
state is used for intent detection.

In [41], the authors introduced a hierarchical LSTM model with two layers. The bottom-layer functions as a
sentence-level classifier, using the last hidden state for intent detection, while the upper layer performed word-
level classification for slot filling. In [39], an LSTM was used to detect both intent and slots at each time step,
based on word-level information. Additionally, the overall intent was derived from the last hidden state of the
LSTM, capturing sentence-level intent. In [40], the authors added a special token at the end of each utterance
before passing it through BiLSTM. This approach generated a latent semantic representation of the entire input
for intent detection, while intermediate hidden states were used for slot labeling. In [37], a context vector,
computed from the weighted sum of the RNN hidden states, was utilized to obtain both intent and slots.

In [38], the authors proposed a joint model using a GRU and max pooling layer. The GRU captured the
representation at each time step for slot labeling, while the max pooling layer was used for intent classification.
The representations generated by the GRU were shared between the slot filling and intent detection tasks. Word

Fig. 4 LSTM architecture
[172]

Fig. 5 GRUs architecture
[22]

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

embedding with a context window served as input to the model. Additionally, the model incorporated the
association of named entities with the embeddings. To predict slots, a bidirectional GRU was employed to learn
representations of the input sequence in both forward and backward directions, with the final state computed by
concatenating both forward and backward states. Furthermore, a max pooling layer was introduced to obtain
representations of the entire sequence and convert them into a fixed-length vector to capture the entire text.
Finally, the softmax function is applied to these representations to obtain slot filling and intent classifications.

Although RNNs are primarily used to capture sequential information, they can also be trained to consider other
types of information such as local semantic information [177]. This is typically achieved by incorporating
additional layers or architectures such as an attention mechanism [176, 178] or transformer layers [27, 178].
Additionally, the nature of the training data and tasks can influence how the RNN emphasizes certain types of
information.

Despite achieving state-of-the-art performance, joint classification models based on recurrent architectures
several challenges. The vanishing gradient problem in RNNs makes it difficult for the model to retain and use
long-range dependencies effectively, which is critical for tasks like slot filling, where words earlier in a sentence
influence the labeling of later words [179]. The issue of handling long-range dependencies also affects intent
detection, as understanding the intent often requires considering the entire sentence context. Even though LSTMs
and GRUs were designed to address some of these challenges, they also face the problem of slow training speed,
which is attributed to internal recurrence [22]. Additionally, the fixed-length vector representation of the RNN
architectures, constrains the joint model’s ability to encode information in lengthy inputs [180].

4.3 Convolutional neural networks

Convolutional neural networks [181], originally developed for image processing [181], have proven to be highly
effective in extracting higher-level features for NLP tasks [182]. Their ability to detect local patterns, such as key
word sequences and n-grams, makes them well-suited for applications like sentiment analysis [183], text clas-
sification [184], question answering [185] and machine translation [186].

Fig. 6 CNN architecture for sentence classification [32]

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

The structure of a CNN is composed of several layers, each serving a distinct purpose in the feature extraction
and classification process. The core components of a CNN include convolutional layers, pooling layers, and fully
connected layers as shown in Fig. 6. Convolutional layers apply a set of filters to the input text, which is typically
represented as a matrix of word embeddings. These filters slide over the text to capture local patterns, such as
phrases or n-grams, that are important for understanding the context and meaning of the text. Following the
convolutional layers are the pooling layers, which reduce the dimensionality of the feature maps generated by the
convolutional layers. The pooling layers help to summarize the presence of important features across different
parts of the of the text. This process makes the model more robust to variations in the text and helps to focus on
the most relevant features for the task at hand [6, 187]. At the end of the network are the fully connected layers,
which take the high-level features extracted by the convolutional and pooling layers and use them to make the
final prediction.

In joint learning studies, CNNs have been applied using two approaches: the sentence-based approach
[64, 188, 189] and the window-based approach [28, 34, 47]. The sentence-based approach transforms entire
sentences into representations suitable for intent detection. Conversely, the window approach generates word-
based predictions necessary for tasks such as slot filling [190], POS tagging [191], and NER [192].

To extract meaningful patterns, a convolution operation is performed on the embedding matrix W 2 Rn�d,
where d is the dimension of the word embeddings, and n is the number of words in a sentence. The convolution
uses a filter k 2 Rhd; where h defines the number of words it spans. As the filter slides across the matrix, it
captures localized features from overlapping word windows. For example, applying the filter to the word window
wi:iþh�1, generates a feature ci, as illustrated below:

ci ¼ f wi:iþh�1:k
T þ b

� �
ð22Þ

where b�R represents the bias term, and f denotes a nonlinear activation function. The filter k is applied across all
feasible windows with the same weights to generate the feature map, as given in Eq. (23).

c ¼ c1; c2; . . .; cn�hþ1½ � ð23Þ

The max pooling operation is then applied to the output feature maps to extract the most salient features, as
described below:

p ¼ max cð Þ ð24Þ

CNN was first employed in a joint model for intent detection and slot filling in [34], where the authors utilized
a window-based approach to extract features directly from the embedded word sequences, which are then shared
across both tasks. For intent detection, the aggregated feature vectors were max-pooled and passed through a
softmax layer to predict the intent. For the slot filling, the features were passed to CRF, which predicted the slot
labels considering the current word and the neighboring labels. In another study proposed in [64], the authors
used a hierarchical CNN to extract features from the input, which were then passed to a multilayer perceptron for
predicting both intent and slot labels.

A hybrid LSTM-CNN model was employed in [188]. This architecture used an LSTM to capture the con-
textual representation of input and a CNN to model sentence-level features in a parallel. The outputs of both
networks merged to perform intent detection and slot filling. Similarly, in [47], a CNN-BiLSTM model was
proposed, where CNN extracted the local features while the BiLSTM captured the contextual representations for
intent detection and slot filling.

In [28], the authors used a parallel approach using a CNN combined with BiLSTM-CRF model. CNN was
employed to extract higher-level n-grams and bigrams features, while BiLSTM-CRF captured the contextual
information from the embedded text. These features were concatenated and passed through a fusion block for

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

explicit parameter sharing. The output from the fusion layer was then fed into dense layers to predict intent and
slot label.

Despite achieving success in various NLP tasks, CNNs face notable limitations when applied to joint learning
classification for intent detection and slot filling. One of the primary challenges is their inability to capture
detailed sequential dependencies within sentences [193], which is crucial for slot filling. CNNs relies on iden-
tifying overall semantic patterns which are well suited for intent detection, but less effective for slot filling task.
Consequently, CNNs often struggle to balance the demands of both tasks in joint learning models [194]. To
address these limitations hybrid models like CNN-BiLSTM or CNN-LSTM have been proposed. These models
use CNNs for local feature extraction and LSTMs or BiLSTMs to capture long-range dependencies, providing a
more balanced approach to handling both intent detection and slot filling.

4.4 Attention mechanism

The attention mechanism has emerged as a critical component in revolutionizing the process of processing and
understanding natural language. It enables models to focus selectively on various parts of the input sequence
when generating the output, mimicking the human cognitive ability to prioritize information [195]. This dynamic
allocation of attention enhances the contextual understanding and performance of NLP systems across a spectrum
of tasks. Additionally, attention mechanisms, allow models to weigh the importance of various parts of an input
sequence with respect to the current step in output generation [23]. The attention mechanisms used in joint model
studies include:

4.4.1 The weighted sum of hidden states of RNNs

In this type of attention, an alignment function is used to compute the score for each element in the input
sequence, as shown in Eq. 26. These scores indicate the extent to which each element is aligned during the
decoding step. Various scoring methods such as dot product, additive, and multiplicative scoring are adopted to
quantify this alignment. Computed alignment scores are transformed into attention weights using the softmax
function, as shown in Eq. 27. These weights represent the relative importance of each input element during
decoding. Higher attention weights indicated greater importance, whereas lower weights indicated lower rele-
vance. Finally, the context vector is computed as the weighted sum of the hidden states based on their weights, as
shown in Eq. 28. Figure 7 shows the work of the attention model.

Given an input xi ¼ x1; x2; . . .; xtð Þ the encoder produces a hidden state hi

Fig. 7 Attention based on a
weighted sum of hidden
states of RNNs

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

hi ¼ h1; h2; . . .; htð Þ ð25Þ

eti ¼ f st�1; hið Þ ð26Þ

ati ¼
exp etið ÞPt
j¼1 exp etið Þ

ð27Þ

ct ¼
X

i

atihi ð28Þ

This type of attention was first used in [37], employing an encoder-decoder architecture with weighted sum
attention for a joint learning task. The proposed model utilizes a bidirectional RNN with LSTM recurrent units as
an encoder, along with two unidirectional RNNs as decoders for intent and slot labeling. The encoder processed
the input in both the forward and backward directions to generate hidden states. These hidden states were then
concatenated and passed to the decoders to generate intent and slot labels. The intent decoder received input from
the last state of the concatenated hidden states of the shared encoder, as well as a weighted sum of the encoder’s
hidden states, allowing it to leverage both global and local information for intent detection. Meanwhile, the slot
filling decoder operated by calculating the slot label at each time step based on the last hidden state of the
encoder, the weighted sum of the encoder’s hidden states, and the previous decoder state. This combination of
inputs enabled the slot filling model to capture contextual dependencies effectively.

This attention mechanism has been demonstrated to be computationally efficient compared to non-attention
joint models, reducing the computational burden while improving performance in joint learning tasks [196].
Despite these advantages, the weighted sum of hidden states, commonly used in traditional encoder-decoder
models, has limitations [197]. It relies heavily on the encoder’s hidden states and processes sequentially, which
can lead to inefficiencies with longer sequences. Additionally, it may struggle to capture long-range dependencies
and global context, as it focuses on local alignment between encoder and decoder states. To address these issues,
more advanced attention techniques have been introduced, allowing models to capture both local and global
dependencies more effectively.

4.4.2 Self-attention

Self-attention, also known as intra-attention [23], is a mechanism that connects various positions within a single
sequence to generate a representation of the sequence. It operates by mapping the input matrix X into the query
matrix Q, the value matrix V and the key matrix K, then computes the attention weights through a scaled dot-
product operation, as depicted in Fig. 8:

Attention Q;K;Vð Þ ¼ softmax
QKT

ffiffiffiffiffi
dk
p

 �
V ð29Þ

where Q ¼ WQX; K ¼ WKX and V ¼ WVX, dk is the dimension of the key vectors and WQ;WK ; and WV are the
weight matrix corresponding to Q;K; and V , respectively. This enables the model to assign varying levels of
importance to different words in a sequence, facilitating the capture of long-range dependencies and context. This
capability is particularly valuable for tasks such as intent detection and slot filling, where relationships between
words can may span across the sequence [9].

In terms of complexity, self-attention outperforms recurrent layers when the sequence length (n) is shorter than
the representation dimensionality (d). The complexity is O n2dð Þ compared to O nd2ð Þ for recurrent layers [198].
This makes self-attention more efficient for handling sequences common in dialogue systems, where processing

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

speed is critical. Furthermore, self-attention can process all tokens simultaneously, reducing the need for
sequential token processing required by RNN-based models.

Several studies have employed self-attention in joint model learning for intent detection and slot filling
[58, 63, 72, 98, 176, 199]. However, despite its strengths, self-attention faces limitations when applied to
extremely long sequences [200]. The mechanism can become constrained by the neighborhood around the
corresponding output position, particularly when memory and computation resources are restricted [23]. This can
be mitigated by techniques such as hierarchical or sparse attention.

4.4.3 Hierarchical attention

Hierarchical attention is a structured approach that applies the attention mechanism at multiple levels within a
hierarchical data structure. It was first introduced in the context of document classification [201–203] and has
since been employed in other tasks [204]. This model captures information at multiple granularities, typically at
both the word and sentence levels, making it effective for processing long texts where context at different levels is
critical.

In joint learning models, hierarchical attention proves useful in multi-intent dialogues [127]. For slot filling
tasks, a word-level attention is employed to identify key words within a sentence, as different slots correspond to
different words. The attention weight, denoted as ai, is computed by projecting the hidden state hi using a learned
context vector uw:

ai ¼
exp uTw tanh Wwhi þ bwð Þ
� �

P
j expðuTw tanh Wwhj þ bw

� � ð30Þ

where Ww; bw are the learnable parameters. For the intent detection, the model aggregates the word representa-
tions to form a sentence-level representation, enabling it to capture the overall meaning of the sentence. The
sentence-level attention weight, bj, is computed as:

bj ¼
exp uTs tanh Wssj þ bs

� �� �
P

k expðuTs tanh Wssk þ bsð Þ ð31Þ

where sj represents the sentence’s representation.
In joint learning for intent detection and slot filling, hierarchical attention captures the importance of both

individual words and sentences. This dual-level attention provides a more nuanced understanding of complex and
lengthy inputs, significantly enhancing the model’s ability to process multi-intent dialogues. However, one major
challenge of hierarchical attention is its reliance on accurately defining the boundaries between different intents
within an utterance [205]. This limitation may cause errors in distinguishing between the correct intents, leading
to reduced performance in capturing the full meaning of an utterance.

Fig. 8 Self-attention
mechanism

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

4.4.4 Sparse attention

Sparse attention is designed to address the computational inefficiencies of traditional self-attention mechanisms,
which scale quadratically with the sequence length n, leading to high memory and computational costs for long
sequences [206]. In joint learning classification for intent detection and slot filling, sparse attention is applied to
mitigate these inefficiencies by assigning higher attention weights to semantically important words, thus
improving the model’s performance by reducing noise from irrelevant words [44].

The sparse attention mechanism computes a sentence representation ĥ by weighting each hidden state ht based
on its importance, as determined by an attention score ai:

ĥ ¼
XN

t¼1
atht ð32Þ

The attention score at is calculated using a context vector a, which is learned during training, and a nonlinear
function w such as sigmoid or ReLU:

at ¼ w ht � að Þ ð33Þ

The function w induces sparsity by assigning higher weights to semantically important words while reducing
the weights of less irrelevant words. This selective weighting not only reduces computational complexity but also
enhances the model’s ability to focus on relevant parts of the input. However, the efficacy of sparse attention
diminishes in tasks involving shorter sequences, where most or all of the tokens tend carry meaningful infor-
mation [200, 207].

4.4.5 Multi-head attention

The multi-head attention mechanism, as proposed in [23], introduces multiple attention heads rather than utilizing
a single attention mechanism as seen in Sect. 4.4.2. Each head computes attention scores independently, and the
results are then concatenated and passed through a final linear transformation Wo to produce a richer repre-
sentation of the input data as shown in Fig. 9. The multi-head attention mechanism can be defined as follows:

MultiHead Q;K;Vð Þ ¼ Concat Head1; Head2; . . .;Headnð ÞWo ð34Þ

Fig. 9 Multi-head Atten-
tion mechanism [23]

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

Headi ¼ Attention QWQ
i ; KW

K
i ; VW

V
i

� �
ð35Þ

where Q, K, and V are the query, key, and value matrices of the input sequence, andWQ
i ;W

K
i andWV

i are learned
projection matrices for i-th attention head.

This architecture enables the model to process multiple perspectives of the input sequence concurrently,
leading to a more comprehensive understanding of dependencies and interactions across the sequence [208].

Multi-head attention has been combined with other deep learning models to enhance the performance of joint
learning models. For example, the authors in [109] integrated multi-head attention with iterated dilated CNNs,
allowing the model to capture richer semantic information from the multiple parts of the input text. In another
study proposed in [68], multi-head attention was combined with CRF and prior knowledge. The multi-head
attention helped capture long-range dependencies in the input text, while the CRF layer ensured consistency in
the output labels. Additionally, a prior mask was used to incorporate knowledge into the model, further enhancing
its performance.

Despite its advantages, multi-head attention presents certain limitations. The primary challenge lies in
increased computational and memory demands, as each attention head requires its own set of parameters and
projections [23]. This parallel computation increases resource consumption, particularly for long sequences or
when many attention heads are used. Moreover, while multi-head attention is designed to capture diverse aspects
of the input, it can lead to redundancy if the attention heads focus on irrelevant features, potentially hindering
model performance [209].

4.5 Transformer architecture

Transformers have revolutionized the field of NLP, offering a paradigm shift in the processing and compre-
hension of textual data. Originally introduced in the groundbreaking paper ‘‘Attention is All You Need’’ [23],
Transformers have become the backbone of many state-of-the-art NLU models [210]. Unlike recurrent neural
network architectures, which process data sequentially, the Transformer processes the entire sequence in parallel,
making it faster and more effective in capturing complex patterns [211].

The Transformer architecture consists of two main blocks: encoders and decoders as shown in Fig. 10. The
encoder processes the input data in parallel, making it more efficient than traditional models that process data step
by step. The input is first converted into a vector using an embedding technique. Because Transformers lack an
inherent sense of sequence order, position encoding is added to the input vectors to provide information about the
order of elements in the sequence.

The encoder is made up of multiple identical layers, each containing two components: multi-head attention
mechanism and feed-forward neural network. The multi-head attention mechanism allows the model to focus on
different parts of the input simultaneously, capturing multiple relationships within the data. After applying the
attention mechanism, the encoder passes the data through a Feed-Forward Network, which helps capture more

Fig. 10 Transformer archi-
tecture [23]

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

complex patterns and relationships. Add & Norm operations are then used to stabilize the learning process and
ensure that the model converges effectively.

The decoder is responsible for generating output sequence. It includes an additional feature known as masked
multi-head attention mechanism, which prevents the decoder from seeing future elements in the output sequence
during training. Like the encoder, the decoder also uses a standard multi-head attention mechanism to focus on
relevant parts of the encoder’s output. The decoder’s final output is then passed through a softmax layer, which
converts the output into a probability distribution, allowing the model to generate predictions by selecting the
most likely outcome.

The Transformer architecture has enabled the development of large-scale pre-trained language models such as
Bidirectional Encoder Representations from Transformers (BERT) [212], Generative Pre-trained Transformers
(GPTs) [213], and eXtreme Language Understanding Network (XLNet) [214].

BERT is one of the most frequently used Transformer architectures for joint learning classification of intent
detection and slot filling [26, 60, 61, 63, 99, 100, 124, 126, 178, 215, 216]. In these models, the input sequence is
tokenized into sub-word units, and each token is encoded into a dense vector representation. The Transformer
captures the contextual information by considering the entire input sequence. For intent detection, a classification
layer is added on top of the Transformer output, mapping contextualized representations to the intent labels.
Additional layers are used to label slots, which can be either linear [216] or recurrent [86]. Although transformers
excel at modeling long-range contextual dependencies, they may struggle to capture fine-grained and local
patterns in data [33], which are often crucial in slot filling task [217].

4.6 Hybrid model

Hybrid-based approaches combine different models to perform joint learning classification for intent detection
and slot filling. Several studies [44, 47, 54, 57, 64, 72, 218–220] combined RNNs and CNNs to capture the local
and global dependencies within the input, leading to improvements in the performance of both intent classifi-
cation and slot filling. In these models, the input is first encoded using an RNN, which captures the sequential
nature of the input. The final hidden state is then passed to a fully connected layer for intent detection. A CNN is
then applied to the task of slot filling by convolving the sequence of word embeddings with multiple filters of
varying sizes. The resulting feature maps are combined and passed through a fully connected layer to predict slot
labels.

In other studies [52, 66, 68, 76, 77, 86, 138, 221, 222], RNNs and CRFs are employed. The input is encoded
using an RNN, and the hidden state is fed to a fully connected layer for intent detection. For slot filling task, the
output of the RNN is fed into the CRF, which models the dependencies between adjacent slot labels. Other works
[12, 78, 79, 82, 86] used Transformer models with LSTM or CRF to leverage the Transformer’s contextualization
power and the sequential modeling capacity of CRFs and LSTM.

Table 4 summarizes the performance of the deep learning models recorded on different datasets. The results
suggest that joint learning approaches perform particularly well on the ATIS and SNIPS datasets, achieving up to
99% in both intent detection and slot filling tasks in almost all techniques.

The features used in the deep learning models are generated automatically. However, to capture more infor-
mation, pre-trained embeddings are often used to initialize the embedding layer and serve as input features. These
features include word embeddings such as word2vec [223], Glove [224], and ELMo [225], as well as character
embeddings, such as fastText, which are beneficial for handling out-of-vocabulary (OOV) words, and BERT
embeddings, which provide contextual embedding.

In some studies, multiple embeddings were combined to harness their strengths. For instance, [51] combined
Glove, word2vec, and POS tags as embeddings to capture a broader range of word representations. To address the
OOV issue, [64, 75, 226] used a combination of character and word embeddings. ln [74] one-hot encoding was
used along with the key verb features of the input data. A recent study [227] proposed the use of contrastive
learning to obtain embeddings from convolutional features and BERT encoding.

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

Ta
bl
e
4

D
ee
p
le
ar
ni
ng
-b
as
ed

m
od
el
s

T
ec
hn

iq
ue

Fe
at
ur
es

Pe
rf
or
m
an
ce

R
ef
er
en
ce
s

In
te
nt

D
et
ec
tio

n
A
cc
ur
ac
y

(%
)

Sl
ot

fil
lin

g
F1

-s
co
re

(%
)

D
at
as
et

R
N
N
-b
as
ed

W
or
d
em

be
dd

in
gs
,c

ha
ra
ct
er

em
be
dd

in
gs

(F
as
tT
ex
t)
G
ra
ph

E
m
be
dd

in
g,

ba
g-
of
-

w
or
ds
,o

ne
-h
ot

en
co
di
ng

,B
E
R
T

em
be
dd

in
gs

75
–9

9.
6

39
–9

9.
98

A
T
IS

[4
,1

1,
28

,3
7,

38
,4

0–
42
,
48
,5

4–
56

,5
8,

71
,7

4,
92

,9
8,

99
,1

78
,2

28
–2

32
]

73
–9

8.
8

41
.1
–9

8.
74

SN
IP
S

83
.1
1–

84
.8
8

96
.8
9–

98
.7
8

T
R
A
IN

S

94
–9

5
93

–9
5

C
or
ta
na

59
33

.2
T
O
P

96
.0
5

87
.1
2

C
Q
U
D

99
.4
0–

99
.4
8

98
.0
1–

98
.8
4

D
ST

C
2

53
.3
5

45
.5
1

D
ST

C
5

C
N
N
-b
as
ed

C
on

vo
lu
tio

na
l
n-
gr
am

s
94

.0
9

95
.4
2

A
T
IS

[3
4]

H
yb

ri
d-

ba
se
d

W
or
d
em

be
dd

in
gs
,c

ha
ra
ct
er

em
be
dd

in
gs
,

G
ra
ph

E
m
be
dd

in
g,

ba
g-
of
-w

or
d,

C
on

vo
lu
tio

na
l
n-
gr
am

s,
B
E
R
T

em
be
dd

in
gs
,s
yn

ta
ct
ic
al

fe
at
ur
es

(P
O
S)

94
.5
8–

99
.2
9

74
.5
6–

99
.5
4

A
T
IS

[1
4,

27
,4

4,
46
,4

7,
52
,5

7,
62
,6

6,
72
,7

5,
77
,8

2,
86
,1

38
,1

99
,2

15
,2

18
–2

22
,2

33
–2

35
]

95
.8
0–

99
.7

91
.7
8–

98
.4
4

SN
IP
S

94
.5
6

86
.1
6

C
A
IS

T
ra
ns
fo
rm

er
-

ba
se
d

B
E
R
T
em

be
dd

in
gs

98
.6
–9

9.
76

96
.1
–9

8.
75

A
T
IS

[6
0,

61
,6

3,
99
,1

00
,1

78
,
21

5,
21

6]

98
.9
6–

99
.2
5

94
.8
–9

8.
78

SN
IP
S

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

5 Joint learning classification architectures’ taxonomy

The relationship between intent detection and slot filling has led to the development of various joint learning
architectures designed to exploit this interdependence. These architectures can be classified into three broad
categories as shown in Fig. 11: implicit, explicit, and fused, based on how they capture and leverage the
interaction between the two tasks. Each of these categories introduces distinct design choices regarding key
components, such as encoders, shared representations, interaction modules, and decoders.

At the heart of many joint learning models lies the shared encoder, a component responsible for processing the
input data and generating a feature representation that serves both tasks. This allows the model to extract patterns
relevant to both intent detection and slot filling, eliminating the need to design separate models for each task.
Common examples of shared encoders include Bi(RNNs), Bi(LSTMs), Bi(GRUs) and transformers, all of which
are widely used for their ability to process sequential data effectively. The intermediate output produced by the
shared encoder is known as the shared representation, which contains the features extracted from the input
sentence. This representation serves as a common knowledge base that feeds both the intent detection and slot
filling modules, enabling both tasks to access relevant information from the same source. To further enhance the
interdependence between the two tasks, some architectures incorporate interaction module. This component
allows the predictions made by one task to influence the other. Finally, the outputs of the model are generated
through decoders, which are task-specific layers that produce final predictions. This section introduces taxonomy,
providing an overview of the architectural approaches used in joint learning models.

5.1 Implicit shared feature joint learning architecture

In implicit joint learning architectures, a shared encoder is employed to capture common features without
explicitly modeling the interaction between intent detection and slot filling. The primary focus of this approach is
to extract shared representations between the two tasks through a joint encoding mechanism. These models rely
on shared features across tasks to drive predictions, without explicitly modeling task dependencies. A typical
structure of an implicit shared feature joint model is shown in Fig. 12.

Several studies have explored this approach. For instance, Liu and Lane [37] proposed an RNN as a shared
encoder to produce vector representations of the input data, followed by two decoders for intent detection and slot
filling. Similarly, Chen, Hakanni-Tür [219] used a CNN as the shared encoder, with an RNN to label the slots
while leveraging the last hidden state for intent detection. Firdaus, Bhatnagar [51] used stacked GRU and LSTM
layers as shared encoders, passing the shared representations to multilayer perceptron whose outputs were
ensembled for predictions. Daha and Hewavitharana [222] proposed BiLSTM as a shared encoder, using the last
hidden state for intent detection and CRF for slot filling. In another study [233] proposed BiLSTM for con-
textualized representations, passing them to a Graphical Convolutional Network with multi-head attention to
obtain the shared representations for intent detection and slot filling tasks.

Fig. 11 A Taxonomy of the
joint learning classification
architectures for intent
detection and slot filling

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

Although the implicitly shared feature joint models provide a direct approach for knowledge sharing, they
often suffer from lower interpretability and performance due to the absence of explicit interaction between tasks
[78].

5.2 Explicit shared feature joint learning architecture

To address the limitations of implicit joint learning architectures, explicit shared feature models have been
developed [38]. These models capture the interaction between the intent and slots through architectural mech-
anisms such as attention mechanisms, gating structures, or cross-task dependencies. Explicit modeling has been

Fig. 12 Implicitly shared
feature joint model
architecture

Fig. 13 Explicit shared
feature joint model
architecture

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

shown to improve accuracy, interpretability, and robustness compared to implicit joint model architectures,
offering a promising direction for advancing dialogue understanding systems. Explicit joint model architectures
can be categorized into two types: unidirectional and bidirectional, as shown in Fig. 13(a), (b), respectively.

In unidirectional explicit shared feature joint learning architectures, the intent information is passed to the slot
filling module without feedback. For instance, Goo, Gao [232] and [58] proposed models that used intent vectors
to improve the slot filling task via a gating mechanism. Despite the efficacy of the models with unidirectional
explicit architecture, their reliance on unidirectional flow introduces the risk of error propagation, where incorrect
intent detection can affect slot filling performance [71].

On the other hand, bidirectional explicit shared feature joint learning architecture allows mutual information
exchange between the tasks. For example, [54] proposed bi-modal-based RNN structures to leverage the cross-
impact between slots and intent using bi-directionality. Qin, Liu [178] proposed a co-interactive transformer
model that establishes bidirectional connections between the tasks, and models like [98], used a self-attention to
generate bidirectional representations that facilitate task interaction. Bidirectional architectures have demonstrated
enhanced accuracy and interpretability by allowing tasks to refine each other’s predictions.

5.3 Fused joint learning architecture

Fused joint learning architectures use separate encoders for intent detection and slot filling, integrating their
outputs through a fusion layer before final prediction. Unlike explicit architectures, which facilitate interaction at
the encoder level, fused architectures merge task representations at a later stage, as shown in Fig. 14. This
approach allows for task-specific feature extraction while still benefiting from shared knowledge during pre-
diction stage.

Bhasin, Natarajan [28] proposed a fused joint architecture utilizing distinct BiGRU encoders for intent
detection and slot filling tasks, where feature combination for prediction is achieved through bilinear pooling.
Another study [27] introduced a dual encoder that independently encodes input sequences using BERT and
BiLSTM, and the outputs are merged via an interaction block, before being processed by intent and slot decoders.
A recent study conducted by[26] employed BERT and BiLSTM as encoders for intent and slots, respectively, and
combined their outputs to model explicit task interactions. To reduce error propagation, this model uses word-
level information to fuse the two types of information. While the models based on fused architecture offer
flexibility by handling each task independently, the lack of interaction between the tasks at the encoder level may
limit their ability to fully capture complex dependencies between intent and slot tasks.

Table 5 presents the performance of various joint learning architectures for intent detection and slot filling on
the ATIS dataset. Implicit joint learning architectures show a wide range of performance, with a few achieving
competitive results. The best performing implicit models reach near perfect accuracy and F1-score. This

Fig. 14 Fused joint model
architecture

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

highlights that, when tuned well, implicit models can handle the tasks effectively despite their architectural
simplicity. The large variability in intent accuracy and F1-scores indicates significant inconsistency. The lowest
values, especially the F1-score of 39.7%, suggest that these models often fail to capture task-specific depen-
dencies leading to low performance. The average scores affirm that implicit joint learning architecture struggles to
balance both tasks due to the lack of explicit task interaction.

Models with an explicit unidirectional architecture show improvement over implicit models. With an average
intent accuracy of 96.68% and an F1-score of 97.10%, these architectures effectively capture task dependencies.
Notably, the unidirectional flow of information from the intent detection module to the slot filling module results
in a higher average performance for the slot filling task compared to intent detection, as the latter informs the
former without feedback, enhancing the slot labeling task.

The models with bidirectional explicit architecture show improved F1-scores and stable intent accuracy.
Although these models perform well, the slightly lower average accuracy compared to unidirectional models
could be attributed to the increased complexity of maintaining mutual task interaction.

Fused joint model architecture consistently achieves high performance in both intent accuracy and F1-score.
This strong performance can largely be attributed to their ability to balance task-specific feature extraction with
shared learning.

Table 6 compares the performance of joint learning architectures on the SNIPS dataset. Similar to the ATIS
dataset, implicit architecture shows a wide range of performance variability. This highlights the inherent

Table 5 Performance comparison based on learning architecture on ATIS dataset

Joint learning
architecture

Performance References

Intent detection
Accuracy
(%)

Slot filling
F1-score
(%)

Average
Accuracy
(%)

Average
F1-score
(%)

Implicit 75–99.60 39.7–99.98 87.3 69.84 [4, 11, 12, 17, 35, 37–39, 44, 47, 51, 56, 64, 66, 72, 77, 78, 99,
138, 219, 221, 222, 228, 233, 236, 237]

Explicit-
unidirectional

93.6–99.76 94.22–99.98 96.68 97.10 [34, 52, 57, 58, 63, 79, 100, 231, 232]

Explicit-
bidirectional

88.8–98.99 95.2–99.6 93.90 97.40 [27, 46, 54, 61, 62, 75, 92, 98, 176, 178, 199, 220, 238, 239]

Fused Joint 97.54–98.43 95.8–99.54 97.99 97.67 [26–28]

Table 6 Performance comparison based on learning architecture on SNIPS dataset

Joint learning
architecture

Performance References

Intent detection
Accuracy
(%)

Slot filling
F1-score
(%)

Average
Accuracy
(%)

Average
F1-score
(%)

Implicit 73.94–99.7 38.6–96.30 97.12 89.10 [4, 12, 64, 72, 77, 78, 82, 99, 138, 221, 222, 228, 233, 237]

Explicit-
unidirectional

88.03–98.96 88.8–98.78 98.01 93.25 [63, 71, 79, 231, 232]

Explicit-
bidirectional

93.2–99.3 91.8–98.74 98.62 95.56 [27, 46, 61, 62, 75, 92, 98, 176, 178, 199, 220, 238, 239]

Fused Joint 98.14–99.0 96.7–98.49 98.58 97.40 [26–28]

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

challenges of joint learning models without explicit interaction. However, the average performance suggests that
implicit architectures perform better on dataset with a large number of training examples such as SNIPS.

For explicit unidirectional models, the results align with those observed on the ATIS dataset, where the
unidirectional flow of information from intent detection to slot filling tends to enhance the performance of the slot
filling task. Similarly, explicit bidirectional joint learning models achieve higher accuracy on the SNIPS dataset
compared to ATIS. The fused joint learning models also demonstrate improved average performance on the
SNIPS dataset relative to ATIS. These findings suggest that the balanced distribution of intents in the SNIPS
dataset provides more conditions for these architectures, allowing them to fully leverage task interdependence.

Tables 5 and 6 show that the fused joint learning architecture consistently delivers the highest performance
across both datasets, likely due to its more integrated handling of the two tasks. In both ATIS and SNIPS datasets,
explicit bidirectional joint learning models also perform strongly, indicating that architectures enabling task
interdependence outperform those with implicit or unidirectional connections. However, despite the high overall
accuracy on both datasets, the ATIS dataset consistently shows higher F1-scores compared to SNIPS, likely due
to the ATIS dataset having more slots and better task alignment [240]. On the other hand, the SNIPS dataset
demonstrates consistently higher intent accuracy, which could be attributed to its more balanced nature and larger
number of training examples.

6 Datasets for joint learning classification for intent detection and slot filling

Robust datasets and appropriate evaluation metrics are essential for evaluating of joint learning models in intent
detection and slot filling tasks [30]. Many errors in these models stem from issues such as annotation mistakes or
inherent ambiguities in the datasets [241]. Several datasets have been developed to facilitate research on joint
learning, including widely recognized datasets like ATIS, SNIPS, and Microsoft Cortana, which offer varied user
intents and slot types, enabling realistic model training and evaluation. The selection of the dataset depends on the
application domain and the complexity of language understanding required. Table 7 summarizes the key char-
acteristics of the most used datasets in joint learning classification.

6.1 ATIS (Airline travel information system) dataset

The ATIS dataset was initially introduced under the Defense Advanced Research Projects Agency’s initiative to
automate travel booking systems and has since become a key benchmark for intent detection and slot filling tasks
[33]. The dataset primarily contains queries related to air travel, such as flight details, fare information, and
associated services. The original ATIS-0 release included 740 training examples featuring transcriptions, SQL
queries, and tokens adhering to Standard Normal Orthographic Representation rules, with an average utterance
length of 11.3 tokens per utterance [244]. Over time, various variants were developed, with ATIS-3 being the
most used in research.

However, a key challenge of the ATIS dataset is its class imbalance, with approximately 75% of the samples
pertain to the to the ‘‘atis-flight’’ intent [179]. This disproportionate distribution causes models to become biased
toward predicting frequent intents while underperforming on less common ones.

6.2 SNIPS dataset

The SNIPS dataset, developed by SNIPS [245], a company known for its expertise in natural language under-
standing technology for voice assistants, includes a diverse set of queries across seven domain such music,
weather inquiries, home automation, etc. A key advantage of SNIPS dataset is its balanced distribution of
different intents, which promotes evaluation models. This characteristic is essential for training robust models that
generalize well to a wide range of real-world spoken queries without bias. As a result, SNIPS has become a

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

Ta
bl
e
7

C
ha
ra
ct
er
is
tic
s
of

da
ta
se
ts
fo
r
jo
in
t
in
te
nt

de
te
ct
io
n
an
d
sl
ot

fil
lin

g

D
at
as
et

In
te
nt

Sl
ot
s

T
ra
in

da
ta
se
t

T
es
t

da
ta
se
t

D
om

ai
n

pu
bl
ic

R
ef
er
en
ce
s

A
T
IS

21
12

8
44

78
50

0
A
ir
T
ra
ve
l

Y
es

[4
,1

1,
12

,1
7,

35
,3

7–
39
,
44
,4

7,
51
,5

6,
64
,6

6,
72
,7

7,
78
,9

9,
13

8,
21

9,
22

1,
22

2,
22

8,
23

3,
23

6,
23

7]
[3
4,

52
,5

7,
58
,
63
,7

9,
10

0,
23

1,
23

2]
[2
7,

46
,
54
,6

1,
62
,7

5,
92
,9

8,
17

6,
17

8,
19

9,
22

0,
23

8,
23

9]

SN
IP
S

7
72

13
,0
84

70
0

Pe
rs
on

al
vo

ic
e

as
si
st
an
t

Y
es

[4
,1

2,
64

,7
2,

77
,7

8,
82

,9
9,

13
8,

22
1,

22
2,

22
8,

23
3,

23
7]

[6
3,

71
,7

9,
23

1,
23

2]
[2
7,

46
,6

1,
62
,
75
,9

2,
98
,1

76
,1

78
,1

99
,2

20
,2

38
,2

39
]

FR
A
M
E
S

24
13

6
20

0,
00

6
65

98
H
ot
el

bo
ok

in
g

Y
es

[1
1,

12
,6

4]

D
ST

C
2

13
4

47
90

44
85

R
es
ta
ur
an
t
se
ar
ch

Y
es

[4
1,

48
,1

88
]

D
ST

C
5

84
53

3
27

,5
28

34
47

D
ia
lo
gu

e
w
ith

a
so
ci
al

ro
bo

t
Y
es

[4
8]

M
ic
ro
so
ft

C
or
ta
na

11
2

71
67

,8
18

69
05

Pe
rs
on

al
A
ss
is
ta
nt

N
o

[3
5,

40
,4

2,
21

8,
21

9]

Fa
ce
bo

ok
12

11
30

,5
21

86
21

M
ul
ti-
lin

gu
al

Y
es

[6
3,

86
,2

42
,2

43
]

C
Q
U
D

43
20

32
86

-
M
ul
ti-
do

m
ai
n
an
d

m
ul
til
in
gu

al
N
o

[3
8]

C
M
R
S

5
5

29
01

96
7

M
ee
tin

g
R
oo

m
B
oo

ki
ng

N
o

[4
8]

T
R
A
IN

S
12

32
53

55
13

36
Pr
ob

le
m
-s
ol
vi
ng

di
al
og

ue
N
o

[1
1,

12
,5

1,
64
]

R
ok

id
M
us
ic

4
10

50
,6
38

10
,8
07

M
us
ic

[5
2]

T
O
P

25
36

31
,2
79

44
62

M
ul
ti-
do

m
ai
n

Y
es

[9
9,

23
7]

C
A
IS

11
75

79
95

10
12

A
I
Sp

ea
ke
rs

Y
es

[7
5]

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

valuable resource for development and evaluation of personal assistant systems, offering a realistic environment
to test model performance.

6.3 FRAMES dataset

The Frames dataset consists of multi-turn dialogues that simulate interactions between users and agents, focusing
on hotel and vacation package bookings [11, 246]. These conversations are designed to reflect real-world
scenarios where users explore multiple options, change preferences, and revisit previous topics during decision-
making. Each dialogue involves a series of exchanges between a user and a wizard (agent), with both parties able
to introduce new frames. Every dialogue turn in the dataset is annotated with dialogue acts and slot-value pairs.
These annotations make the Frames dataset well-suited for training models that need to capture evolving contexts
across interactions, ensuring that systems can accurately manage multiple user goals. The dataset is particularly
useful for developing context-dependent systems, such as advanced virtual assistants or booking agents, that must
handle complex interactions. These systems benefit from the ability to switch between multiple goals and
maintain continuity across long conversations. As a result, the Frames dataset supports research into memory-
enhanced dialogue systems capable of managing nuanced, multi-step interactions.

6.4 DSTC dataset

The Dialogue State Tracking Challenge (DSTC) datasets are used to benchmark dialogue systems, with different
versions catering to various conversational tasks. DSTC2 focuses on restaurant search dialogue, assessing
model’s abilities to track user states throughout interactions. This feature is essential for task-oriented dialogue
systems that need to manage user goals and preferences over multiple turns.

In contrast, DSTC5 expand its scope to cover open domain dialogues, incorporating a broader range of topics,
including emotionally sensitive conversations. This broader scope adds complexity, making it a valuable resource
for systems that need to manage multi-topic and empathetic interaction effectively.

6.5 Microsoft Cortana dataset

The Microsoft Cortana [35] is a proprietary dataset that includes data from user interactions with Cortana voice
assistant. It focuses on tasks such as alarm management, weather updates, and calendar scheduling. Although not
publicly available, it plays a role in enhancing Cortana’s natural language processing capabilities.

6.6 Facebook NLU dataset

Facebook’s NLU dataset is designed for evaluating natural language understanding tasks such as setting alarms,
creating reminders, and checking weather. The dataset includes multilingual corpus, making valuable resources
for testing model performance across different languages.

6.7 CQUD (Chinese Question Answering User Dataset)

The CQUD [38], collected from Baidu’s question answering platform, includes queries across domains, such as
flights, weather, and express delivery, with a primary focus on Chinese language interactions.

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

6.8 CMRS (Chinese Meeting Room Scheduling) dataset

The CMRS dataset [48] is more domain-specific, focusing on dialogues related to meeting room reservations. Its
structured, task-oriented nature makes it particularly relevant for dialogue systems.

6.9 TRAINS dataset

The TRAINS dataset [247] was developed at University of Rochester for natural language understanding and
dialogue systems. It consists of dialogues where users plan and manage train routes and cargo schedules. The
dataset includes dialogue transcripts, annotations for dialogue acts, and task descriptions, making it ideal for
training models that must handle complex multi-turn interaction.

6.10 Rokid music dataset

Rokid Music [52] is a Chinese-language dataset containing voice commands for music-related tasks. It serves as a
domain-specific resource for evaluating models that manage voice-activated music control, contributing to the
development of more effective music recommendation systems.

6.11 TOP (Task Oriented Parsing) dataset

The TOP dataset [248] is designed for parsing complex, task-oriented queries in domains such as navigation and
event search. It includes both flat and nested intent labels, offering a challenging environment for models tasked
with managing multi-level intents and slot filling tasks. This structured dataset is particularly useful for evaluating
models that need to handle complex user requests.

6.12 CAIS (Chinese AI Speaker) dataset

CAIS dataset [75] includes user queries aimed at Chinese AI-powered speakers, for home automation tasks. This
dataset provides a valuable resource for training models tailored to smart home device control, enabling systems
to manage a range of commands efficiently.

7 Challenges of joint learning classification datasets

The performance of joint learning models for intent detection and slot filling is closely tied to the quality,
diversity, and structure of the datasets they are trained on. However, several key challenges persist that can hinder
the development of robust and accurate models. These challenges arise from issues such as data quality, domain
specificity, and class imbalance, all of which need to be carefully addressed to improve model performance across
varied tasks. This section discusses the key challenges and their impact on the development of joint learning
models.

7.1 Data quality and consistency

The quality and consistency of data play a role in the performance of joint learning models for intent detection
and slot filling. Many datasets used for these tasks often rely on crowd-sourced annotations or user-contributed
data. While this approach allows for the rapid collection of large datasets, it introduces inconsistencies, noise, and
labeling errors [249]. Variability in how different annotators label intents and slots can lead to discrepancies that

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

negatively impact model training. Maintaining high-quality, consistent annotations across all categories is
essential to ensure that models learn correct patterns and relationships between intents and slot values. Poor
quality data can significantly degrade model performance and reliability [250].

7.2 Domain specificity

Many datasets used for joint learning tasks are domain-specific, focusing on areas such as travel booking,
technical support, or weather enquiry. While this specialization allows models to excel in particular domains, it
poses challenges for developing models that generalize multiple domains. Different domains exhibit distinct
linguistic patterns, specialized terminologies, and unique types of intents and slots. These domain-specific
characteristics make it difficult for models to perform effectively outside their training domains [250]. Achieving
cross-domain generalization remains a key challenge, requiring models to be adaptable to varied datasets and
tasks.

7.3 Imbalanced classes

Class imbalance is a common issue in many real-world datasets, where certain intents or slots dominate the
distribution, while others are significantly underrepresented [251]. This disparity can lead to models to overfit on
majority classes and struggle to accurately learn and predict minority classes, which are often critical for handling
edge cases and providing a more robust user experience. For instance, in the ATIS dataset, approximately 75% of
the samples correspond to the ‘‘atis-flight’’ intent, leaving other intents underrepresented [179]. Addressing this
imbalance is essential for developing models that not only excel at predicting common intents but also perform
effectively on rare ones.

8 Evaluation metrics for joint learning models

This section outlines the most used evaluation metrics for joint learning models in intent detection and slot filling.
Typically, these models are assessed based on the performance of each subtask, with intent detection evaluated as
a classification problem and slot filling as a labeling task.

8.1 Intent classification metrics

Intent classification involves classifying the user inputs into predefined classes, where each class represents a
specific intent. Some of the key evaluation metrics for intent classification are accuracy, precision, recall, and F1.

i. Accuracy
Accuracy is the most used evaluation metric for intent classification. It is calculated as the ratio of correct intent

predictions to total sentences.

accuracy ¼ number of correct predictions

number of sentences
ð36Þ

However, accuracy can be interpreted differently in multi-intent utterances. Some researchers consider a
prediction to be correct if at least one intent is accurately detected [37, 58], while others [62, 232] require all
intent labels to be correctly detected for the prediction to be deemed correct.

ii. Error Rate
Error rate is used to measure the proportion of incorrect predictions. This metric offers a direct perspective on

the model’s failure rate, highlighting areas where the model’s performance falls short. Several studies

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

[38, 52, 55, 58, 98, 218, 252, 253] have employed error rate to assess the accuracy of intent label predictions. It is
typically calculated using the following equation:

error rate ¼ incorrect predictions

total number of predictions
ð37Þ

error rate ¼ 1� accuracy ð38Þ

iii. Intent Recall, Precision, and F1
Though less frequently used as intent detection evaluation metrics, recall, precision, and F1-score, offer more

granular insights into model performance. These metrics are typically computed using a confusion matrix. The
confusion matrix provides a view of the model’s predictive performance by comparing the predicted labels with
actual labels. The matrix is organized into four quadrants, each representing a different combination of predicted
and actual labels.

True Positive (TP): The model correctly predicted the positive class.
False Positive (FP): The model incorrectly predicted the positive class.
True Negative (TN): The model correctly predicted the negative class.
False Negative (FN): The model incorrectly predicted the negative class.

For multi-intent problems, recall and precision can be averaged across all intent classes using micro and macro
averaging techniques:

Micro averaging considers individual true positives and false positive across classes:

micro averagingRecall ¼
P

TPP
TPþ

P
FP

ð39Þ

micro averaging Precision ¼
P

TPP
TPþ

P
FN

ð40Þ

Macro averaging computes the precision and recall for each class, then averages across classes:

macro averaging Precision ¼ 1

number of intent classes

X TP

TPþ FP
ð41Þ

macro averagingRecall ¼ 1

number of intent classes

X TP

TPþ FN
ð42Þ

The F1-score, which combines precision and recall using harmonic means, is particularly valuable in datasets
with class imbalance [49, 231, 254–256]:

F1 ¼ 2
precision� recall

precisionþ recall

 �
ð43Þ

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

8.2 Slot filling metrics

The performance of slot filling is commonly evaluated using micro-averaged precision, recall, and F1-scores
[179]. However, a few studies have also used accuracy as a metric for slot filling [188, 257]. Slot filling tasks are
typically assessed using two methods: span-based and token-based evaluation.

i.
Span-based evaluation focuses on consecutive words that represent a specific slot. For instance, ‘‘New York
City’’ in an utterance would be labeled as a single span using IOB tagging as B-New, I-York, I-City. The span
is considered correct only if all the tokens within it are predicted accurately. This approach has been employed
in various studies [12, 26, 115].
ii.
Token-based evaluation focuses on evaluating each token individually, without requiring the entire span to be
correctly predicted [58, 73].

8.3 Semantic accuracy

Semantic accuracy refers to the model’s ability to correctly interpret and classify user intents while accurately
identifying and extracting relevant entities (slots) from an utterance. It is typically measured as the ratio of
correctly analyzed utterances to the total number of utterances. Semantic accuracy has been used in several
studies [46, 100, 231, 232] to evaluate the performance of joint models.

9 Applications of joint learning models

Joint learning for intent detection and slot filling has transformed the landscape of natural language under-
standing, finding applications across various domains. This section highlights real-world applications where joint
learning has demonstrated significant effectiveness.

9.1 Virtual assistants and chatbots

Virtual assistants and chatbots are widespread in applications ranging from customer support to personal pro-
ductivity tools. Joint learning models excel in these scenarios by providing a unified approach for understanding
the user’s intent and extracting relevant information. This leads to more responsive and context-aware conver-
sational agents, thereby improving user experience [13].

9.2 Voice-activated system

In voice-activated systems, where spoken language serves as primary input, joint learning models play a role in
accurately interpreting user requests. These models are integral to applications such as smart home devices, in-car
assistants, and hands-free technology. By efficiently recognizing user intents and extracting relevant slots, joint
learning ensures smoother interactions, enhancing the responsiveness and usability of these systems [15].

9.3 Information retrieval and search engines

Enhancing search engine capabilities and information retrieval are important joint learning applications. These
models can contribute to more precise and contextually aware search results by accurately discerning user

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

intentions and extracting relevant details from the search queries. This is particularly beneficial in scenarios in
which users employ natural language queries rather than conventional keyword-based searches [16].

9.4 Health care and medical assistance

In the healthcare domain, joint learning models facilitate medical assistants and applications that require a clear
understanding of patient queries and the accurate extraction of medical information. These models enhance
communication between users and healthcare systems, supporting tasks such as appointment scheduling,
symptom analysis, and medication management [82].

10 Open issues and future directions

10.1 Lack of explainability

Joint learning models for intent detection and slot filling are designed to enhance natural language understanding.
However, the lack of explainability remains a significant challenge. This issue arises from the complex, nonlinear
interactions between intent detection and slot filling components, which make it difficult to interpret how specific
input features influence predictions [258]. Furthermore, the black-box nature of these models obscures the
decision-making processes, hindering the understanding of why certain words or phrases are linked to specific
intentions or slots [259].

Recent research suggests that leveraging information theory and explainable attention mechanisms offers
promising approaches to address these challenges [258]. Improving the interpretability of joint models, are
essential to fostering trust in NLU systems, thereby unlocking their full potential across diverse applications and
domains.

10.2 Generalization to new domain

Ensuring that joint learning models generalize effectively to new domains remains a challenge. Domain-specific
variations in language such as specialized terminology can lead to misinterpretation of intents and slots. Addi-
tionally, data scarcity in new domains hinders effective model training, limiting the ability to capture domain-
specific linguistic structure. Although transfer learning offers a solution, it requires careful fine-tuning to avoid
negative transfer, where knowledge from the source domain degrades performance in the target domain.
Researchers are exploring techniques such as domain adaptation techniques [16], few-shot learning [80, 260], and
meta-learning strategies [99] to address these challenges, enabling models to adapt efficiently to new domains
while maintaining performance.

10.3 Real-time processing

Real-time systems require a low latency to provide immediate feedback. However, joint learning models, built on
deep learning architectures, are often computationally intensive, leading to delays that impact user experience.
Another issue arises from the need for models to adapt to changing contexts in real-time to maintain accuracy.
This challenge is compounded by the limited computational resources available on many real-time devices, which
restrict the deployment of complex models.

To overcome these limitations, researchers are exploring lightweight architectures and efficient algorithms that
can deliver high performance while minimizing resource consumption [89, 261].

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

10.4 Datasets

The development of robust joint learning models also depends on the availability of diverse datasets and
benchmark tasks that reflect real-world use cases. Most of the current datasets are often limited to single-turn
utterances with only one intent per input, whereas real-world conversations frequently involve multiple intents
and complex dialogues [30]. Furthermore, there is a need for datasets that support multilingual dialogue systems
and domain adaptability to enhance the robustness of joint models. Expanding datasets to capture these
dimensions will provide better evaluation frameworks and improve the real-world applicability of joint learning
models.

10.5 Enhance contextualized understanding

Advancing contextual understanding requires the integration of external knowledge sources, semantic repre-
sentations, and contextual-aware embedding. Although existing models demonstrate some degree of contextual
awareness, developing methodologies to further enhance contextual modeling remains an open research chal-
lenge. Future work may focus on novel architectures that leverage world knowledge and context at deeper
semantic levels to improve model accuracy and robustness in complex conversational scenarios.

11 Conclusion

Joint learning classification for intent detection and slot filling has become a significant research area in NLU due
to its crucial role in improving human–computer interaction. This review examines joint learning models, ranging
from classical machine learning approaches to advanced deep learning architectures, highlighting the impact of
recent innovations. While classical models laid the groundwork, their limitations in capturing complex language
dependencies paved the way for deep learning models. Notably, the introduction of transformer architectures,
especially models like BERT, has enabled deep contextual understanding and fine-grained attention mechanisms,
substantially improving accuracy and interpretability in joint learning tasks. A recent trend involves the resur-
gence of classical models, such as CRF, integrated within deep learning frameworks to enhance performance.
Various joint learning architectures have been analyzed, revealing that fused and explicit approaches offer greater
explainability compared to implicit architectures. However, the results are influenced by the datasets and
methodologies employed. Challenges related to commonly used datasets are also highlighted, emphasizing the
need for collaborative efforts to establish standardized, community-wide benchmarks. Regarding evaluation
metrics, accuracy for intent detection and the F1-score for slot filling are the most widely used, enabling
consistent model comparisons. Despite the progress achieved with deep learning and transformer-based models,
challenges persist, such as addressing data scarcity, adapting models across domains, and ensuring efficiency for
real-time applications. Future research directions should prioritize the development of lightweight transformer
models and efficient architectures suitable for deployment in resource-constrained environments. Additionally,
exploring multi-task learning frameworks, few-shot learning, and domain adaptation will be essential to broaden
the applicability of these models. Sustained collaboration and innovation will continue to advance NLU, ensuring
that joint learning models meet the demands of increasingly complex real-world applications.

Author contributions Yusuf Idris Muhammad conducted the research and prepared the manuscript under the supervision
and review of Naomie Salim and Anazida Zainal. Sinarwati Mohammad Suhaili provided additional support through
proofreading.

Funding This research was funded by the Ministry of Higher Education Malaysia and Universiti Teknologi Malaysia
(UTM) under grant scheme FRGS/1/2022/ICT06/UTM/01/1 with grant number R.J130000.7851.5F568.

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

Data availability This study is a review of existing literature and does not involve the generation or analysis of new data. As
such, there are no new data associated with this paper. All data referred to in this review are available from the original
sources cited in the text.

Declarations

Conflict of interest The authors declared that they have no known competing financial interests or personal relationships that
could appear to influence the work reported in this article. The authors also declared non-financial interests which may be
considered as potential conflicts of interest.

Ethical approval It is not applicable.

References

1. Xiaojie Wang CY (2016) Recent advances on human-computer dialogue. CAAI Trans Intell Technol 1(4):303–312
2. Hasani MF, Pratama GD, Erna F (2023) Multimodal learning conversational dialogue system: methods and obstacles.

J Theor Appl Inf Technol 101(22):7235
3. Razumovskaia E et al (2022) Crossing the conversational chasm: a primer on natural language processing for mul-

tilingual task-oriented dialogue systems. J Artif Intell Res 74:1351–1402
4. Gupta A et al. (2019) Casa-nlu: Context-aware self-attentive natural language understanding for task-oriented chatbots.

In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international
joint conference on natural language processing(EMNLP-IJCNLP’19). 2019. Association for Computational
Linguistics

5. Algherairy A, Ahmed M (2023) A review of dialogue systems: current trends and future directions. Neural Computing
and Applications. p. 1–27

6. Kane B et al. (2021) Joint intent detection and slot filling via CNN-LSTM-CRF. In: 2020 6th IEEE congress on
information science and technology (CiSt).. IEEE

7. Schuurmans J, Frasincar F (2019) Intent classification for dialogue utterances. IEEE Intell Syst 35(1):82–88
8. Louvan S, Magnini B (2020) Recent neural methods on slot filling and intent classification for task-oriented dialogue

systems: a survey. In: Proceedings of the 28th international conference on computational linguistics
9. Huang L et al (2023) A fast attention network for joint intent detection and slot filling on edge devices. IEEE Trans

Artif Intell. https://doi.org/10.1109/TAI.2023.3309272
10. Wu J et al. (2023) A graph-to-sequence model for joint intent detection and slot filling. In: 2023 IEEE 17th Inter-

national Conference on Semantic Computing (ICSC). IEEE
11. Firdaus M et al (2021) A deep multi-task model for dialogue act classification, intent detection and slot filling. Cogn

Comput 13(3):626–645
12. Firdaus M, Ekbal A, Cambria E (2023) Multitask learning for multilingual intent detection and slot filling in dialogue

systems. Inf Fusion 91:299–315
13. Suhaili SM, Salim N, Jambli MN (2021) Service chatbots: a systematic review. Expert Syst Appl 184:115461
14. Chen S, Yu S (2019) Wais: Word attention for joint intent detection and slot filling. In: Proceedings of the AAAI

conference on artificial intelligence
15. Lim J et al (2022) intent classification and slot filling model for in-vehicle services in Korean. Appl Sci 12(23):12438
16. Wang H et al. (2023) Joint modeling method of question intent detection and slot filling for domain-oriented question

answering system. Data Technologies and Applications
17. Jeong M, Lee GG (2008) Triangular-chain conditional random fields. IEEE Trans Audio Speech Lang Process

16(7):1287–1302
18. Mairesse F et al. (2009) Spoken language understanding from unaligned data using discriminative classification

models. In: 2009 IEEE international conference on acoustics, speech and signal processing. IEEE
19. Wang, Y.-Y (2010) Strategies for statistical spoken language understanding with small amount of data-an empirical

study. In: Eleventh annual conference of the international speech communication association
20. Celikyilmaz A, Hakkani-Tur D (2012) A joint model for discovery of aspects in utterances. In: Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
21. Li Z et al (2021) A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural

Netw Learn Syst 33(12):6999–7019
22. Das S et al (2023) Recurrent neural networks (RNNs): architectures, training tricks, and introduction to influential

research. Mach Learn Brain Disorders 23:117–138
23. Vaswani A et al. (2017) Attention is all you need. Adv Neural Inf Process Syst. 30

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1109/TAI.2023.3309272
https://doi.org/10.1007/s00521-025-11329-9

24. Patel R, Patel S (2021) Deep learning for natural language processing. In: Information and communication technology
for competitive strategies (ICTCS 2020) intelligent strategies for ICT. Springer

25. ESezerer, Tekir S (2021) A survey on neural word embeddings. arXiv:2110.01804
26. Zhu M, Xu X (2024) ID-SF-Fusion: a cooperative model of intent detection and slot filling for natural language

understanding. Data Technologies and Applications
27. Hui Y et al. (2021) Joint intent detection and slot filling based on continual learning model. In: ICASSP 2021–2021

IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE
28. Bhasin A et al. (2020) Parallel intent and slot prediction using mlb fusion. In: 2020 IEEE 14th international conference

on semantic computing (ICSC). IEEE
29. Tur G, De Mori R (2011) Spoken language understanding: systems for extracting semantic information from speech.

Wiley
30. Stefan Larson, Leach K (2022) A survey of intent classification and slot-filling datasets for task-oriented dialog. arXiv:

2207.13211
31. Patil R et al. (2023) A survey of text representation and embedding techniques in nlp. IEEE Access
32. Ni, J., et al., Recent advances in deep learning based dialogue systems: A systematic survey. Artificial intelligence

review. p. 1–101
33. Weld H et al. (2021) A survey of joint intent detection and slot filling models in natural language understanding. ACM

Computing Surveys (CSUR)
34. Xu P, Sarikaya R (2013) Convolutional neural network based triangular crf for joint intent detection and slot filling. In:

2013 ieee workshop on automatic speech recognition and understanding. IEEE
35. Guo D et al. (2014) Joint semantic utterance classification and slot filling with recursive neural networks. In: 2014

IEEE spoken language technology workshop (SLT). 2014. IEEE
36. Liu C, Xu P, Sarikaya R (2015) Deep contextual language understanding in spoken dialogue systems. In:

INTERSPEECH
37. Liu B, Lane I (2016) Attention-based recurrent neural network models for joint intent detection and slot filling. In:

Proceedings of the annual meeting of the speech communication association (INTERSPEECH’16). p. 685–689
38. Zhang X, Wang H (2016) A joint model of intent determination and slot filling for spoken language understanding. In:

IJCAI
39. Liu B, Lane I (2016) Joint online spoken language understanding and language modeling with recurrent neural

networks. In Proceedings of the annual meeting of the special interest group on discourse and dialogue (SIG-
DIAL’16).p. 22–30

40. Hakkani-Tür D et al. (2016) Multi-domain joint semantic frame parsing using bi-directional rnn-lstm. in Interspeech
41. Zhou Q et al (2016) A hierarchical lstm model for joint tasks. Chinese computational linguistics and natural language

processing based on naturally annotated big data. Springer, pp 324–335
42. Kim YB, Lee S, Stratos K (2017) Onenet: Joint domain, intent, slot prediction for spoken language understanding. In:

2017 IEEE Automatic speech recognition and understanding workshop (ASRU). IEEE
43. Zheng Y, Liu Y, Hansen JH (2017) Intent detection and semantic parsing for navigation dialogue language processing.

In: 2017 IEEE 20th international conference on intelligent transportation systems (ITSC)
44. Ma M et al. (2017) Jointly trained sequential labeling and classification by sparse attention neural networks. In:

Proceedings of the conference of the international speech communication association(INTERSPEECH’17). p. ISCA,
3334–3338

45. Yang X et al. (2017) End-to-end joint learning of natural language understanding and dialogue manager. In: 2017 IEEE
international conference on acoustics, speech and signal processing (ICASSP). IEEE

46. Zhang C et al. (2018) Joint slot filling and intent detection via capsule neural networks, in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
p. 5259–5267

47. Wang Y, Tang L, He T (2018) Attention-based CNN-BLSTM networks for joint intent detection and slot filling. In:
Chinese Computational linguistics and natural language processing based on naturally annotated big data: 17th China
National Conference, CCL 2018, and 6th International Symposium, NLP-NABD 2018, Changsha, China, October
19–21, 2018, Proceedings 17. 2018. Springer

48. Wen L et al. (2018) Jointly modeling intent identification and slot filling with contextual and hierarchical information.
In: Natural Language PROCESSING and Chinese Computing: 6th CCF International Conference, NLPCC 2017,
Dalian, China, November 8–12, 2017, Proceedings 6. Springer

49. Pan L et al. (2018) A multiple utterances based neural network model for joint intent detection and slot filling. In:
CCKS Tasks

50. Ren S et al (2018) Joint intent detection and slot filling with rules. CCKS Tasks 2242:34–40
51. Firdaus M et al. (2018) A deep learning based multi-task ensemble model for intent detection and slot filling in spoken

language understanding. In: Neural information processing: 25th international conference, ICONIP 2018, Siem Reap,
Cambodia, December 13–16, 2018, Proceedings, Part IV 25. Springer

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

http://arxiv.org/abs/2110.01804
http://arxiv.org/abs/2207.13211
http://arxiv.org/abs/2207.13211
https://doi.org/10.1007/s00521-025-11329-9

52. Yu S et al. (2018) : A novel attentive cross approach for joint intent detection and slot filling. In: 2018 International
joint conference on neural networks (IJCNN). IEEE

53. Schumann R, Angkititrakul P (2018) Incorporating asr errors with attention-based, jointly trained rnn for intent
detection and slot filling. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP).
2018. IEEE

54. Wang Y, Shen Y, Jin H (2018) A bi-model based rnn semantic frame parsing model for intent detection and slot filling.
In’’ Proceedings of the North American chapter of the association for computational linguistics: human language
technologies. Association for Computational Linguistics

55. Li C, Kong C, Zhao Y (2018) A joint multi-task learning framework for spoken language understanding. In: 2018
IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE

56. Zhang D et al. (2018) Attention-based RNN model for joint extraction of intent and word slot based on a tagging
strategy. In: Artificial Neural networks and machine Learning–ICANN 2018: 27th international conference on artificial
neural networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part III 27. Springer

57. Zhao X, Haihong E, Song M (2018) A joint model based on CNN-LSTMs in dialogue understanding. In: 2018
International conference on information systems and computer aided education (ICISCAE). 2018. IEEE

58. Li C, Li L, Qi J (2018) A self-attentive model with gate mechanism for spoken language understanding. In: Pro-
ceedings of the 2018 conference on empirical methods in natural language processing

59. Lee J et al. (2018) Coupled representation learning for domains, intents and slots in spoken language understanding. In
2018: IEEE Spoken Language technology workshop (SLT). IEEE

60. Castellucci G et al. (2019) Multi-lingual intent detection and slot filling in a joint bert-based model. arXiv:1907.02884
61. Chen Q, Zhuo Z, Wang W (2019) BERT for joint intent classification and slot filling. p. arXiv:1902.10909
62. Niu P, Chen Z, Song M (2019) A novel bi-directional interrelated model for joint intent detection and slot filling. In:

The Proceedings of the 57th annual meeting of the association for computational linguistics. Association for com-
putational linguistics

63. Zhang Z et al (2019) A joint learning framework with bert for spoken language understanding. Ieee Access
7:168849–168858

64. Firdaus M et al (2019) A multi-task hierarchical approach for intent detection and slot filling. Knowl-Based Syst
183:104846

65. Tingting C, Min L, Yanling L (2019) Joint intention detection and semantic slot filling based on blstm and attention. In:
2019 IEEE 4th international conference on cloud computing and big data analysis (ICCCBDA). IEEE

66. Dadas S, Protasiewicz J, Pedrycz W (2019) A deep learning model with data enrichment for intent detection and slot
filling. In: 2019 IEEE International conference on systems, man and cybernetics (SMC). IEEE

67. Okur E et al. (2019) Natural language interactions in autonomous vehicles: Intent detection and slot filling from
passenger utterances. In: International conference on computational linguistics and intelligent text processing. Springer

68. Chen M, Zeng J, Lou J (2019) A self-attention joint model for spoken language understanding in situational dialog
applications. arXiv:1905.11393

69. Li Y et al. (2019) A joint model of clinical domain classification and slot filling based on RCNN and BiGRU-CRF. In:
2019 IEEE international conference on big data (Big Data). IEEE

70. Shan J et al. (2019) A neural framework for joint prediction on intent identification and slot filling. In: Cognitive
Computing–ICCC 2019: third international conference, held as part of the services conference federation, SCF 2019,
San Diego, CA, USA, June 25–30, 2019, Proceedings 3. 2019. Springer

71. Qin L et al. (2019) A stack-propagation framework with token-level intent detection for spoken language under-
standing. In: Proceedings of the conference on empirical methods in natural language processing and the 9th inter-
national joint conference on natural language processing(EMNLP-IJCNLP’19), Association for Computational
Linguistics,: p. 2078–2087

72. Gupta, A., J. Hewitt, and K. Kirchhoff. Simple, fast, accurate intent classification and slot labeling for goal-oriented
dialogue systems. In: Proceedings of 20th annual sigdial meeting on discourse and dialogue. 2019. Association for
computational linguistics

73. Li C, Zhao Y, Yu D (2019) Conditional joint model for spoken dialogue system. In: Cognitive Computing–ICCC
2019: third international conference, held as part of the services conference Federation, SCF 2019, San Diego, CA,
USA, June 25–30, 2019, Proceedings 3. Springer

74. Zhang S et al (2019) A novel slot-gated model combined with a key verb context feature for task request understanding
by service robots. IEEE Access 7:105937–105947

75. Liu Y, et al. (2019) Cm-net: A novel collaborative memory network for spoken language understanding. In: Pro-
ceedings of the conference on empirical methods in natural language processing and 9th international joint conference
on natural lnaguage processing(EMNLP-IJCNLP’19), Association for Computational Linguistics. p. 1051–1060

76. Do QNT, Gaspers J (2019) Cross-lingual transfer learning for spoken language understanding. In: ICASSP 2019–2019
IEEE international conference on acoustics, speech and signal Processing (ICASSP). IEEE

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

http://arxiv.org/abs/1907.02884
http://arxiv.org/abs/1902.10909
http://arxiv.org/abs/1905.11393
https://doi.org/10.1007/s00521-025-11329-9

77. Pentyala S, Liu M, Dreyer M (2019) Multi-task networks with universe, group, and task feature learning. In: Pro-
ceedings of the 57th annual meeting of the association for computational linguistics. Association for Computational
Linguistics

78. Zhang L, Wang H (2019) Using bidirectional transformer-CRF for spoken language understanding. In:CCF Interna-
tional conference on natural language processing and Chinese Computing. Springer

79. Wang C, Huang Z, Hu M (2020) SASGBC: Improving sequence labeling performance for joint learning of slot filling
and intent detection. In: Proceedings of 2020 the 6th international conference on computing and data engineering

80. Bhathiya HS, Thayasivam U (2020) Meta learning for few-shot joint intent detection and slot-filling. In: Proceedings of
the 2020 5th international conference on machine learning technologies

81. Wu D et al. (2020) SlotRefine: A fast non-autoregressive model for joint intent detection and slot filling. In: Pro-
ceedings of the 2020 conference on empirical methods in natural language processing (EMNLP). p. 1932–1937

82. Ni P et al (2020) Natural language understanding approaches based on joint task of intent detection and slot filling for
IoT voice interaction. Neural Comput Appl 32:16149–16166

83. Hardalov M, Koychev NP (2020) Enriched pretrained transformers for joints lot filling and intent detection
84. Cao X et al. (2020) Balanced joint adversarial training for robust intent detection and slot filling. In: Proceedings of the

28th international conference on computational linguistics
85. Tang Y et al. (2020) D-GHNAS for joint intent classification and slot filling. In: Web and Big Data: 4th international

joint conference, APWeb-WAIM 2020, Tianjin, China, September 18–20, 2020, Proceedings, Part I 4. Springer
86. Tang H, Ji D, Zhou Q (2020) End-to-end masked graph-based CRF for joint slot filling and intent detection. Neu-

rocomputing 413:348–359
87. Chao W, Ke Y, Xiaofei W (2020) POS scaling attention model for joint slot filling and intent classification. In: 2020

IEEE 20th international conference on communication technology (ICCT). IEEE
88. Peng H et al. (2020) An interactive two-pass decoding network for joint intent detection and slot filling. In: Natural

language processing and chinese computing: 9th ccf international conference, NLPCC 2020, Zhengzhou, China,
October 14–18, 2020, Proceedings, Part II 9. Springer.

89. Louvan S, Magnini B (2020) Simple is Better! lightweight data augmentation for low resource slot filling and intent
classification. In Proceedings of the 34th Pacific Asia conference on language, information and computation

90. Liu H et al. (2021) An explicit-joint and supervised-contrastive learning framework for few-shot intent classification
and slot filling. arXiv:2110.13691

91. Priya N, Tiwari A, Saha S (2021) Context aware joint modeling of domain classification, intent detection and slot
filling with zero-shot intent detection approach. In: Neural Information Processing: 28th International Conference,
ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part III 28. Springer

92. Sun R, Rao L, Zhou X (2021) Bidirectional information transfer scheme for joint intent detection and slot filling. In:
2021 17th international conference on computational intelligence and security (CIS). IEEE

93. Saha T et al. (2021) A transformer based multi-task model for domain classification, intent detection and slot-filling. In:
2021 International joint conference on neural networks (IJCNN). IEEE

94. Basu S et al. (2021) Semi-supervised few-shot intent classification and slot filling. arXiv:2109.08754
95. Gao W et al (2021) Dirichlet variational autoencoder for joint slot filling and intent detection. J Comput 32(2):61–73
96. Wang J et al. (2021) Encoding syntactic knowledge in transformer encoder for intent detection and slot filling. In:

Proceedings of the AAAI conference on artificial intelligence
97. Yang P et al (2021) AISE: Attending to Intent and slots explicitly for better spoken language understanding. Knowl-

Based Syst 211:106537
98. Zhou P et al. (2021) PIN: A novel parallel interactive network for spoken language understanding. In: 2020 25th

international conference on pattern recognition (ICPR). IEEE
99. Li SW et al. (2021) Meta learning to classify intent and slot labels with noisy few shot examples. In: 2021 IEEE spoken

language technology workshop (SLT). IEEE
100. Han SC et al. (2022) Bi-directional joint neural networks for intent classification and slot filling. In: The proceedings of

the conference of the international speech communication association (INTERSPEECH’21). ISCA
101. Ma Z, Sun B, Li S (2022) A two-stage selective fusion framework for joint intent detection and slot filling. IEEE Trans

Neural Netw Learn Syst 35:3874
102. Chen D et al. (2022) Towards joint intent detection and slot filling via higher-order attention. In: IJCAI
103. Wei P, Zeng B, Liao W (2022) Joint intent detection and slot filling with wheel-graph attention networks. J Intell Fuzzy

Syst 42(3):2409–2420
104. Nguyen HH, Nguyen ND, Bui KHN (2022) Intent detection and slot filling with low resource and domain. In:

Proceedings of the 11th international symposium on information and communication technology
105. Zhou B et al. (2022) Multi-grained label refinement network with dependency structures for joint intent detection and

slot filling. arXiv:2209.04156
106. Abro WA et al (2022) Joint intent detection and slot filling using weighted finite state transducer and BERT. Appl Intell

52(15):17356–17370

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

http://arxiv.org/abs/2110.13691
http://arxiv.org/abs/2109.08754
http://arxiv.org/abs/2209.04156
https://doi.org/10.1007/s00521-025-11329-9

107. Wei J (2022) A bert-based joint model of intent recognition and slot filling cross-correlation. In: 2022 5th International
conference on data science and information technology (DSIT). IEEE

108. Li B, Wang W, Bao F (2022) Joint training model of intent detection and slot filling for multi granularity implicit
guidance. In: 2022 International conference on asian language processing (IALP). IEEE

109. Zhao J, Yin S, Xu W (2022) Attention-based iterated dilated convolutional neural networks for joint intent classifi-
cation and slot filling. In: CCF conference on big data. Springer

110. Fan J-F et al (2022) Intent-slot correlation modeling for joint intent prediction and slot filling. J Comput Sci Technol
37(2):309–319

111. Zhu Z et al. (2022) A graph attention interactive refine framework with contextual regularization for jointing intent
detection and slot filling. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE

112. Amoake M et al (2022) Strategies to improve few-shot learning for intent classification and slot-filling. SUKI 2022:17
113. Zhang W et al. (2022) A bert based joint learning model with feature gated mechanism for spoken language under-

standing. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP).
IEEE

114. Hou C et al. (2023) Prior knowledge modeling for joint intent detection and slot filling. In: Machine learning, multi
agent and cyber physical systems: proceedings of the 15th international FLINS Conference (FLINS 2022). World
Scientific

115. Tavares, D., et al. (2023) Task conditioned BERT for joint intent detection and slot-filling. In: EPIA conference on
artificial intelligence. Springer

116. Li Q (2023) Joint modelling of slot filling and intent detection in constrained resource scenarios. Front Comput Intell
Syst 5(2):111–115

117. Lu Y et al. (2023) Research on the joint learning method of intent detection and slot filling by fusing tag semantic
information. In: 2023 IEEE international conference on control, electronics and computer Technology (ICCECT).
IEEE

118. Xu, H., H. Zhang, and T.E. Lin, A Dual RNN Semantic Analysis Framework for Intent Classification and Slot, in
SpringerBriefs in Computer Science. 2023. p. 45–54

119. Wang Y, Yang Z, Zhang X (2023) Improving NLP accuracy with stack-propagation and knowledge distillation: a joint
model for intent detection and slot filling. Front Comput Intell Syst 3(2):106–109

120. Liu G et al. (2023) A joint intent classification and slot filling method based on knowledge-distillation. In: 2023 8th
IEEE international conference on network intelligence and digital content (IC-NIDC). IEEE

121. Hao X et al (2023) Joint agricultural intent detection and slot filling based on enhanced heterogeneous attention
mechanism. Comput Electron Agric 207:107756

122. Wu Y et al (2023) Joint intent detection model for task-oriented human-computer dialogue system using asynchronous
training. ACM Trans Asian Low-Resource Lang Inf Process 22(5):1–17

123. Gore S et al. (2023) Leveraging BERT for next-generation spoken language understanding with joint intent classifi-
cation and slot filling. In: 2023 International conference on advanced computing technologies and applications
(ICACTA). IEEE

124. Shafi N, Chachoo MA (2023) Fine-Tuned BERT with Attention-Based Bi-GRU-CapsNet framework for joint intent
recognition and slot filing. In: 2023 International conference on advancement in computation and computer tech-
nologies, InCACCT 2023

125. Huang J, Tang H (2024) A joint model of multiple intent recognition and slot filling based on graph neural network
126. Park S, Menassa CC, Kamat VR (2024) Joint BERT model for intent classification and slot filling analysis of natural

language instructions in co-robotic field construction work. In: Computing in Civil Engineering. p. 453–460
127. Cheng X et al. (2024) Towards multi-intent spoken language understanding via hierarchical attention and optimal

transport. In: Proceedings of the AAAI conference on artificial intelligence
128. Raymond C, Riccardi G (2007) Generative and discriminative algorithms for spoken language understanding. In:

Interspeech 2007–8th Annual conference of the international speech communication association
129. McCallum A, Freitag D, Pereira FC (2000) Maximum entropy Markov models for information extraction and seg-

mentation. In: Icml
130. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297
131. Warjri S et al (2021) Part-of-speech (pos) tagging using conditional random field (crf) model for khasi corpora. Int J

Speech Technol 24(4):853–864
132. Patil N, Patil A, Pawar B (2020) Named entity recognition using conditional random fields. Proc Comput Sci

167:1181–1188
133. Yu B, Fan Z (2020) A comprehensive review of conditional random fields: variants, hybrids and applications. Artif

Intell Rev 53(6):4289–4333
134. Liu T, Huang X, Ma J (2016) Conditional random fields for image labeling. Math Probl Eng 2016(1):3846125
135. Jbene M et al. (2022) A robust slot filling model based on lstm and crf for iot voice interaction. In: 2022 IEEE

Globecom Workshops (GC Wkshps). IEEE

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

https://doi.org/10.1007/s00521-025-11329-9

136. Zhang S et al (2022) Bi-LSTM-CRF network for clinical event extraction with medical knowledge features. IEEE
Access 10:110100–110109

137. Xu Z et al. (2008) CRF-based hybrid model for word segmentation, NER and even POS tagging. In: Proceedings of the
sixth SIGHAN workshop on Chinese language processing

138. Chen Y, Luo Z (2023) Pre-trained joint model for intent classification and slot filling with semantic feature fusion.
Sensors 23(5):2848

139. Patel D, Saxena S, Verma T (2016) Sentiment analysis using maximum entropy algorithm in big data. Int J Innov Res
Sci Eng Technol 5(5):8355

140. Bridges RA et al. (2013) Automatic labeling for entity extraction in cyber security. arXiv:1308.4941
141. Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: Probabilistic models for segmenting and labeling

sequence data. In: Icml. Williamstown, MA
142. Mor B, Garhwal S, Kumar A (2021) A systematic review of hidden Markov models and their applications. Arch

Comput Methods Eng 28:1429–1448
143. Alva P, Hegde V (2016) Hidden Markov model for POS tagging in word sense disambiguation. In: 2016 International

conference on computation system and information technology for sustainable solutions (CSITSS). IEEE
144. Cohen SN (2020) Uncertainty and filtering of hidden Markov models in discrete time. Probab Uncertain Quant Risk

5:1–34
145. Shmilovici A (2023) Support vector machines. In: Machine learning for data science handbook. L. Rokach, O.

Maimon, and E. Shmueli, Editors. Springer, Cham
146. Puri S, Singh SP (2019) An efficient hindi text classification model using svm. In: Computing and network sustain-

ability: proceedings of IRSCNS 2018. Springer
147. Sharma D, Sabharwal M (2019) Sentiment analysis for social media using SVM classifier of machine learning. Int J

Innov Technol Exploring Eng (IJITEE) 8(9):39–47
148. Ramachandran R, Arutchelvan K (2020) Optimized version of tree based support vector machine for named entity

recognition in medical literature. In: 2020 3rd International conference on intelligent sustainable systems (ICISS). IEEE
149. Piccialli V, Sciandrone M (2022) Nonlinear optimization and support vector machines. Ann Oper Res 314(1):15–47
150. Ferrario A, Nägelin M (2020) The art of natural language processing: classical, modern and contemporary approaches

to text document classification. Modern and contemporary approaches to text document classification
151. Hadi MU et al. (2024) Large language models: a comprehensive survey of its applications, challenges, limitations, and

future prospects. Authorea Preprints
152. Cohn TA (2007) Scaling conditional random fields for natural language processing. University of Melbourne,

Department of Computer Science and Software
153. Cumani S, Laface P (2012) Analysis of large-scale SVM training algorithms for language and speaker recognition.

IEEE Trans Audio Speech Lang Process 20(5):1585–1596
154. You J et al (2020) Handling missing data with graph representation learning. Adv Neural Inf Process Syst

33:19075–19087
155. Merritt T (2017) Overcoming the limitations of statistical parametric speech synthesis
156. Socher R et al. (2011) Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of

the 28th international conference on machine learning (ICML-11)
157. Chinea A (2009) Understanding the principles of recursive neural networks: A generative approach to tackle model

complexity. In: Artificial Neural Networks–ICANN 2009: 19th International Conference, Limassol, Cyprus, September
14–17, 2009, Proceedings, Part I 19. 2009. Springer

158. Sahay A et al. (2021) Unsupervised learning of explainable parse trees for improved generalisation. In: 2021 inter-
national joint conference on neural networks (IJCNN). 2021. IEEE

159. Wei C et al. (2023) An overview on language models: recent developments and outlook. arXiv:2303.05759
160. Farooq U, Mohd Rahim MS, Abid A (2023) A multi-stack RNN-based neural machine translation model for English to

Pakistan sign language translation. Neural Comput Appl 35(18):13225–13238
161. Patel P, Patel D, Naik C (2020) Sentiment analysis on movie review using deep learning RNN method. Intelligent Data

Engineering and analytics: Frontiers in intelligent computing: theory and applications (FICTA 2020), vol 2. Springer,
pp 155–163

162. Shewalkar A, Nyavanandi D, Ludwig SA (2019) Performance evaluation of deep neural networks applied to speech
recognition: RNN, LSTM and GRU. J Artif Intell Soft Comput Res 9(4):235–245

163. Abro WA et al (2020) Multi-turn intent determination and slot filling with neural networks and regular expressions.
Knowl-Based Syst 208:106428

164. Mensio M, Rizzo G, Morisio M (2018) Multi-turn qa: A rnn contextual approach to intent classification for goal-
oriented systems. In: Companion proceedings of the the web conference

165. Shi Y, Wiggers P (2012) Towards recurrent neural networks language models with linguistic and contextual features
166. Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211
167. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11):2673–2681

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

http://arxiv.org/abs/1308.4941
http://arxiv.org/abs/2303.05759
https://doi.org/10.1007/s00521-025-11329-9

168. Bas E, Egrioglu E, Kolemen E (2022) Training simple recurrent deep artificial neural network for forecasting using
particle swarm optimization. Granular Comput 7(2):411–420

169. Noh S-H (2021) Analysis of gradient vanishing of RNNs and performance comparison. Information 12(11):442
170. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
171. Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: continual prediction with LSTM. Neural Comput

12(10):2451–2471
172. Zhou H (2022) Research of text classification based on TF-IDF and CNN-LSTM. J Phys Conf Ser
173. Pulver A, Lyu S (2017) LSTM with working memory. In: 2017 international joint conference on neural networks

(IJCNN). IEEE
174. Beck M et al. (2024) xLSTM: Extended long short-term memory. arXiv:2405.04517
175. Cho K et al. (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. In:

EMNLP. Association for Computational Linguistics
176. Huang Z et al. (2021) Sentiment injected iteratively co-interactive network for spoken language understanding. In:

ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP). 2021. IEEE
177. Hassan A, Mahmood A (2018) Convolutional recurrent deep learning model for sentence classification. Ieee Access

6:13949–13957
178. Qin L et al. (2021) A co-interactive transformer for joint slot filling and intent detection. In: ICASSP 2021–2021 IEEE

international conference on acoustics, speech and signal processing (ICASSP). IEEE
179. Weld H et al (2022) A survey of joint intent detection and slot filling models in natural language understanding. ACM

Comput Surveys 55(8):1
180. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv:

1409.0473
181. LeCun Y et al (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551
182. Rehman AU et al (2019) A hybrid CNN-LSTM model for improving accuracy of movie reviews sentiment analysis.

Multimedia Tools Appl 78:26597–26613
183. Aslan S, Kızıloluk S, Sert E (2023) TSA-CNN-AOA: Twitter sentiment analysis using CNN optimized via arithmetic

optimization algorithm. Neural Computing and Applications. p. 1–18
184. Wang H et al (2020) A short text classification method based on N-gram and CNN. Chin J Electron 29(2):248–254
185. Kia MA et al (2022) Adaptable closed-domain question answering using contextualized CNN-attention models and

question expansion. IEEE Access 10:45080–45092
186. Meng F et al. (2015) Encoding source language with convolutional neural network for machine translation. In:

Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint
conference on natural language processing (Volume 1: Long Papers)

187. Chiu JP, Nichols E (2016) Named entity recognition with bidirectional LSTM-CNNs. Trans Assoc Comput Linguistics
4:357–370

188. Barahona LMR et al. (2016) Exploiting sentence and context representations in deep neural models for spoken
language understanding. arXiv:1610.04120

189. Kim Y (2014) Convolutional neural networks for sentence classification
190. Vu NT (2016) Sequential convolutional neural networks for slot filling in spoken language understanding. arXiv

preprint arXiv:1606.07783
191. Rowtula V, Krishnan P (2018) Pos tagging and named entity recognition on handwritten documents. In: Proceedings of

the 15th international conference on natural language processing
192. Gui T et al. (2019) CNN-Based Chinese NER with lexicon rethinking. In: ijcai
193. Young T et al (2018) Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag

13(3):55–75
194. Knigge DM et al. (2022) Modelling long range dependencies in nd: from task-specific to a general purpose CNN. In:

The eleventh international conference on learning representations
195. Niu Z, Zhong G, Yu H (2021) A review on the attention mechanism of deep learning. Neurocomputing 452:48–62
196. Wang B, Liu K, Zhao J (2016) Inner attention based recurrent neural networks for answer selection. In: Proceedings of

the 54th annual meeting of the association for computational linguistics (Volume 1: Long Papers)
197. Chaudhari S et al (2021) An attentive survey of attention models. ACM Trans Intell Syst Technol 12(5):1–32
198. Wang S et al. (2020) Linformer: Self-attention with linear complexity. arXiv:2006.04768
199. Sun C et al (2022) A joint model based on interactive gate mechanism for spoken language understanding. Appl Intell

52(6):6057–6064
200. Child R et al. (2019) Generating long sequences with sparse transformers. SarXiv:1904.10509
201. Pappas N, Popescu-Belis A (2017) Multilingual hierarchical attention networks for document classification. In: Pro-

ceedings of the eighth international joint conference on natural language processing (Volume 1: Long Papers)
202. Tian B et al. (2019) Hierarchical inter-attention network for document classification with multi-task learning. In: IJCAI
203. Yang Z et al. (2016) Hierarchical attention networks for document classification. In: Proceedings of the 2016 con-

ference of the North American chapter of the association for computational linguistics: human language technologies

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

http://arxiv.org/abs/2405.04517
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1610.04120
http://arxiv.org/abs/1606.07783
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/1904.10509
https://doi.org/10.1007/s00521-025-11329-9

204. Li Z et al. (2018) Hierarchical attention transfer network for cross-domain sentiment classification. In: Proceedings of
the AAAI conference on artificial intelligence

205. Cheng L, Yang W, Jia W (2023) A scope sensitive and result attentive model for multi-intent spoken language
understanding. In: Proceedings of the AAAI conference on artificial intelligence

206. Meng X et al. (2023) Rethink the top-u attention in sparse self-attention for long sequence time-series forecasting. In:
International conference on artificial neural networks

207. Correia GM, Niculae V, Martins AF (2019) Adaptively sparse transformers. In: Proceedings of the 2019 conference on
empirical methods in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP)

208. Liu Y et al. (2024) Understanding llms: a comprehensive overview from training to inference. arXiv:2401.02038
209. Michel P, Levy O, Neubig G (2019) Are sixteen heads really better than one? In: Proceedings of the 33rd international

conference on neural information processing systems
210. Devlin J et al. (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.

04805S
211. Kalyan KS, Rajasekharan A, Sangeetha S (2021) Ammus: A survey of transformer-based pretrained models in natural

language processing. arXiv:2108.05542
212. Kenton JDMWC, Toutanova LK (2019) BERT: pre-training of deep bidirectional transformers for language under-

standing. In: Proceedings of NAACL-HLT
213. Radford A et al. Improving language understanding by generative pre-training
214. Yang Z et al. (2019) Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural

information processing systems. 32
215. Wang Y et al (2020) A new concept of multiple neural networks structure using convex combination. IEEE Trans

Neural Netw Learn Syst 31(11):4968–4979
216. Tao S et al. (2021) Incorporating complete syntactical knowledge for spoken language understanding. In: Knowledge

graph and semantic computing: knowledge graph empowers new infrastructure construction: 6th china conference,
CCKS 2021, Guangzhou, China, November 4–7, 2021, Proceedings 6. Springer

217. Pham T, Tran C, Nguyen DQ (2023) MISCA: a joint model for multiple intent detection and slot filling with intent-slot
co-Attention. arXiv:2312.05741

218. Shi Y et al. (2015) Contextual spoken language understanding using recurrent neural networks. In: 2015 IEEE
international conference on acoustics, speech and signal processing (ICASSP). IEEE

219. Chen YN et al. (2016) Syntax or semantics? Knowledge-guided joint semantic frame parsing. In: 2016 IEEE spoken
language technology workshop (SLT). 2016. IEEE

220. He T et al (2021) Multitask learning with knowledge base for joint intent detection and slot filling. Appl Sci
11(11):4887

221. Siddhant A, Goyal A, Metallinou A (2019) Unsupervised transfer learning for spoken language understanding in
intelligent agents. In: Proceedings of the AAAI conference on artificial intelligence

222. Daha FZ, Hewavitharana S (2019) Deep neural architecture with character embedding for semantic frame detection. In:
2019 IEEE 13th International Conference on Semantic Computing (ICSC). IEEE

223. Mikolov T, Yih W, Zweig G (2013) Linguistic regularities in continuous space word representations. In: Proceedings
of the 2013 conference of the north american chapter of the association for computational linguistics: Human language
technologies

224. Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. in Proceedings of the
2014 conference on empirical methods in natural language processing (EMNLP)

225. PetersME, Mohit lyyer MN, Gardner M, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized word repre-
sentations. In: Proceedings of the 2018 conference of the north american chapter of the association for computational
linguistics: human language technologies

226. Pentyala S, Liu M, Dreyer M (2019) Multi-task networks with universe, group, and task feature learning. arXiv:1907.
01791

227. Ren F, Xue S (2020) Intention detection based on siamese neural network with triplet loss. IEEE Access
8:82242–82254

228. Zhang L et al. (2020) Graph lstm with context-gated mechanism for spoken language understanding. In: Proceedings of
the AAAI Conference on Artificial Intelligence

229. Wang S et al. Sequential recommender systems: challenges, progress and prospects
230. Wang S et al. (2019) Sequential recommender systems: challenges, progress and prospects. In: 28th International joint

conference on artificial intelligence, IJCAI 2019. p. 6332–6338
231. Gangadharaiah R, Narayanaswamy B (2019) Joint multiple intent detection and slot labeling for goal-oriented dialog.

In: Proceedings of the 2019 Conference of the North American Chapter of the Association for computational lin-
guistics: human language technologies, Volume 1 (Long and Short Papers)

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

http://arxiv.org/abs/2401.02038
http://arxiv.org/abs/1810.04805S
http://arxiv.org/abs/1810.04805S
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2312.05741
http://arxiv.org/abs/1907.01791
http://arxiv.org/abs/1907.01791
https://doi.org/10.1007/s00521-025-11329-9

232. Goo CW et al. (2018) Slot-gated modeling for joint slot filling and intent prediction. In: Proceedings of the 2018
conference of the north american chapter of the association for computational linguistics: human language technolo-
gies, Volume 2 (Short Papers)

233. He K et al. (2020) Syntactic graph convolutional network for spoken language understanding. In: Proceedings of the
28th international conference on computational linguistics

234. Zhang L, Wang H (2019) Using bidirectional transformer-CRF for spoken language understanding. In: Natural lan-
guage processing and chinese computing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October
9–14, 2019, Proceedings, Part I 8. Springer

235. Bhasin A et al. (2019) Unified parallel intent and slot prediction with cross fusion and slot masking. In: International
conference on applications of natural language to information systems. Springer

236. Bhathiya HS, Thayasivam U (2020) Meta learning for few-shot joint intent detection and slot-filling. In: ACM
international conference proceeding series

237. Krone J, Zhang Y, Diab M (2020) Learning to classify intents and slot labels given a handful of examples. In: In
Proceedings of the 2nd workshop on natural language processing for conversational AI. Association for Computational
Linguistics

238. Cheng L, Jia W, Yang W (2021) An effective non-autoregressive model for spoken language understanding. In:
Proceedings of the 30th ACM international conference on information & knowledge management

239. Tu NA et al. (2023) A bidirectional joint model for spoken language understanding. In: ICASSP 2023–2023 IEEE
international conference on acoustics, speech and signal processing (ICASSP). 2023. IEEE

240. Béchet F, Raymond C (2018) Is ATIS too shallow to go deeper for benchmarking Spoken Language Understanding
models? In: InterSpeech

241. Zarcone A, Lehmann J, Habets EA (2021) Small data in nlu: Proposals towards a data-centric approach. In: 35th
Conference on neural information processing systems (NeurIPS 2021)

242. Ray A, Shen Y, Jin H (2019) Iterative delexicalization for improved spoken language understanding. In: Proceedings of
the conference of the international speech communication association(INTERSPEECH’19)., ISCA. p. 1183–1187

243. Wang Y et al. (2019) Effective utilization of external knowledge and history context in multi-turn spoken language
understanding model. In: 2019 IEEE international conference on big data (big data)

244. Hemphill CT, Godfrey JJ, Doddington GR (1990) The ATIS spoken language systems pilot corpus. In: Speech and
natural language: proceedings of a workshop held at hidden valley, Pennsylvania, June 24–27

245. Coucke A et al. (2018) Snips voice platform: an embedded spoken language understanding system for private-by-
design voice interfaces. arXiv preprint arXiv:1805.10190

246. Schulz H et al. (2017) A Frame Tracking model for memory-enhanced dialogue systems. In: Proceedings of the 2nd
workshop on representation learning for NLP

247. Sikorski T, Allen JF (1996) TRAINS-95 system evaluation. University of Rochester, Department of Computer Science
248. Zhao W et al. (2021) kNN-ICL: Compositional task-oriented parsing generalization with nearest neighbor in-context

Learning. In: Proceedings of the 2024 conference of the North American chapter of the association for computational
linguistics: human language technologies. 1

249. Yaghoub-Zadeh-Fard M-A et al (2020) User utterance acquisition for training task-oriented bots: a review of chal-
lenges, techniques and opportunities. IEEE Internet Comput 24(3):30–38

250. Casanueva I et al. (2022) NLU??: a multi-label, slot-rich, generalisable dataset for natural language understanding in
task-oriented dialogue. In: Findings of the Association for Computational Linguistics: NAACL

251. Kraiem MS, Sánchez-Hernández F, Moreno-Garcı́a MN (2021) Selecting the suitable resampling strategy for imbal-
anced data classification regarding dataset properties: an approach based on association models. Appl Sci 11(18):8546

252. Mohasseb A, Bader-El-Den M, Cocea M (2018) Classification of factoid questions intent using grammatical features.
ICT Express 4(4):239–242

253. Ray SN et al. (2021) Listen with intent: improving speech recognition with audio-to-intent front-end. arXiv preprint
arXiv:2105.07071

254. Liu H et al (2020) A hybrid neural network bert-cap based on pre-trained language model and capsule network for user
intent classification. Complexity 2020:1–11

255. Liu Y et al. (2020) A hybrid neural network RBERT-C based on pre-trained RoBERTa and CNN for user intent
classification. In: Neural Computing for advanced applications: first international conference. NCAA 2020, Shenzhen,
China, July 3–5, 2020, Proceedings 1. Springer

256. Khattak A et al (2021) Applying deep neural networks for user intention identification. Soft Comput 25:2191–2220
257. Yu D, Wang S, Deng L (2010) Sequential labeling using deep-structured conditional random fields. IEEE J Sel Top

Signal Process 4(6):965–973
258. Zhuang X, Cheng X, Zou Y (2024) Towards explainable joint models via information theory for multiple intent

detection and slot filling. In: Proceedings of the AAAI conference on artificial intelligence
259. Gunaratna K et al. (2022) Explainable slot type attentions to improve joint intent detection and slot filling. In: Findings

of the Association for Computational Linguistics: EMNLP 2022

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11329-9

http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/2105.07071
https://doi.org/10.1007/s00521-025-11329-9

260. Hou YL, Yongkui, Chen, Cheng, Che, Wanxiang, Liu, Ting (2021) Learning to bridge metric spaces: few-shot joint
learning of intent detection and slot filling. In: Findings of the Association for computational linguistics: ACL-IJCNLP
2021

261. Wu Y, Mao W, Feng J (2021) AI for online customer service: intent recognition and slot filling based on deep learning
technology. Mobile Netw Appl 27:2305

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Authors and Affiliations

Yusuf Idris Muhammad1 • Naomie Salim1
• Anazida Zainal1 •

Sinarwati Mohammad Suhaili2

&Yusuf Idris Muhammad
muhammadidris@graduate.utm.my

Naomie Salim
naomie@utm.my

Anazida Zainal
anazida@utm.my

Sinarwati Mohammad Suhaili
mssinarwati@unimas.my

1 Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2 Pre-University, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11329-9

http://orcid.org/0000-0002-5498-889X
https://doi.org/10.1007/s00521-025-11329-9

	A joint learning classification for intent detection and slot filling from classical to deep learning: a review
	Abstract
	Introduction
	Overview of the joint learning technological advances
	Classical approaches (2008--2012)
	Emergence of deep learning approaches (2013--2015)
	Emergence of recurrent architectures and attention mechanisms (2016--2018)
	Emergence of advanced architectures (2019--2024)

	Classical models for joint learning classification
	Conditional random fields
	Maximum entropy models
	Hidden Markov models
	Support vector machines

	Deep learning models for joint learning classification
	Recursive neural networks
	Recurrent neural networks
	Basic RNNs model
	Long short-term memory
	Gated recurrent neural network

	Convolutional neural networks
	Attention mechanism
	The weighted sum of hidden states of RNNs
	Self-attention
	Hierarchical attention
	Sparse attention
	Multi-head attention

	Transformer architecture
	Hybrid model

	Joint learning classification architectures’ taxonomy
	Implicit shared feature joint learning architecture
	Explicit shared feature joint learning architecture
	Fused joint learning architecture

	Datasets for joint learning classification for intent detection and slot filling
	ATIS (Airline travel information system) dataset
	SNIPS dataset
	FRAMES dataset
	DSTC dataset
	Microsoft Cortana dataset
	Facebook NLU dataset
	CQUD (Chinese Question Answering User Dataset)
	CMRS (Chinese Meeting Room Scheduling) dataset
	TRAINS dataset
	Rokid music dataset
	TOP (Task Oriented Parsing) dataset
	CAIS (Chinese AI Speaker) dataset

	Challenges of joint learning classification datasets
	Data quality and consistency
	Domain specificity
	Imbalanced classes

	Evaluation metrics for joint learning models
	Intent classification metrics
	Slot filling metrics
	Semantic accuracy

	Applications of joint learning models
	Virtual assistants and chatbots
	Voice-activated system
	Information retrieval and search engines
	Health care and medical assistance

	Open issues and future directions
	Lack of explainability
	Generalization to new domain
	Real-time processing
	Datasets
	Enhance contextualized understanding

	Conclusion
	Author contributions
	Funding
	Data availability
	References

