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The prediction of financial market behaviour constitutes a multifaceted challenge, at-
tributable to the underlying volatility and non-linear characteristics inherent within mar-
ket data. Long Short-Term Memory (LSTM) models have demonstrated efficacy in cap-
turing these complexities. This study proposes a novel approach to enhance LSTM model
performance by modulating the learning rate adaptively based on market volatility. We
apply this method to forecast the Kuala Lumpur Composite Index (KLCI), leveraging
volatility as a key input to adapt the learning rate during training. By integrating volatil-
ity into the learning process, the model can better accommodate market fluctuations, po-
tentially leading to more accurate and robust predictions. The proposed dynamic learning
rate adjustment mechanism operates by scaling the learning rate according to the most
recent volatility measurements, ensuring that the model adapts swiftly to changing market
conditions. This approach contrasts with traditional static learning rates, that may fail
to sufficiently account for the dynamic of financial markets. We conduct extensive exper-
iments using historical KLCI data, comparing our proposed model with standard LSTM
and other baseline models. The results demonstrate that our volatility-adjusted learn-
ing rates outperform conventional LSTM models with fixed learning rates with respect
to predictive performance and stability. The findings suggest that incorporating volatility
into learning rate adjustments can significantly enhance the predictive capability of LSTM
models for stock market forecasting. The improved forecasting accuracy of the KLCI index
highlights the potential of this approach for broader applications in financial markets.
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1. Introduction

Financial markets are characterized by their dynamic and volatile nature, posing significant challenges
for accurate prediction and analysis [1]. The Kuala Lumpur Composite Index (KLCI), representing
the performance of the Malaysian stock market, is no exception. Traditional statistical models often
struggle to capture the non-linear patterns and abrupt changes present in financial time series data.
To address these limitations, machine learning approaches, particularly Long Short-Term Memory
(LSTM) networks, have garnered substantial attention due to their proficiency in modeling sequential
data and capturing long-term dependencies [2].

LSTM networks, a specialized form of recurrent neural networks (RNN), are engineered to address
the vanishing gradient problem, rendering them well-equipped for the task of time series forecasting.
Despite their advantages, LSTM models are sensitive to the selection of hyper-parameters, as the
learning rate is one of the most crucial factors [3]. The learning rate parameter controls the magnitude
of updates to the model parameters during the gradient-based optimization process, influencing the
convergence speed and stability of the model. An optimal learning rate can lead to faster convergence
and better performance, whereas a suboptimal learning rate can impede efficient model convergence

158 c© 2025 Lviv Polytechnic National University



Dynamic learning rate adjustment using volatility in LSTM models for KLCI forecasting 159

or cause model divergence. In traditional training setups, the learning rate is often set manually
and remains fixed throughout the entire training process. This static approach is straightforward but
may not be optimal as the model’s performance might suffer from issues like slow convergence or
overshooting [4, 5].

In contrast, dynamic learning rate management adjusts the learning rate during training based on
various criteria, aiming to optimize model performance and training efficiency [6]. Dynamic manage-
ment can be categorized as predefined schedulers, adaptive optimizers and custom dynamic schedulers.
Various learning rate schedulers have been designed to dynamically tune the learning rate during train-
ing. Step decay scheduler (SDS) is one of the simplest and most widely used learning rate schedulers.
In this approach, the learning rate is adaptively scaled down by a factor at specific intervals, typically
every few epochs. This approach helps in stabilizing the training process as the model gets closer to
convergence by reducing the step size, thus preventing overshooting the minimum of the loss function.
For instance, reducing the learning rate by half every ten epochs is a common practice.

Exponential decay scheduler (EDS) provides a more gradual reduction in the learning rate. It
decreases the learning rate exponentially over time. This method allows for a smooth transition in
learning rates, helping the model to adjust its weight updates progressively as it learns. Polynomial
decay scheduler (PDS) is another variant where the learning rate follows a polynomial function. This
scheduler is characterized by a learning rate that decreases over time according to a polynomial formula.
This approach provides flexibility in controlling the rate of decay, offering a more tailored reduction
based on the training requirements. Cosine annealing scheduler (CAS) is another sophisticated tech-
nique that reduces the learning rate according to a cosine function. This methodology commences
with a comparatively elevated learning rate and progressively diminishes to a lower bound in a cosine
shape, often resetting the learning rate periodically in a cyclical manner. This technique has shown to
be effective in escaping local minima and achieving better performance in certain scenarios [7, 8].

Adaptive optimizers, such as Adaptive Moment Estimation (Adam) [9] and Root Mean Square
Propagation (RMSprop) [10], take a different approach by automatically adjusting the learning rate
based on observed gradients during training. These algorithms calculate the learning rate dynamically,
often considering the magnitude and direction of recent gradient updates. Among variation of Adam
optimizer include AdaGrad [11], where the learning rate is updated as a function of the cumulative
squared magnitudes of the historical gradients, AdaDelta [12] where adaptation of AdaGrad utilizing
a sliding window of previous gradient updates, AdamW [13], Adamax [9], where Adam was used with
infinity norm and NAdam [14], where Adam was combined with Nesterov’s accelerated gradient.

Custom dynamic schedulers represent a sophisticated evolution in learning rate management, tai-
lored to enhance model performance by integrating real-time data characteristics and external fac-
tors into the training process [3, 15]. Unlike predefined schedulers that follow static, predetermined
patterns, custom dynamic schedulers adjust the learning rate dynamically in response to the model’s
performance or environmental conditions. Introducing external factors or real-time data characteristics
into the learning rate adjustment allows models to be more responsive and adaptive to the conditions
they encounter during training. By dynamically modifying the learning rate based on these external
signals, custom dynamic schedulers can better manage the learning process, avoiding the pitfalls of
overly aggressive or overly conservative updates [16].

Volatility represents the degree of fluctuation in the price of a financial asset or market index over
time, often indicating the level of uncertainty or risk in the market. High volatility is characterized
by sharp price swings, while low volatility suggests more stable price movements. This makes predict-
ing financial market behaviour particularly challenging due to the unpredictable nature of volatility
and the non-linear patterns in the data. Volatility is also a key reflection of market sentiment, cap-
turing the collective perception of investors during periods of uncertainty or stress. Incorporating
volatility into stock index forecasting models helps to identify these critical periods, providing deeper
insights into investor behaviour and market sentiment, which can anticipate potential market trends
and shifts [17]. As volatility often accompanies significant price movements, integrating it into fore-
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casting models allows for better adaptation to sudden changes in market conditions. This leads to
more accurate predictions, especially during volatile periods, that are crucial for making timely and
effective decisions [18].

Despite the success of LSTM models in forecasting time series data, traditional implementations
often employ fixed learning rates, which do not account for the dynamic nature of financial market
volatility. This limitation results in models that may be too rigid, struggling to adapt quickly enough
during periods of high market fluctuation. Stock indices often experience periods of high volatility
driven by economic events, market sentiment, or geopolitical developments [19]. Traditional learning
rate schedules may fail to adapt swiftly to these rapid changes, leading to suboptimal model perfor-
mance.

Incorporating volatility into the learning rate adjustment is crucial, particularly for models fore-
casting stock index data, due to the inherently unpredictable and fluctuating nature of financial mar-
kets [20]. Through the dynamic adjustment of the learning rate parameter based on real-time volatility,
models can become more agile and responsive to the market’s behaviour [21]. This adaptive approach
allows the model to slow down learning during periods of high volatility to avoid overfitting to transient
noise and speed up learning when the market is stable to capture underlying trends more efficiently [22].
Consequently, incorporating volatility into the learning rate helps improve the model’s ability to ex-
trapolate insights from historical data, enhancing the accuracy and robustness of stock index forecasts
in the face of market dynamics.

This study introduces a novel approach to LSTM model training by integrating a volatility-driven
learning rate adjustment mechanism. AdamVol (Adam optimizer incorporating volatility metrics) rep-
resents an approach by integrating market volatility directly into the tuning of the learning rate process.
Through the dynamic adjustment of the learning rate based on current volatility levels, AdamVol aims
to address the gap in traditional LSTM models that rely on static learning rates. By incorporating
market volatility into the learning process, AdamVol enhances the model’s ability to better capture
and respond to rapid market fluctuations, improving prediction accuracy and adaptability.

This study makes several key contributions to the field of stock market prediction using deep
learning models. At first, it introduces a novel mechanism for dynamically adjusting the learning rate of
LSTM models based on market volatility, specifically leveraging the ATR as a volatility measure. This
method allows the model to adapt in real time to market changes, a feature absent in traditional LSTM
models with static learning rates. Secondly, comprehensive experiments are conducted to compare this
dynamic approach with standard LSTM models and baseline methods, evaluating its effectiveness in
improving prediction accuracy and robustness. Finally, this paper addresses a critical gap in stock
market forecasting by demonstrating the significance of incorporating volatility measures into the
learning process of deep learning models.

2. Method

2.1. Data collection and preparation

This study utilized the daily closing prices of the KLCI from January 2, 2018, to January 31, 2023,
comprising a total of 1 225 observations obtained from the Yahoo Finance website. The dataset was
divided into two segments: the training set, spanning from January 2, 2018, to April 20, 2022 (90% of
the data), and the testing set, covering the period from April 22, 2022, to January 31, 2023 (10% of
the data).

2.2. Average true range

ATR is a flexible measure of volatility that quantifies the average magnitude of price fluctuations over a
given timeframe [23]. Unlike traditional measures that only consider closing prices, ATR incorporates
both intraday price highs and lows, providing a more comprehensive view of market volatility [24]. It is
particularly valuable for setting stop-loss levels and determining the potential range of price movements
within a given trading session or timeframe.
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The ATR is calculated as the mean of the absolute differences between consecutive daily closing
prices over a specified period as follows:

ATR =
1

p

n∑

i=1

TRi, (1)

where TRi represents true range of each day i, p represents the number of periods

2.3. LSTM model

The LSTM model represents a variation of RNN that incorporates a sequence of iterative computa-
tional components. LSTMs are particularly well-suited for tasks involving time series analysis, natural
language processing, and other applications where temporal dependencies are crucial [25]. LSTMs in-
corporate unique memory cells enabling them to maintain information over long periods. As illustrated
in Figure 1, an LSTM unit consists of a memory cell, an input gate, an output gate, and a forget gate,
that function collaboratively to process and preserve information over temporal periods [26].

forget gate: input gate:

output
gate:

Fig. 1. Architecture of the LSTM unit.

The forget gate ft dictates the degree to which the previous cell state ct−1 is discarded, computed
as ft = σ (Wf · [ht−1, xt] + bf ). The input gate it determines what new information is retained in the
cell state, given by it = σ (Wi · [ht−1, xt] + bi), and the candidate cell state, c̃t is calculated using c̃t =
tanh (Wc · [ht−1, xt] + bc), with hyperbolic tangent function. The current cell state Ct is updated using
the formula Ct = ft ⊙ ct−1 + it ⊙ c̃t. Finally, the output gate Ot governs the output of the LSTM cell,
calculated as Ot = σ (WO · [ht−1, xt] + b0), and the hidden state, ht is derived from ht = Ot⊙ tanh (ct).
Here, Wf , Wi, Wc and WO represents the weight matrices that connect the input to the respective
gates while bf , bi, bc and bO represents the bias terms that are added to the respective gates to adjust
the activations, helping the LSTM model account for inherent shifts in the data and improve the
gating mechanism’s flexibility. The Hadamard product, ⊙ is an element-wise multiplication, allowing
the model to selectively control the flow of information. The σ (sigma) symbol represents the sigmoid
activation function used in the input, forget, and output gates to control the flow of information by
producing values between 0 and 1, determining how much information should be passed through or
discarded.

2.4. LSTM model with AdamVol optimizer (LSTM-AdamVol)

The Adam optimization algorithm has gained widespread adoption owing to its adaptive learning rate
mechanism, that integrates the benefits of both AdaGrad and RMSProp techniques [9]. The learning
rate is dynamically adjusted based on the first and second moments of the gradients denoted as

θt+1 = θt − α · m̂t√
v̂t + ε

, (2)

where θ represents the parameters, α represents the learning rate, m̂t represents the bias-corrected
first moment estimate, v̂t represents the bias-corrected second moment estimate.

Mathematical Modeling and Computing, Vol. 12, No. 1, pp. 158–167 (2025)



162 Shakawi A. M. H. A., Shabri A.

The proposed AdamVol optimizer incorporates market volatility into the learning rate adjustment,
denoted as follows:

αt = α× (1 + η ×ATR), (3)

where α represents the base learning rate, η represents the adjustment factor, ATR represents the
Average True Range.

The initial learning rate is represented by α. This is the base learning rate that the model would
use if there were no volatility adjustment. This value is typically determined through standard hyper-
parameter tuning, starting with a base value, commonly between 0.001 and 0.01 for LSTM models. The
ATR is used to quantify the recent market volatility. A higher ATR value indicates higher volatility.
η is the sensitivity factor, determining how much the volatility (as represented by ATR) affects the
learning rate. If η is set to a higher value, small changes in volatility will lead to larger changes in
the learning rate. The value of η can be chosen empirically by observing how different values affect
the performance during model training. Cross-validation is performed to find the η that provides the
best trade-off between rapid adaptation and stable convergence. The term (1 + η ×ATR) adjusts the
learning rate based on the most recent volatility. When ATR is high, the learning rate increases to
help the model quickly adapt to rapid market changes, and when ATR is low, the learning rate remains
closer to the base α value, allowing the model to make more stable, incremental adjustments.

Data Collection
- Historical Prices
- ATR Values

Data PreProcessing
- Normalize Data
- Create Sequence

Model Construction
- Define LSTM Model
- Input, Output, Layers

Model Training
- Split Data
- Train Model

Dynamic Learning
Rate Adjustment
- ATR-based learn-
ing rate modulation

Model Evaluation
- MAE, RMSE
- Test Data

Hyperparameter Tuning

Result Interpretation
- Compare Models

Fig. 2. Workflow of the LSTM model with AdamVol optimizer.
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This adjustment allows the learning rate to dynamically respond to market conditions, ensuring
that the learning process is more adaptive and sensitive to the current state of the financial market.
Specifically, during periods of high volatility, the learning rate can be adjusted to be more conservative,
reducing the risk of large, erratic updates that could destabilize the learning process. Conversely, during
periods of low volatility, the learning rate can be increased to accelerate the learning process, taking
advantage of the relatively stable market conditions to make more significant updates to the model’s
parameters [18].

The process of incorporating volatility into the LSTM model through dynamic learning rate can
be visualized in Figure 2.

2.5. Performance evaluation

The forecasting models were evaluated using two performance measures: Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE),

MAE =
1

n

n∑

t=1

|yt − ŷt| , (4)

RMSE =

√√√√ 1

n

n∑

t=1

(yt − ŷt)
2
. (5)

The total number of observations is represented by n, where yt denotes the actual observed value and
ŷt refers to the forecasted value. These performance metrics will be utilized to evaluate the forecasted
values generated by the LSTM model for the out-of-sample data.

3. Results and discussion

3.1. Volatility analysis and market movement

The analysis of the ATR values alongside the closing price reveals important insights into the rela-
tionship between volatility and stock price behaviour. As shown in Figure 3, the closing price (blue
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Fig. 3. Price and ATR values over trading dates.

line) fluctuates throughout the period, with a sharp decline observed around early 2020, likely corre-
sponding to the global market crash due to the COVID-19 pandemic. In contrast, the ATR values
(red line), which measure market volatility, remain relatively low during periods of stability but show a
significant spike during this market downturn. This indicates that volatility increases when the market
experiences large price movements, particularly during periods of uncertainty. After the sharp rise in
ATR during early 2020, the volatility values gradually decrease, reflecting market stabilization. This
reinforces the rationale for incorporating ATR-based weighting into the LSTM model, as it allows the
model to better account for volatility-driven market shifts.

Mathematical Modeling and Computing, Vol. 12, No. 1, pp. 158–167 (2025)



164 Shakawi A. M. H. A., Shabri A.

3.2. Hyperparameter setting on LSTM and LSTM-AdamVol model

The hyper-parameter values were empirically tuned through a iterative process in order to achieve
optimal model performance during the training phase. Following multiple experimental iterations, the
hyper-parameter settings for both the LSTM and LSTM-AdamVol models include one hidden layer
with 200 hidden neurons. A dropout rate of 0.2 is applied to prevent overfitting. The models use a
timestep of 10, a batch size of 32, and are trained for 100 epochs. The activation function employed is
the hyperbolic tangent (tanh), while the recurrent function is the sigmoid function. The mean squared
error serves as the loss function. The Adam (for standard LSTM) and AdamVol optimizer are leveraged
to adjust the model parameters during the training phase.

The MAE and RMSE were calculated using the specified hyper-parameter configurations to evaluate
the predictive accuracy of the LSTM-AdamVol models on the testing data. These performance metrics
were also compared to those of other benchmark models, including ARIMA, artificial neural networks
(ANN), and a standard LSTM model, as presented in Table 1.

Table 1. Forecasting performance of LSTM-AdamVol and other models.

Model
MAE RMSE MAE RMSE

Training Training Testing Testing

ARIMA (0,1,0) 8.8733 12.262 9.1305 11.9292
ANN (3,1,1) 8.8729 12.2626 8.9962 11.6962
Standard LSTM 8.8053 12.1604 8.9870 11.6266
LSTM-AdamVol 8.7795 12.0178 8.9411 9.2053

As reported in Table 1, the study’s findings are consistent with previous research by [27–29] which
have also recognized the LSTM model as the most effective choice for forecasting the KLCI, followed
by the ANN and ARIMA models. Table 1 also shows that the LSTM-AdamVol model has recorded
the smallest value for the evaluation metrics. The experimental results show that the LSTM-AdamVol
model outperforms the standard LSTM, ANN, and ARIMA in terms of both training and testing
performance.
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Fig. 4. Comparison of Original, LSTM-AdamVol, and Regular LSTM.

Figure 4 displays the original closing prices alongside the predictions from both the LSTM-AdamVol
and the regular LSTM models, based on the testing data. The frequent alignment between the original
data and the LSTM-AdamVol predictions in the graph underscores the superior forecasting performance
of the proposed model in comparison to the regular LSTM. The KLCI index underwent a notable
decrease in its volatility levels during the year 2022, which can be attributed to extraneous influences,
such as political upheaval and economic recovery phase [19], as illustrated in Figure 4. This dynamic
adjustment mechanism in LSTM-AdamVol model leverages real-time market data to continuously
fine-tune the learning rate, making the model more resilient to the inherent fluctuations in financial
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markets. This flexibility makes the model more robust, as it can adjust its learning pace according to
the market’s volatility. This results in a more balanced and efficient learning process, capturing the
underlying market trends more accurately.

This methodology adheres to the principles of adaptive learning, in which the learning parameters
are adjusted in accordance with the inherent attributes of the data, culminating in more efficient
and effective training procedures. By continuously adapting the learning rate, the model can maintain
high performance and reliability, even as market conditions change. This dynamic adjustment not only
augments the model’s forecasting precision but also improves its ability to generalize across different
market regimes, providing a powerful tool for financial forecasting and analysis.

4. Conclusion

In conclusion, this study has underscored the significance of integrating volatility into the learning
rate adjustment of LSTM models for financial forecasting. This dynamic mechanism, which we term
AdamVol, leverages real-time volatility data to fine-tune the learning rate, allowing the model to adapt
to changing market conditions more effectively. Our results demonstrate that this method improves the
model’s robustness and predictive accuracy, particularly in the volatile environment of the KLCI. By
aligning the learning rate with market dynamics, we achieve a more resilient and responsive training
process, reducing the risk of overfitting and underfitting. This research underscores the potential of
adaptive learning techniques in financial modeling, offering a valuable instrument that assists investors
and analysists in effectively navigating the intricate dynamics of financial markets. Future work could
explore the integration of other market indicators into the learning rate adjustment mechanism, further
enhancing the model’s adaptability and performance.
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Динамiчне коригування швидкостi навчання з використанням
волатильностi в моделях LSTM для прогнозування KLCI

Шакавi А. М. Х. А.1,2, Шабрi А.2
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Прогнозування поведiнки фiнансового ринку є багатогранною проблемою, яка обумо-
влена основною волатильнiстю та нелiнiйними характеристиками, якi властивi рин-
ковим даним. Моделi довготривалої короткочасної пам’ятi (LSTM) продемонструва-
ли ефективнiсть у врахуваннi цих складнощiв. У цьому дослiдженнi пропонується
новий пiдхiд до пiдвищення продуктивностi моделi LSTM шляхом адаптивного мо-
дулювання швидкостi навчання на основi волатильностi ринку. Цей метод застосо-
вується для прогнозування Kuala Lumpur Composite Index (KLCI), використовуючи
волатильнiсть як ключову вхiдну iнформацiю для адаптацiї швидкостi навчання пiд
час тренування. Iнтегруючи волатильнiсть у процес навчання, модель може краще
враховувати ринковi коливання, що потенцiйно може приведе до точнiших i надiй-
нiших прогнозiв. Запропонований механiзм регулювання динамiчної швидкостi нав-
чання працює шляхом масштабування швидкостi навчання вiдповiдно до останнiх ви-
мiрювань волатильностi, забезпечуючи швидку адаптацiю моделi до мiнливих умов
ринку. Цей пiдхiд контрастує з традицiйними статичними швидкостями навчання,
якi можуть недостатньо врахувати динамiку фiнансових ринкiв. Проведено масштаб-
нi експерименти, використовуючи iсторичнi данi KLCI, порiвнюючи запропоновану
модель зi стандартною LSTM та iншими базовими моделями. Результати показують,
що швидкостi навчання з поправкою на волатильнiсть перевершують звичайнi мо-
делi LSTM iз фiксованими швидкостями навчання щодо прогнозної продуктивностi
та стабiльностi. Отриманi данi свiдчать про те, що включення волатильностi в ко-
ригування швидкостi навчання може значно пiдвищити передбачуванi можливостi
моделей LSTM для прогнозування фондового ринку. Пiдвищена точнiсть прогнозу-
вання iндексу KLCI пiдкреслює потенцiал цього пiдходу для ширшого застосування
на фiнансових ринках.
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