Biodiesel Production Catalysed by Magnetic Palm Kernel Shell-Potassium Hydroxide

Mohd Nurfirdaus Bin Mohiddin¹, Yie Hua Tan^{1*}, Loshinie A/P Periasamy¹, Jibrail Kansedo¹, N.M. Mubarak², Yen San Chan¹, Mohammad Omar Abdullah³, Keat Teong Lee⁴

¹Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia

²Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam

³Department of Chemical Engineering & Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia

⁴Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

*Corresponding author: tanyiehua@curtin.edu.my

Abstract. Biodiesel was prepared by transesterification process using heterogeneous catalyst has received a lot of interest lately as a sustainable source of biofuel. Hence, there is a need to study a generalized reaction kinetic model that can be used for all the reactions involved in biodiesel production. This study produces biodiesel by transesterifying palm oil using magnetic palm kernel shell-potassium hydroxide. The catalyst recorded a BET surface area of 47.72 m²/g. The maximum biodiesel yield, 95.78%, was obtained when reaction temperature and time were 55°C and 2 hours, respectively.