ADVANCED TECHNOLOGY FOR THE CONVERSION OF WASTE INTO FUELS AND CHEMICALS

VOLUME 1 : BIOLOGICAL PROCESSES

Anish Khan, Moharsmad Jawaid, Antonio Pizzi, Naved Azura, Abdullah M. Asiri, Eyas Md Isa

ADVANCED TECHNOLOGY FOR THE CONVERSION OF WASTE INTO FUELS AND CHEMICALS Biological Processes

Volume 1

Edited by

Anish Khan

Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Mohammad Jawaid

Department of Biocomposite Laboratory, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, Selangor, Malaysia

Antonio Pizzi

LERMAB, University of Lorraine, Vandœuvre-lès-Nancy, France Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

Naved Azum

Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abdullah M. Asiri

Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

Illyas Md Isa

Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia

Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia

An imprint of Elsevier elsevier.com/books-and-journals ADVANCED TECHNOLOGY FOR THE CONVERSION OF WASTE INTO FUELS AND CHEMICALS

Woodhead Publishing is an imprint of Elsevier The Officers' Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2021 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-823139-5

For Information on all Woodhead Publishing publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Susan Dennis Acquisitions Editor: Glyn Jones Editorial Project Manager: Sara Valentino Production Project Manager: Joy Christel Neumarin Honest Thangiah Cover Designer: Victoria Pearson

Working together to grow libraries in developing countries

www.elsevier.com • www.bookaid.org

Typeset by Aptara, New Delhi, India

Contributors

- Mohammad Omar Abdullah Department of Chemical Engineering & Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, Malaysia
- S. Abinaya Department of Agriculture Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, India
- K. Adithya School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
- Muhammad Irfan Amiruddin School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Abdullah M. Asiri Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Advance Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Swapnil Sukhadeo Bargole Chemical Engineering Department, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
- Pranta Barua Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chittagong, Bangladesh
- Pankaj Bhatt State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Rohidas Bhoi Chemical Engineering Department, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
- Brij Bhushan Department of Chemistry, Graphic Era University, Dehradun, India
- Muhammad Bilal School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Yen San Chan Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Sarawak, Malaysia
- Nor Fadilah Chayed School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Jin Chenxi State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China

- Hemal Chowdhury Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chittagong, Bangladesh
- Tamal Chowdhury Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chittagong, Bangladesh
- Yang Dianhai State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Katlin Ivon Barrios Eguiluz Graduate Program on Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe, Brazil; Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe, Brazil
- Luiz Fernando Romanholo Ferreira Graduate Program on Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe, Brazil; Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe, Brazil
- Li Guangming State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Amal I. Hassan Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki, Giza, Egypt
- Nazia Hossain School of Engineering, RMIT University, Melbourne VIC, Australia
- Mohd Lokman Ibrahim School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Hafiz M.N. Iqbal School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP, Mexico
- Xu Junqing State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Zhang Junting State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Jibrail Kansedo Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Sarawak, Malaysia
- Anish Khan Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Advance Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Beom Soo Kim Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea

xvi

- C. M. Jagadesh Kumar School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
- Kanchan Kumari CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- N. Kuppuswamy Department of Aeronautical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
- Deepak Marathe CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Salma Izati Sinar Mashuri School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Tahir Mehmood Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences-UVAS, Lahore, Pakistan
- C.G. Mohan School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
- Mohd Nurfirdaus Bin Mohiddin Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Sarawak, Malaysia
- N.M. Mubarak Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Sarawak, Malaysia
- Aunie Afifah Abdul Mutalib School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Fareeha Nadeem Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences-UVAS, Lahore, Pakistan
- Jayant Nalawade School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
- Prerana Nashine Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha, India
- Arunima Nayak Department of Chemistry, Graphic Era University, Dehradun, India
- Priya Pariyar CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, Kolkata, India; Department of Environmental Science and Engineering, IIT (ISM), Dhanbad, Jharkhand, India
- Antonio Pizzi LERMAB-ENSTIB, University of Lorraine, Epinal, France; Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Contributors

- R. Prakash School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
- S. Praveen Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
- Md Salman Rahman Department of Civil Engineering, Chittagong University of Engineering and Technology, Kaptai Highway, Chittagong, Bangladesh
- Upendra Rajak Department of Mechanical Engineering, Rajeev Gandhi Memorial College of Engineering and Technology Nandyal, Nandyal, Andhra Pradesh, India
- M. Ramesh Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
- Umer Rashid Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Virendra Kumar Saharan Chemical Engineering Department, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
- Hosam M. Saleh Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki, Giza, Egypt
- Anshika Singh CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Langpoklakpam Denin Singh Department of Mechanical Engineering, National Institute of Technology Manipur, India
- Thokchom Subhaschandra Singh Department of Mechanical Engineering, National Institute of Technology Manipur, India
- Mamata S. Singhvi Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Yie Hua Tan Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Sarawak, Malaysia
- Jia Min Ting Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Sarawak, Malaysia
- Tikendra Nath Verma Department of Mechanical Engineering, Maulana Azad National Institute of Technology Bhopal, Madhya Pradesh, India
- Débora S. Vilar Graduate Program on Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe, Brazil
- Chongqing Wang School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Li Wenjing State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China

xviii

Contents

Contributors	
1. Waste to energy: an overview by global perspective Pranta Barua and Nazia Hossain	1
1.1 Introduction	1
1.2 Potential waste biomass	6
1.2.1 Agricultural and forest residue	6
1.2.2 Industrial waste biomass	8
1.2.3 Municipal waste biomass	9
1.2.4 Micro- and macroalgae waste biomass 1.3 Biofuels from waste	11 13
1.3 Biodiesel	13
1.3.2 Bioethanol fermentation	17
1.3.3 Bio-oil and biochar	19
1.3.4 Biomethane and biohydrogen	24
1.3.5 Syngas and bioelectricity	28
1.4 Socioeconomic perspective	33
1.5 Environmental perspective	34
1.6 Integrated approaches of biofuel from waste	35
1.7 Conclusion	37
References	37
2. Potential of advanced photocatalytic technology for biodiesel	
production from waste oil	49
Muhammad Irfan Amiruddin, Salma Izati Sinar Mashuri, Aunie Afifah Abdul Mutalib, Nor Fadilah Chayed, Umer Rashid and Mohd Lokman Ibrahim	
2.1 Introduction	49
2.1.1 Biodiesel—strength and weakness	49
2.1.2 Biodiesel as an alternative fuel	50
2.1.3 WCO as a feedstock for biodiesel production	51
2.2 Reaction process to produce biodiesel	52
2.2.1 Microemulsion technique	52
2.2.2 Direct use and blending technique	52
2.2.3 Pyrolysis of oil	53
2.2.4 Transesterification process	53
2.2.5 Esterification process	54
2.3 Catalyst for biodiesel production	55

vi Contents	
2.4 Photocatalyst	58
2.4.1 Mechanism of photocatalysis	58
2.4.2 Important circumstances influence photocatalyst performance	63
2.4.3 Synthesis of photocatalysts	64
2.5 Fundamental of photocatalyst in biodiesel production	64
2.5.1 TiO ₂ as a photocatalyst in biodiesel production	65
2.5.2 Zinc oxide (ZnO) nanocatalyst as heterogeneous photocatalyst	67
2.6 Parameters affecting on photocatalytic esterification	67
2.6.1 Effect of alcohol to oil ratio	68
2.6.2 Effect of catalyst loading	68 69
2.6.3 Effect of stirring speed	69 70
2.6.4 Effect of UV irradiation time and lamp power 2.7 Conclusion	70
References	71
	11
3. Biofuel production from food waste biomass and application	
of machine learning for process management	77
Hemal Chowdhury, Tamal Chowdhury, Pranta Barua, Md Salman Rahman,	
Nazia Hossain and Anish Khan	
3.1 Introduction	73
3.2 Growing concern for food loss waste (FLW)	78
3.3 Conversion techniques	81
3.3.1 Biochemical technology	81
3.4 Thermochemical technology	84
3.4.1 Gasification	85
3.4.2 Pyrolysis	85
3.4.3 Liquefaction	87
3.5 Sustainable management of FW with machine learning	88
3.5.1 Machine learning overview for FW and biofuel	90
3.6 Prediction of energy demand and biofuel production from FW	92
3.6.1 Life cycle of machine learning-based energy demand and biofuel	
production	93
3.7 Conclusion	94
References	94
4. Biological conversion of lignocellulosic waste in the	
renewable energy	99
Hosam M. Saleh and Amal I. Hassan	
4.1 Introduction	99
	99 100
4.3 The role of bacteria in the decomposition of plant biomass and the	100
	103
*	107
	110
	111

Contents	vii
5. The potential of sustainable biogas production from	
animal waste	115
Hosam M. Saleh and Amal I. Hassan	
5.1 Introduction	115
5.2 Biogas components	116
5.3 Factors affecting biogas production	119
5.4 Anaerobic fermentation	119
5.4.1 Bacteria	119
5.4.2 Temperature	119
5.4.3 pH	120
5.4.4 Carbon to nitrogen ratio	120
5.4.5 Concentration of the solid in the feeding solution	120
5.4.6 Feeding rates of organic matter (degree of loading)	12C 121
5.4.7 Time of solution remaining in the fermenter 5.4.8 Toxic substances in nutrition	121
5.4.9 Use prefixes	121
5.4.10 Flipping inside the fermenter	122
5.5 Environmental and economic benefits from biogas generation	122
5.6 The properties of the different gases compared to the biogas	124
5.7 Prospects for the development of biogas production technology and	
current problems	126
5.8 Conclusion	128
References	129
6. Current and future trends in food waste valorization for the	
production of chemicals, materials, and fuels by advanced	
technology to convert food wastes into fuels and chemicals	135
M. Ramesh, S. Abinaya, Anish Khan and Abdullah M. Asiri	100
	12
6.1 Introduction	136
6.2 Food valorization to produce chemicals	137
6.2.1 Multitudinous valorization methods for chemical production 6.3 Transformation of food waste into bioenergy	138 140
6.3.1 Biogas formation	140
6.3.2 Biohydrogen production	141
6.3.3 Distinctive techniques for biofuel production	141
6.4 Conclusion	144
References	144
7. Biochemical conversion of lignocellulosic waste into renewable	
energy	147
Muhammad Bilal, Débora S. Vilar, Katlin Ivon Barrios Eguiluz, Luiz Fernando Romanholo Ferreira, Pankaj Bhatt and Hafiz M.N. Iqbal	
7.1 Introduction	147

7.2 Structural and functional attributes of LCMs	149
7.2.1 Socioeconomic aspects of LCMs	151
7.2.2 Biorefinery-based bioeconomy—considerations	152
7.2.3 Biotransformation of LCMs	153
7.2.4 Enzyme-based pretreatment of LCMs	154
7.2.5 Chemical-based pretreatment of LCMs	160
7.3 Biofuels generation	160
7.4 Conclusion and perspectives	163
References	163
8. Recent trends on the food wastes valorization to value-added	
commodities	171
Tahir Mehmood, Fareeha Nadeem, Muhammad Bilal and Hafiz M.N. Iqbal	
8.1 Introduction—food waste and its global scenario	171
8.2 FW hierarchy	173
8.3 FW-generating sectors	174
8.4 FW valorization to worth-added commodities	175
8.5 Biotransformation of FWs	178
8.6 Value-added components recovery	179
8.6.1 Recovery of organic acids	180
8.6.2 Nutraceuticals	181
8.6.3 Nanoparticles	182
8.6.4 Dietary fiber	183
8.7 Production of biomaterials and biofertilizer	183
8.7.1 Biopolymers	183
8.7.2 Single-cell protein (microbial biomass)	184
8.7.3 Bio-based colorants	185
8.7.4 Bioadsorbent	186
8.7.5 Biofertilizer	187
8.7.6 Bio-based high value-added products	188
8.7.7 Enzymes production from FW and their application	188
8.8 Conclusion and recommendations	189
References	190
9. Thermochemical conversion methods of bio-derived	
lignocellulosic waste molecules into renewable fuels	197
M. Ramesh, K. Adithya, C.M. Jagadesh Kumar, C.G. Mohan, Jayant Nalawade,	
R. Prakash	
9.1 Introduction	197
9.2 Lignocellulosic biomass	199
9.2.1 Sources of lignocellulosic biomass	199
9.2.2 Properties and composition of lignocellulosic biomass	199
9.3 Pretreatment techniques	201
9.3.1 Physical pretreatment techniquePhysical pretreatment technique	201
9.3.2 Chemical pretreatment technique	203

Contents

viii

Contents	ix
 9.3.3 Physiochemical pretreatment technique 9.3.4 Biological pretreatment technique 9.3.5 Combination pretreatment technique 9.4 Thermochemical conversion of lignocellulosic biomass 9.4.1 Thermochemical lignocellulosic biorefineries 9.4.2 Biochemical refineries for the conversion of lignocellulosic biomass 9.4.3 Hybrid biorefineries 9.5 Conclusion References 	204 205 205 206 209 210 210 211
10. Biodiesel production from waste cooking oil using ionic liquids as catalyst M. Ramesh, S. Praveen, N. Kuppuswamy, Anish Khan and Abdullah M. Asiri	215
 10.1 Introduction 10.2 Recent trends 10.3 Waste cooking oil 10.4 Transesterification of WCO 10.5 Experimental analysis 10.5.1 Catalytic ethanolysis of waste cooking soybean oil using the IL [HMim][HSO4] 10.5.2 Preparation of a supported acidic IL on silica-gel and its application to the synthesis of biodiesel from WCO 10.5.3 Improving biodiesel yields from WCO using ILs as catalysts with a microwave heating system 10.5.4 Biodiesel production from WCO by acidic IL as a catalyst 10.5.5 Biodiesel production process by using new functionalized ILs as catalysts 10.6 Conclusion References 	215 218 219 220 220 220 221 223 224 \$225 226 227
11. Valorization of waste cooking oil (WCO) into biodiesel using acoustic and hydrodynamic cavitation Swapnil Sukhadeo Bargole, Rohidas Bhoi, Suja George and Virendra Kumar Saharan	231
 11.1 Introduction 11.2 Biodiesel synthesis 11.2.1 Feedstock used for biodiesel synthesis 11.2.2 FFAs and their effect on biodiesel synthesis 11.2.3 Types of catalysts and its significance 11.3 Cavitation 11.3.1 Acoustic cavitatio 11.3.2 HC and its mechanism 11.4 Review of current status of utilization of WCO for synthesis of biodiesel 11.4.1 Synthesis of biodiesel using AC 11.4.2 Synthesis of biodiesel using HC 11.5 Conclusion References 	231 235 236 238 241 242 245 252 252 256 265 266

x	Contents	
	Production of biochar from renewable resources	273
Cho	ngqing Wang	
12.1	Biochar definition	273
12.2	Biochar applications	274
12.3	Biochar production	276
	12.3.1 Pyrolysis	276
	12.3.2 Gasification	276
	12.3.3 Hydrothermal carbonization	277
124	12.3.4 Other processes Factors affecting biochar production	277 278
12.4	12.4.1 Feedstocks of biochar	278
	12.4.2 Thermochemical temperature	280
12.5	Mechanism of biochar production	281
	Conclusions	284
Refe	rences	285
13.	Microbial fuel cell technology for bio-electrochemical	
	version of waste to energy	287
	nima Nayak and Brij Bhushan	
13.1	Introduction	287
13.2	MFC technology	289
	13.2.1 Technological background, performance indicators, and operating	
12.2	parameters	289
13.3	Role of microbial species and mechanism of electron transport in MFC	291 293
	13.3.1 Substrate composition in MFC 13.3.2 Electrode material	293
	13.3.3 MFC design and architecture	295
13.4	Bioenergy production from MFC	295
	13.4.1 Simple substrate molecules for electricity generation	295
	13.4.2 Complex wastewater used for electricity generation	299
	13.4.3 Pitfalls and future prospects	302
	Conclusion	305
Refe	rences	306
14.	Case study of nonrefined mustard oil for possible biodiesel	
extr	action: feasibility analysis	315
	cchom Subhaschandra Singh, Tikendra Nath Verma, Langpoklakpam Denin h, Upendra Rajak, Prerana Nashine, Anish Khan and Abdullah M. Asiri	
14.1	Introduction	315
14.2	Materials and methods	321
	14.2.1 Catalyst preparation	321
	14.2.2 Collection of nonrefined mustard oil	321
	14.2.3 Design of experiment using Taguchi	321

Contents	xi
14.2.4 Transesterification	322
14.2.5 Characterization of catalyst	322
14.3 Results and discussion	322
14.3.1 Characterization of catalyst	322
14.3.2 ANOVA and RSM	326
14.3.3 Effect of operating parameters	329
14.4 Conclusion	333
References	333
15. Waste oil to biodiesel	337
Mohd Nurfirdaus Bin Mohiddin, Jia Min Ting, Yie Hua Tan, Jibrail Kansedo, N.M. Mubarak, Yen San Chan and Mohammad Omar Abdullah	
15.1 Second-generation feedstock for biodiesel production	337
15.1.1 Used cooking oil	338
15.1.2 Grease	340
15.1.3 Animal fat	341
15.1.4 Soapstock	342
15.1.5 Nonedible oils	343
15.2 Conclusion	348
Acknowledgment	348
References	349
16. Integrated conversion of cellulose to high-density aviation fuel	355
Mamata S. Singhvi and Beom Soo Kim	
16.1 Introduction	355
16.2 LB sources	358
16.2.1 Biomass structure	358
16.2.2 LCB pretreatment	360
16.2.3 Enzymatic saccharification of cellulose	363
16.3 Conversion of LB into bioaviation fuel	363
16.3.1 Production of precursors from LB by metabolic engineering	365
16.3.2 Aviation fuel production using catalytic conversion	368
16.4 Future perspectives	372
16.5 Conclusion	374
References	375
17. Conversion of food waste into biofuel and biocarbon	383
Li Wenjing, Jin Chenxi, Zhang Junting, Xu Junqing, Yang Dianhai and Li Guangming	
	207
17.1 Introduction	383
17.1.1 Production and trend of food waste 17.1.2 Characteristics of food waste and environmental problems	384 386
17.1.2 Characteristics of food waste and environmental problems 17.1.3 The food waste treatment	389

17.2	Conversion of food waste into biogas	393
	17.2.1 Process technology of anaerobic digestion of food waste	394
	17.2.2 Progress in research and development of biogas from anaerobic	400
	digestion of food waste	400
	17.2.3 Analysis of biogas production from anaerobic digestion of food waste 17.2.4 Secondary pollution control of food waste anaerobic digestion	404 407
173	Conversion of waste cooking oil into biodiesel	407
17.5	17.3.1 WEO and waste cooking oil	409
	17.3.2 Research progress of biodiesel production from WEOs	410
	17.3.3 Process analysis of biodiesel production from WEOs	413
17.4	Conversion of food waste into biochar	417
	17.4.1 Biochar Production from food waste	417
	17.4.2 Hydrochar production from food waste by MAHTC	425
	17.4.3 Characterization and application of biochar and hydrochar	
1.7.5	generated from food waste	432
	Conclusions	436
	nowledgment rences	438 438
ICCIC.		7J0
18.	Wood bioadhesives for biocomposites by nonvolatile	
	Idehydes generation by specific oxidation	
	ifferent biomaterials	449
		ידד
Anto	onio Pizzi, Anish Khan and Abdullah M. Asiri	
18.1	Introduction	449
18.2	Applications	450
	18.2.1 Oxidized cellulose composites	451
	18.2.2 Tannin carbohydrates composite panels	452
	18.2.3 Oxidized soy flour and soy protein adhesives for composite panels	455
10 2	18.2.4 Demethylated-specific oxidation lignin–based adhesives for wood pane	ls 460 463
	Conclusions rences	463
Refe	inices	707
19.	Agricultural biomass as value chain developers in different	
sect		467
	chan Kumari, Anshika Singh, Deepak Marathe, Priya Pariyar	101
Ran	inan Kuman, 7 monika omgi, Deepak Maratne, 1 mya 1 anyai	
19.1	Introduction	467
	19.1.1 Concept of agriculture waste and biomass	468
	19.1.2 Properties of agricultural biomass	468
	19.1.3 Classification and importance of agricultural biomass	470
	19.1.4 Environmental impacts of agricultural waste	472
10.2	19.1.5 Agricultural Biomass as a renewable source of energy	473
	Methodology Technologies for bioenergy conversion of agricultural biomass	473 474
19.3	19.3.1 Thermochemical conversion	475
	19.3.2 Biochemical process	479
	1) is in the process	

xii

Contents	xiii
19.4 Current applications of agricultural biomass as value-added products	481
19.4.1 Industrial applications	482
19.4.2 Pharmaceuticals production	487
19.4.3 Potential biomass to bioenergy production	495
19.5 Agricultural biomass and sustainable economic development	498
19.6 Conclusion and future perspective	499
Acknowledgment	499
References	499
Index	509

Advanced Technology for the Conversion of Waste into Fuels and Chemicals

Volume 1: Biological Processes

2021, Pages 337-355

15 - Waste oil to biodiesel

Mohd Nurfirdaus Bin Mohiddin ^a, Jia Min Ting ^a, Yie Hua Tan ^a, Jibrail Kansedo ^a, N.M. Mubarak ^a, Yen San Chan ^a, Mohammad Omar Abdullah ^b

Show more \checkmark

🗮 Outline 🛛 😪 Share 🌗 Cite

https://doi.org/10.1016/B978-0-12-823139-5.00089-7 オ Get rights and content オ

ABSTRACT

The environment and ecosystem are currently encountering rising issues such as <u>climate changes</u> and global warming due to the continuous combustion of <u>fossil fuel</u>. This unremitting fuel and energy demand caused industries to turn toward biofuel for a more ecological and economic substitute. <u>Biodiesel</u> becomes a new trend for the industry to reduce greenhouse gases emission and dependency on the traditional petroleum-based diesel that is nonrenewable. Nevertheless, the production of biodiesel possesses several drawbacks such as wastewater production and limited cultivation area. Various types of alternative <u>feedstock</u> for biodiesel production known as the second-generation <u>feedstock</u> has been studied and recognized to have potential in overcoming the earlier generation of biodiesel <u>feedstock</u>. Therefore, this chapter is emphasizing on the conversion of the waste oil second-generation <u>feedstock</u> into biodiesel, which promotes a promising oil feedstock to encounter the limitations of the first-generation feedstock or edible vegetable oils in the biodiesel industry.

Recommended articles

References (0)

Cited by (0)

View full text