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Abstract  The spatiotemporal correlation in disease 

incidence rates resulting from the spatial arrangement of 

neighboring geographical units is often conceptualized 

through constructing contiguity-based spatial weights. 

However, these weights specifications are not meant for 

capturing the spatial relationships across multiple spatial 

scales and disjoint spatial units. Modifications to existing 

spatial weights specifications are highly required. Hence, 

this study used supra-adjacency matrix in network science 

to analyze the spatial autocorrelation of COVID-19 

incidence rates at Sarawak’s district and Malaysia’s state 

levels. Flight routes between these regions were embedded 

as spatial interaction submatrix to represent their inter-

layer adjacency. Segmentation of data based on respective 

Sarawak’s and Malaysia’s daily cases was conducted to 

investigate the consistency in the spatial autocorrelation 

and the type of local clustering. When global spatial 

autocorrelations at state level were high, both the Sarawak 

districts’ and Malaysia states’ incidence rates became more 

spatially related with the inclusion of spatial interaction. 

Several districts, including Sibu, in Sarawak were now 

classified as high-high cluster with supra-adjacency 

weights. These high-high clusters can only be discovered 

with second-order contiguity weights in previous literature. 

The numbers of significant spatial clusters and outliers in 

district level were substantially greater than its state-level 

counterpart. This research provides evidence on how 

spatial dependencies of disease incidence rates between 

two spatial aggregation levels and geographically disjoint 

regions can be quantified using supra-adjacency matrix for 

disease surveillance. Capturing inter-layer spatial 

dependencies allows for more targeted interventions such 

as optimizing vaccine distribution and planning mobility 

restrictions during pandemics. 

Keywords  Spatial Autocorrelation, Contiguity 

Weights, Supra-Adjacency Matrix, COVID-19 Incidence 

Rates 

1. Introduction

Spatiotemporal analysis of infectious disease spread is 

pivotal and one of the earlier focuses in understanding the 

epidemiologic trends of coronavirus disease 2019 

(COVID-19) [1,2]. A variety of spatial statistics techniques 

and geographical information system tools are being 

utilized in exploring the spatial pattern of the pandemic 

[3,4]. Spatial autocorrelation analysis is widely conducted 

to examine the degree of similarity between the daily 

confirmed case numbers over different geographical units 

and spatial aggregation levels, ranging from country [5], 

province [6], district [7], to neighborhoods in a city [8]. 

Unlike conventional compartmental models that assume 

homogeneous mixing in the host population [9,10], the 
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georeferenced observations in spatiotemporal models are 

generally not independent of one another [11]. The spatial 

dependence of the attribute of interest between 

geographical units is commonly conceptualized by 

specifying spatial weights, which measure the influence of 

a geographical unit to another. 

However, the spatial weight coefficients specification is 

a non-trivial problem [12]. There is no a concise theory for 

finding the true spatial weights matrix [13]. It is often 

reliant on the use of prior information and experience [14]. 

For simplicity’s sake, a great majority of works of literature 

in spatiotemporal analysis of aggregated data of COVID-

19 case number rely on the first-order contiguity-based 

spatial weights matrix in quantifying the spatial relations of 

the disease transmission phenomena (see for instance 

[15,16]). In contiguity matrices, two geographical units are 

considered as neighbors if they share a common border. 

Besides, distance-based spatial weights, which assign 

greater weight to nearby regions compared to distant 

regions via inverse distance matrix, are also commonly 

used, particularly for location point data. These 

geographical proximity-based spatial weights matrices, 

despite promising to comprehend the spatial dependencies 

between geographical units, the weights generated with 

such definitions may be controversial. For instance, small 

regions often have less number of border regions [17]. 

Depending on the nature of the process under study, two 

geographical units which are close geographically but 

separated by other factors (such as lack of accessibilities or 

opportunities) may not necessarily be more related than 

distant geographical units [18] or be considered as near 

neighbors [19]. Moreover, such concepts of contiguity and 

distance often cannot depict the realistic human mobility 

across geographical units [14]. 

Apart from contiguity- and distance-based spatial 

weights matrices, other spatial weights can also be defined 

by specifying spatial interaction [20] and covariates [19] of 

geographical units under observation. Interaction-based 

spatial weights are useful for incorporating flow of people 

between areas while covariate-based for socio-

demographical factors. All these variants and their hybrid 

weights specifications were compared for spatiotemporal 

model fitting on COVID-19 data over small areas located 

in Valencia, Spain [21]. They found that the classical first-

order contiguity and the inverse distance matrix were still 

the most suitable and performed better than those of 

covariate-based or hybrid type. A composite of contiguity 

and inverse distance spatial weight matrix gave greater 

autocorrelation of daily confirmed numbers for 14 selected 

countries in May 2020 than applying contiguity or 

distance-based weights alone [22]. Moreover, Belvis and 

co-workers [23] claimed that incorporating adjacency 

based on mobility flow did not improve the spatial 

autocorrelation values across five waves of COVID-19 in 

Catalonia, Spain, but contiguity criteria remained yielding 

higher autocorrelation. Despite various alternative spatial 

weights specifications are being employed, these findings 

suggest that contiguity-based spatial weights can provide 

valuable insights into the underlying spatial processes of 

COVID-19 disease transmission. Also, there remains a lack 

of studies on how these spatial weights can be useful for 

comprehending the spatial dependencies between different 

spatial aggregation levels. 

The spatiotemporal clustering patterns of the pandemic 

at district level of Malaysia were also investigated using 

first-order contiguity-based spatial weights matrix [24,25]. 

The latter literature went further by considering the 

neighbors of neighbor through a second-order spatial 

contiguity and found that higher order contiguity could 

detect more visible patterns of spatial clusters and outliers 

for the co-evolution of COVID-19 daily confirmed cases in 

Sarawak. However, the study [25] only focused on districts 

in Sarawak without relating to the pandemic evolution in 

other states in Malaysia. As the largest state in Malaysia by 

land size and situated in East Malaysia, which is linked by 

road to Sabah but primarily by air transport to the 

Peninsular Malaysia, contiguity-based spatial weights fail 

to quantify the spatial relation between Sarawak’s districts 

and other states in Peninsular Malaysia as they are 

geographically disjoint. Therefore, a clear gap in literature 

exists in specifying the spatial weights of geographical 

units across disjointed regions. 

Hence, we proposed a novel supra-adjacency type of 

spatial weights matrix to specify the spatial dependence of 

two spatial aggregation levels, namely state and district, 

which are also geographically disjointed, in this study. 

Supra-adjacency matrix has a block-diagonal structure 

where its interior corresponds to intra-layer connections, 

and an off-block-diagonal structure containing the inter-

layer connections. It serves as a fundamental representation 

for multilayer networks [26] such that multiple subsystems 

and layers of connectivity can be reckoned. Empirical 

studies of multilayer networks in various domains have 

existed for more than a decade (see [27] and the references 

therein), along with the prediction of COVID-19 infections 

[28]. 

This study contributes to the existing literature on the 

spatiotemporal analysis of epidemiological data by 

conceptualizing both spatial contiguity weights and spatial 

interaction weights into supra-adjacency matrix. The 

novelty of this work lies in its exploration of the spatial 

autocorrelation intensity for two spatial aggregation levels 

of disease incidence rates in supra-adjacency setting. The 

effect of different temporal segmentations on global and 

local spatial autocorrelation throughout the study period 

was also investigated. Furthermore, we included a 

schematic representation of supra-adjacency matrix and 

several toy example calculations to comprehend the basic 

terminologies in spatial statistics to readers, especially for 

public health officials who may not be familiar with 

spatiotemporal analysis. This research provides empirical 

evidence on how spatial dependencies between different 

spatial aggregation levels and across geographically 

disjoint regions can be quantified on top of purely spatial 
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proximity for disease surveillance and response in 

preparation for next pandemic. 

2. Materials and Methods

2.1. Data Source and Study Area 

This study extended the spatial autocorrelation analysis 

of COVID-19 incidence rates in 40 districts in the state of 

Sarawak (Fig. 1(a)) by considering Malaysia’s state-level 

(Fig. 1(b)) incidence rates through a supra-adjacency 

spatial weights specification. The district-wise daily 

COVID-19 confirmed cases data throughout 2021 were 

extracted from the daily press statements published by the 

Sarawak Disaster Management Committee (SDMC). Since 

the onset of pandemic, SDMC has been managing the 

COVID-19 situations within the state and disseminating 

the information on various control measures, including 

travel restrictions across districts and states, to general 

public in Sarawak [29]. The year 2021 was chosen as the 

study period to coincide with the first three peaks in 

COVID-19 infections in Sarawak. Also, throughout this 

study period, the confirmed cases were mainly registered 

on a day-to-day basis by nearest local health authority after 

receiving the infected patients’ polymerase chain reaction 

test results, as opposed to self-testing using rapid antigen 

test kits and self-reporting cases through a contact tracing 

application (CTA) in the subsequent years. The former 

approach is more reliable in capturing the exact physical 

location of the infected patients, while the latter approach 

relies heavily on the CTA users’ permanent address which 

may be different substantially from their exact 

geographical location. 

Figure 1.  Geographical map of (a) 40 districts in Sarawak [25] (b) 13 states and three federal territories in Malaysia with flight connectivity considered 

in this study 
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As the largest state by land size in Malaysia and located 

in East Malaysia, Sarawak is geographically separated 

from Peninsular Malaysia by the South China Sea and can 

primarily be accessed from Peninsular by air transport. 

This unique geographical position may lead to the success 

of the state in controlling the disease transmission in year 

2020 (see Fig. 2) while the country was placed under 

lockdown with severe restrictions on international and 

inter-state travel for a majority of months throughout the 

year. However, the spatiotemporal pattern of COVID-19 in 

Sarawak is strictly not a self-diffusion phenomenon that 

constrains solely within the state, but is highly related to 

the pandemic development outside the state. Transport 

networks such as flight connectivity or high-speed trains 

have been identified as playing a crucial role in the 

introduction and evolution of the COVID-19 outbreak 

worldwide in the early phase of the pandemic [30,31]. For 

instance, Krisztin and co-workers [32] considered the 

number of flight connections in their spatial econometric 

model and observed that the intensity of spatial spillover 

dropped due to travel restrictions. Hincapie and co-workers 

[33] found that the burden of illness was driven by case 

importation for the provinces with larger populations and 

greater connectivity. Despite the state of Sarawak’s unique 

geographical characteristics, the spatial autocorrelation 

measure of the district-wise COVID-19 infection in the 

state must be investigated simultaneously with the 

incidence rates data in all 13 states and three federal 

territories of Malaysia. This can be accomplished by 

quantifying their spatial dependence through interaction-

based adjacency matrix. Hence, this study also looked into 

the state-wise COVID-19 data which were publicly 

available on the GitHub page maintained by the Ministry 

of Health Malaysia. 

2.2. Data Preprocessing 

The Sarawak district-wise data throughout 2021 were 

first subdivided into four temporal periods using change 

point analysis algorithm. Change points are the points in 

time when abrupt variation in the statistical distributional 

properties of time series data is detected [34,35]. Many 

algorithms are available for detecting such change points in 

COVID-19 daily infection data (see, for instance [35,36]). 

Following our previous studies [25,37], we used a segment 

neighborhood technique in changepoint package in R [38] 

to split the daily cases data into a pre-defined four sub-

segments whereby the data in each segment differ 

substantially in their statistical properties of both mean and 

variance. The state-wise data were segmented with the 

same temporal periods accordingly. 

Since the state-level and Sarawak’s district population 

sizes range approximately from 95 900 (Putrajaya) to 6 815 

200 (Selangor), and from 7 900 (Tanjung Manis) to 609 

200 (Kuching) respectively, in order to account for the 

difference in population sizes between states and districts, 

we calculated the COVID-19 incidence rates, either for a 

state or for a district, using (1). 

Incidence rate =
(

The total number of daily confirmed cases in a

district (resp.  state) within a temporal period
)

The population of the district (resp.  state)
× 1000 

(1) 

2.3. Spatial Weights 

The spatial weights matrix (W) is a key element in spatial 

autocorrelation analysis. It is a non-diagonal square matrix 

of size 𝑁 × 𝑁, where N is the number of geographical units 

under observation. For contiguity-based spatial weights 

matrix, it has non-zero entries if two geographical units 

(say units i and j) share a common boundary, as defined by 

(2). 

𝑤𝑖𝑗 = {
1 if unit 𝑗 shares a common boundary
  with another unit 𝑖              
0 otherwise                     

 (2) 

The non-zero entries in spatial weights matrix indicate a 

spatial relationship is present between the two geographical 

units. Equation (2) only takes into account the immediate 

neighboring geographical units, therefore it is first-order 

contiguity matrix. Second-order contiguity can be specified 

by considering the neighbors of neighbor. The weights (𝑤𝑖𝑗) 

are then normalized for estimating the strength of spatial 

dependence between geographical units. 

An example of first-order contiguity matrix for some 

selected states in Malaysia is illustrated in the top-left 

submatrix of Fig. 3. From Fig. 1(b), it can be seen that 

Selangor shares a common boundary with three other states 

(Negeri Sembilan, Pahang, and Perak) and two federal 

territories (Kuala Lumpur and Putrajaya). Hence, a 

normalized weight of 0.2 is assigned to the entries which 

pair Selangor to those states (or federal territories). 

However, such specification fails to describe the spatial 

dependence of Labuan, which is a small island situated off 

the coast of the state of Sabah. Therefore, a full weight of 

1 is allocated to entry Labuan-Labuan so as to keep Labuan 

in our subsequent analysis. We denoted this state-level 

contiguity matrix as 𝑊𝑖𝑗
𝑆. The average number of links in 

this matrix is 2.56 with six states (or federal territories) 

having only one connected neighbor. 

The spatial weights for Sarawak’s districts were defined 

in a similar manner, which we denoted as 𝑊𝑖𝑗
𝐷. For instance, 

the entries for Subis are 0.25 (see the bottom-right 

submatrix in Fig. 3) as Subis shares boundary with four 

other districts (see Fig. 1(a)). The average number of links 

in this matrix is 4.4 with five districts having two contiguity 

neighbors while Sibu has the highest number of neighbors. 

The spatial weights are essential in calculating the variable 

known as spatial lag in spatial statistics. The spatial lag of 

the variable of interest, say the daily confirmed cases in a 

district, is the weighted average of all the district’s 

neighbors’ values. For instance, let’s assume that Subis has 

zero daily confirmed cases on a particular day and its first-

order contiguity neighbors, namely Beluru, Bintulu, Miri, 

and Sebauh have 4, 8, 4, and 12 daily cases respectively. 

Although Subis has zero daily cases, its spatial lag of daily 
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cases is 6. Higher spatial lag value indicates greater chance 

of disease spillover from the neighboring districts. Hence, 

a precise definition of spatial weights is imperative in 

quantifying the spatial lag and studying the epidemic 

between different geographical units. 

 

Figure 2.  The bar plot of state-wise cumulative confirmed cases (in thousands) in Malaysia for years 2020 and 2021, as well as the line graph of the 

population size (in millions) of each state, which were obtained from the Department of Statistics Malaysia’s website 

 

Figure 3.  Schematic representation for part of the supra-adjacency spatial weights matrix 
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2.4. Supra-Adjacency Spatial Weights Matrix 

A specific matrix structure is required when specifying 

the spatial weights for geographical units in more than one 

spatial aggregation level, such as the state and district 

levels in this study. In network science, the supra-

adjacency matrix is commonly used for representing the 

intra- and inter-layer adjacency of a multi-layer network in 

one single large matrix, where the block diagonal 

submatrices constitute to the intra-layer adjacency and off-

diagonal blocks quantify for the inter-layer connections. 

Borrowing this concept, we proposed a supra-adjacency 

spatial weights matrix to incorporate the intensity of spatial 

adjacency for two spatial aggregation levels for spatial 

statistics. 

A schematic representation for part of the supra-

adjacency matrix is given in Fig. 3. The spatial weights 

defined in the previous subsection indeed constitute to the 

intra-level adjacencies (denoted as 𝑊𝑖𝑗
𝑆𝐷 ), which are 

depicted in brown color for state level and blue color for 

district level respectively in Fig. 3. We assume that 

COVID-19 transmission trajectories in Sarawak’s districts 

are greatly influenced by the state-level disease 

propagation, but not vice versa. That is, the COVID-19 

phenomena at the district level in Sarawak are solely 

affected by the pandemic situations at spatial aggregation 

level above it. Hence, we added inter-level spatial 

interactions for some selected economically developed and 

densely populated districts in Sarawak (namely Kuching, 

Sibu, Bintulu, and Miri) by considering their flight 

connectivity with other states in Malaysia (see Fig. 1(b)). 

These flight routes were selected as they have scheduled 

passenger service on commercial airlines between Sarawak 

and other states in Malaysia, even throughout the year 2021 

in which SDMC imposed strict entry procedures for 

travelers entering Sarawak. Such assumptions and 

justifications, despite simplistic, may partially reflect the 

human mobility flow between other states and Sarawak. 

An illustrative example of inter-level spatial interaction 

weights for the Bintulu district is highlighted in Fig. 3. In 

the first-order contiguity matrix, the weights assigned for 

the pair of Bintulu and its three neighboring districts, 

namely Sebauh, Subis, and Tatau, are supposed to be 1/3. 

However, as we assume COVID-19 situations in Bintulu 

are also greatly affected by situations in Selangor in which 

there is a direct flight route between Selangor and Bintulu, 

Bintulu will have an additional fourth neighbor (i.e. 

Selangor) at the state level. Therefore, the spatial lag of 

daily confirmed cases in Bintulu is the weighted average of 

all these four neighbors’ values in supra-adjacency-based 

spatial weights specifications. The graphical description 

for the full supra-adjacency spatial weights matrix (denoted 

as 𝑊𝑖𝑗
𝑆→𝐷 ) is shown in Fig. 4. The summary of four 

different sets of spatial weights matrices used in this study 

is given in Table 1. 

 

Figure 4.  Graphical description of the supra-adjacency spatial weights 

matrix (of size 56  56) used in this study 

2.5. Global and Local Spatial Autocorrelation Analysis 

With the introduction of supra-adjacency-based spatial 

weights, it is possible to explore the spatial associations and 

clustering of COVID-19 incidence rates within Malaysia’s 

states and Sarawak’s districts, respectively. Most 

importantly, by incorporating inter-level adjacency in the 

supra-adjacency matrix, it allows for a nuanced 

investigation of the spatial autocorrelation measures of 

COVID-19 evolution in Sarawak under the influence of 

state-wise pandemic development. 

Two types of spatial autocorrelation analysis were 

conducted. Global Moran’s I statistic was first calculated 

to assess the significance of spatial clustering distribution 

patterns of the incidence rates at their spatial aggregation 

levels. This Moran’s I statistic is indeed an extension of 

non-spatial Pearson correlation coefficient with spatial 

weights (𝑤𝑖𝑗 ) describing the spatial dependence among 

geographical units, as given by (3). 

Table 1.  Four sets of spatial weights matrices used in this study 

No. Geographical study area Matrix size Type of spatial weights Matrix notation Symbol 

1 Sarawak’s 40 districts 40  40 contiguity 𝑊𝑖𝑗
𝐷 WD 

2 Malaysia’s 16 states 16  16 contiguity 𝑊𝑖𝑗
𝑆 WS 

3 Sarawak’s 40 districts and Malaysia’s 16 states 56  56 contiguity 𝑊𝑖𝑗
𝑆𝐷 WSD 

4 Sarawak’s 40 districts and Malaysia’s 16 states; Flight 

connectivity 

56  56 contiguity + 

interaction 

𝑊𝑖𝑗
𝑆→𝐷 WSA 

Note: We use ‘states’ to refer to all 13 states and 3 federal territories in Malaysia. 
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𝐼 =
𝑁

∑ ∑ 𝑤𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)𝑁
𝑗=1

𝑁
𝑖=1

∑ (𝑥𝑖−𝑥̅)2𝑁
𝑖=1

,    (3) 

where 𝑥𝑖  (resp. 𝑥𝑗 ) is the incidence rate at a particular 

(resp. another) geographical unit. The value of global 

Moran’s I ranges from -1 (dispersed) to 1 (clustered), in 

which values close to zero indicate random spatial 

distribution and no spatial heterogeneity across the entire 

spatial domain. 

Whenever global Moran’s I is significant (i.e. p-value < 

0.05), the exploration of local spatial autocorrelation can be 

performed to identify spatial clusters of high (hot spots) and 

low (cold spots) incidence rate patterns at the individual 

geographical units within the study area. Local Moran’s I 

is expressed in (4) below. 

𝐼𝑖 =
(𝑥𝑖−𝑥̅) ∑ 𝑤𝑖𝑗(𝑥𝑗−𝑥̅)𝑁

𝑗=1

𝑉𝑎𝑟(𝑥)
            (4) 

The results of local spatial autocorrelation are commonly 

visualized in a cluster map known as local indicators of 

spatial association (LISA). Four types of clustering patterns 

exist, namely high-high, low-low, high-low, and low-high. 

In LISA map, the geographical units in high-high (resp. 

low-low) cluster are highlighted in red (resp. blue) 

whenever they have significant high (resp. low) incidence 

rates and have neighbors that also have high (resp. low) 

incidence rates. The other two spatial outlier clusters are 

colored in pink and pale blue for high-low and low-high 

associations respectively. Those geographical units 

identified as high-low cluster have high risk of spilling over 

disease to their neighboring units. 

3. Results 

3.1. Exploratory Spatial Data Analysis on Disease 

Incidence Rates 

We first presented an overview of the COVID-19 

incidence rates at Sarawak’s district and Malaysia’s state 

levels throughout the study period in Fig. 5. Although the 

state-level population sizes are predominantly larger than 

Sarawak’s district level, their incidence rates (cases per 1 

000 population) offset such differences. In the year of 2021, 

the Sarawak’s districts COVID-19 incidence rates were not 

only generally higher than the state level’s (see Fig. 5(a)), 

but also varied greatly within Sarawak. 10 out of 40 

districts in Sarawak recorded higher than 120 cases per 1 

000 population while the highest incidence rate at state 

level was Selangor with 110 cases. This may suggest that 

the spatial heterogeneity of the incidence rates at finer 

spatial aggregation level can be more substantial than those 

rates at coarser level. 

We then illustrated the change point segmentation of 

Sarawak’s daily confirmed cases data in Fig. 5(b). The blue 

horizontal lines denote the average number of daily cases 

over a specific temporal period. Note that the Wave 3 has 

an exceptional high average of 2 340 daily cases compared 

to just 509, 272, and 172 daily cases in Waves 2, 4, and 1 

respectively. This indicates that the pandemic affected 

Sarawak most severely from August to October 2021 

which is commonly regarded as Delta variant wave [39]. 

However, by superimposing the state-wise daily confirmed 

cases into the same figure, we found that this wave arrived 

in Sarawak two months later than in other states in 

Malaysia. This implies that different temporal periods of 

pandemic waves may be obtained if the change point 

segmentation is performed based on state-level data. 

Based on the temporal periods obtained from the 

segmentation of Sarawak’s data, the disease progression 

within Sarawak and across states in Malaysia for four 

temporal periods are depicted in Figs. 5(c) and 5(d) 

respectively. The outbreak began in the central region of 

Sarawak in early 2021, followed by higher incidence rates 

covering more districts in nearby regions in Wave 2 and 

gradually spread to all districts in Sarawak, with the most 

severe rates of incidence recorded in the southern region of 

Sarawak in Wave 3. At state level, higher incidence rates 

were observed from April to October 2021. 

3.2. Global Spatial Autocorrelation Analysis 

We gave the results of the global spatial autocorrelation 

analysis on the incidence rates for each spatial aggregation 

level throughout 2021 and across different waves in Table 

2. The Moran’s I statistics and their p-value for incidence 

rates in respective levels of Sarawak’s districts and 

Malaysia’s states were given first, followed by combining 

state and district levels using spatial contiguity matrix 

𝑊𝑖𝑗
𝑆𝐷, and lastly adding on top of that the spatial interaction 

submatrix 𝑊𝑖𝑗
𝑆→𝐷. 

All the Moran’s I statistics for Sarawak’s district-level 

incidence rates are positive ranging from 0.21 to 0.37 and 

statistically significant (p-values < 0.05). The state-level 

incidence rates are found to have higher autocorrelation for 

Waves 1 and 2 with Moran’s I of 0.59. However, the state-

wise spatial autocorrelation is weaker than Sarawak’s 

district level and not statistically significant for Wave 3, 

Wave 4, and throughout 2021. By combining both spatial 

dependence of Malaysia’s states and Sarawak’s districts in 

a purely spatial contiguity weights matrix (see the row of 

WSD in Table 2), the resulting Moran’s I statistics are 

higher than those solely of the Sarawak’s 40 districts over 

different temporal periods. The increases in the global 

spatial autocorrelation after including Malaysia states’ 

incidence rates on top of the Sarawak 40 districts’ may 

suggest the decreased variation in incidence rates between 

these regions, following the interpretation given in [40]. 
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Figure 5.  (a) The overall incidence rates throughout the study period for (i) Sarawak’s districts and (ii) Malaysia’s states. (b) The segmentation of 

study period into four temporal periods based on Sarawak’s daily confirmed cases. The (c) Sarawak’s districts’ and (d) Malaysia’s states’ incidence 

rates in respective four temporal periods 

Table 2.  Global Moran’s I statistics and their p-value of incidence rates for each spatial aggregation level throughout 2021 and across different waves 

Spatial Spatial   Incidence rate 

weights level  2021 Wave 1 Wave 2 Wave 3 Wave 4 

WD Sarawak’s Moran’s I 0.213 0.214 0.373 0.329 0.277 

 districts p-value 0.022 0.021 1.28  10-4 6.76  10-4 0.003 

WS State Moran’s I 0.146 0.599 0.595 0.239 0.148 

  p-value 0.358 0.004 0.004 0.188 0.188 

WSD State and  Moran’s I 0.252 0.244 0.425 0.432 0.367 

 district p-value 0.009 0.011 1.89  10-5 1.38  10-5 1.96  10-4 

WSA State and Moran’s I 0.249 0.246 0.426 0.413 0.371 

 district p-value 0.008 0.009 1.36  10-5 2.34  10-5 1.35  10-4 

 



464  Spatial Autocorrelation Analysis of Infectious Disease Incidence Rates at State and District Level   

Using Supra-Adjacency Weights Matrix 

When the flight connectivity is factored in a spatial 

interaction submatrix (𝑊𝑖𝑗
𝑆→𝐷), the spatial autocorrelation 

intensities are altered differently over different waves, as 

shown in the row of WSA in Table 2. Specifically, for 

Waves 1 and 2 whereby the state-wise spatial 

autocorrelations are high and statistically significant, both 

the Sarawak district and Malaysia state incidence rates 

become slightly more spatially related. However, when the 

state-wise spatial autocorrelations are not statistically 

significant, both levels’ Moran’s I statistics drop 

marginally, except for Wave 4. As the Moran’s I statistics 

are all moderate and statistically significant across different 

temporal periods, further exploration of their local 

clustering pattern through local spatial autocorrelation 

analysis is highly necessary. 

3.3. Local Spatial Autocorrelation Analysis 

We illustrated the local spatial autocorrelation through 

LISA cluster map in Fig. 6. By including the state-wise 

spatial autocorrelation through spatial contiguity weights 

𝑊𝑖𝑗
𝑆𝐷  and spatial interaction submatrix 𝑊𝑖𝑗

𝑆→𝐷 , several 

districts in Sarawak show contrasting results compared to 

the previous findings using first-order spatial contiguity 

weights in [25]. These districts were labelled in Fig. 6. 

Overall, the LISA cluster maps in Fig. 6 agree 

considerably well with previous findings across different 

temporal periods, except for Wave 3 which gives greater 

deviation. In Wave 3 (see Fig. 6(d)), sporadic but 

significant low-high clusters are detected across three rural 

districts (Kabong, Pakan, and Bukit Mabong) in the central 

region of Sarawak. Also, a greater number of districts in 

the southern region fall into the high-high cluster. They 

include Bau, Lubok Antu, and Betong. All these districts, 

except Betong, were categorized as high-high cluster in the 

previous study only when the second-order contiguity 

weights were employed. This may suggest that 

incorporating spatial interaction with other states in 

Malaysia based on flight connectivity information in this 

study is able to capture more spatial clustering patterns of 

COVID-19 at the district level of Sarawak. 

Sri Aman is one additional district grouped into high-

high cluster for incidence rates throughout 2021 (Fig. 6(a)), 

while Sebauh is another new district with significant low-

low clustering pattern in Wave 4 (Fig. 6(e)). Besides, Sibu 

district is now classified as high-high cluster in Wave 1 

(Fig. 6(b)) with supra-adjacency spatial weights, which is 

otherwise detected only with the second-order contiguity 

weights in previous findings. This detection is remarkable 

especially because Sibu is highly related to the largest 

infection cluster in Sarawak known as Pasai Cluster, which 

represented the first widespread community transmission 

of COVID-19 infections in Sarawak. This infection cluster 

stemmed from an infected individual who returned from 

Johor to attend a funeral. This indicates that incorporating 

inter-level adjacency through spatial interaction submatrix 

may improve the spatial clustering detection effectiveness. 

In Fig. 6, only subfigure 6(e) shows the map of 

Malaysia’s states together with Sarawak’s districts. This is 

because the state-level local spatial clustering pattern is 

only significant in Wave 4, but not for other temporal 

periods. Specifically, three adjacent states in the Peninsular 

Malaysia, namely Selangor, Pahang, and Terengganu, are 

categorized as high- high cluster while Perak is labelled as 

a significant low-high cluster in this wave. The detection of 

these three states as high-high cluster suggests that high 

local spatial autocorrelation may be responsible for the 

similar higher incidence rates around these adjacent states. 

No significant spatial clustering patterns were detected at 

the state-level incidence rates for the first nine months of 

2021 mainly because the inter-state human flow remained 

low under the strict travel restrictions associated with 

Movement Control Order 2.0. When such travel 

restrictions were released in October 2021 [41], higher 

inter-state human flow gave rise to quicker spreading of 

virus transmission and therefore higher spatial clustering 

occurred. 

3.4. Spatial Autocorrelation Analysis Based on the 

Segmentation of State-Level Data 

In the previous subsections, we presented the spatial 

autocorrelation analysis of Malaysia’s states and Sarawak’s 

districts incidence rates over four temporal periods based 

on segmentation of Sarawak’s daily confirmed cases. 

However, as can be seen from Fig. 5(b), such segmentation 

of periods may be different if the change point algorithm is 

applied to the state-wise daily confirmed cases. 

Specifically, the temporal segmentation and the way data 

are temporally aggregated are unavoidably susceptible to 

the modifiable temporal unit problem which has significant 

effects on the spatiotemporal incidence patterns and 

clusters detected [42,43]. Therefore, the consistencies of 

the spatial autocorrelation strength and local clustering 

pattern appearing at different temporal ranges need to be 

re-examined by considering different temporal 

segmentation of the datasets. 

Hence, we performed the segmentation on the state data 

into four temporal segments using change point analysis 

and then subdivided the Sarawak’s district data based on 

segmentation of state data. The date range of the resulting 

four temporal periods representing four pandemic waves at 

state level is given in Table 3. Waves 1, 3, and 4 are now 

covering longer period whereas Wave 2 becomes shorter if 

compared to the temporal segmentation shown in Fig. 5. 

Also, by inspecting their respective variance (results not 

given here), the incidence rates variability is found to be 

larger for these Waves 1, 3, and 4 whereas the opposite is 

observed for Wave 2. This may explain why the Moran’s I 

statistics of incidence rates at state level are exceptional 

high (i.e. 0.839) during this Wave 2, as increased spatial 

autocorrelation may be caused by decreased variation in 

incidence across states when the time range of this Wave 2 

is shorter. 
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Figure 6.  LISA cluster map for incidence rates in different temporal periods by using supra-adjacency spatial weights matrix 

Table 3.  Global Moran’s I statistics and their p-value of incidence rates for different temporal periods segmented based on state-wise daily confirmed 
cases 

Spatial Spatial  Incidence rate 

weights level  2021 Wave 1 

1 Jan – 16 May 

Wave 2 

17 May – 10 July 

Wave 3 

11 July – 8 Oct 

Wave 4 

9 Oct – 31 Dec 

WD Sarawak’s Moran’s I 0.213 0.393 0.336 0.400 0.272 

 districts p-value  0.022 5.87  10-5 5.15  10-4 4.41  10-5 0.004 

WS State Moran’s I 0.146 0.403 0.839 0.222 0.146 

  p-value  0.358 0.043 9.83  10-5 0.214 0.359 

WSD State and Moran’s I 0.252 0.434 0.521 0.421 0.283 

 district p-value  0.009 1.24  10-5 2.01  10-7 2.18  10-5 3.61  10-3 

WSA State and Moran’s I 0.249 0.432 0.520 0.402 0.284 

 district p-value  0.008 1.03  10-5 1.35  10-7 3.83  10-5 2.99  10-3 

 

Overall, the statistical significances of the global 

Moran’s I in Table 3 across different spatial aggregation 

levels remain consistent with results given in Table 2. For 

instance, similar to Table 2, all global Moran’s I statistics 

for four temporal periods in Table 3 are significant (p-value 

< 0.05) except the state-level incidence rates in Waves 3 

and 4. From the row of WSA, the inclusion of spatial 

interaction submatrix results in weakening the global 

spatial autocorrelation (i.e. a lower global Moran’s I) over 

the first three waves. A slightly smaller global Moran’s I 

value may suggest a more dispersed spatial distribution of 

incidence rates. This is particular true where the spatial 

interaction submatrix can be regarded as partially 

representing the human flow between selected Malaysia’s 

states and Sarawak’s districts through flight connectivity. 

We then illustrated the local clustering pattern of 

incidence rates for different temporal periods segmented 

based on the state-wise data in the form of LISA maps in 

Fig. 7. Despite different temporal segmentation, the LISA 

maps in Fig. 7 are almost identical to those in Fig. 6 for 

Waves 2 and 4, except that Julau is categorized as low-high 

in Wave 2 and no significant local clusters are detected at 

state level in Wave 4. The latter may suggest that the 

segmentation of the data alters the local clustering results 

at state level more considerably compared to Sarawak’s 

district level. As Wave 1 spans longer period, three 

additional districts, namely Selangau, Pakan, and Kapit, are 

detected as high-high (see Fig. 7(b)). Serian is a newly 

found high-high cluster while Lubok Antu is in low-low in 

Wave 3 (see Fig. 7(d)). The consistency of the other not 

specially mentioned clusters in Fig. 7 (and Fig. 6) suggests 

that these clusters can be considered as ‘true’ clusters 

which are stronger than the others [42]. 
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Figure 7.  LISA cluster map for incidence rates in different temporal periods segmented based on state-wise daily confirmed cases. The additional 

significant clusters found in this LISA compared to those in Fig. 6 are indicated with green label 

4. Discussion 

This study utilized a novel supra-adjacency-based spatial 

weights matrix to explore the global and local spatial 

autocorrelation strength of pandemic evolution across 40 

districts in Sarawak in conjunction with the disease 

development at state level of Malaysia over different 

temporal periods. The spatial linkage structure between 

these districts and states was implicitly modelled as inter-

layer adjacency by considering the flight routes between 

four districts in Sarawak and several other states in 

Malaysia. Segmentation of data based on Sarawak’s and 

state-wise daily confirmed cases data was conducted. 

Together with the supra-adjacency weights matrix, the 

consistency of the intensity of spatial autocorrelation and 

type of local clustering patterns at two spatial aggregation 

levels over time were investigated. 

The detection of Sibu as an additional high-high cluster 

in Wave 1 (see Fig. 6(b)) in this supra-adjacency weights 

matrix is remarkable. Although Sibu has the highest 

number of first-order contiguity neighbors among all 40 

districts in Sarawak, it is still not categorized as significant 

high-high cluster under the purely first-order spatial 

contiguity weights scheme in the previous study [25]. As a 

district with large number of spatial contiguity neighbors, 

the spatial lag of the disease incidence rate in Sibu can be 

offset by smaller incidence rates in its adjacent rural 

districts such as Daro and Matu. When the spatial 

interaction between Sibu and Johor (resp. Selangor) is 

added through submatrix 𝑊𝑖𝑗
𝑆→𝐷  in supra-adjacency 

setting, these states’ incidence rates greatly impact the 

spatial lag of the disease incidence rates in Sibu. The 

inclusion of Johor as a neighbor to Sibu is highly relevant 

since the start of widespread community outbreak of 

COVID-19 in the center of Sarawak was linked to Pasai 

infection cluster. This infection cluster was associated with 

inter-state travel from Johor due to funerals [44]. Sibu 

district not only serves as the geographic center of Sibu 

division and Sarawak, but also offers a highly convenient 

facility for handling COVID-19 testing and case 

registration [45] for its nearby districts. These suggested 

that Sibu’s incidence rate had a profound effect on the 

emergence of Wave 1 in Sarawak and indicated the need to 

include Sibu as a high-high cluster in this temporal period. 

When spatial autocorrelation analysis is performed 

across different aggregations of incidence data, namely 

aggregation by district for Sarawak state, and aggregation 

by state for all 13 states and three federal territories in 

Malaysia, the potential data quality issues caused by 

different levels of spatial aggregation of data can be 

revealed. Although the global Moran’s I is generally higher 

for incidence rates in state level than in district level during 

Waves 1 and 2 (see Tables 2 and 3), the local clustering 

patterns at this coarser level of aggregation may be faded 

out. Specifically, the LISA cluster maps in Figs. 6 and 7 

indicate that the numbers of significant spatial clusters and 

outliers in district level are substantially greater than its 

state-level counterpart. Only four states in Wave 4 appear 

to form significant cluster (see Fig. 6(e)). This suggests that 

aggregation at coarse-grained levels fail to keep valuable 

attribute and may underestimate the severity of the virus 

spread in the course of pandemic [46]. However, such 

aggregation is essentially a tradeoff between the level of 

detail and noise in spatial analysis [47]. Coarser level 

implies fewer regions are being analyzed. Although this 

may reduce detail information, extreme values in the data 
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can be conveniently averaged out. Hence, public health 

researchers should treat the aggregated data at coarse-

grained levels with greater caution. 

Previous studies have reported that the COVID-19 

transmission in a state not only occurs in adjoining counties, 

but also spills among different states which are 

geographically distant from the source state [48,49]. 

Therefore, the spatial contiguity alone might not be 

sufficient for comprehending the COVID-19 diffusion due 

to human interactions, given the modern transportation 

facilities and socioeconomic dependencies between 

regions [23]. Hence, several domestic flight routes (see Fig. 

1(b)) were considered in this study for incorporating the 

spatial interaction effect on the disease incidence rates 

between states in Malaysia and districts in Sarawak. We 

assume the source states are those outside Sarawak. That is, 

the disease spills over from those states to Sarawak through 

positioning the submatrix 𝑊𝑖𝑗
𝑆→𝐷  at bottom left of the 

supra-adjacency matrix (see Figs. 3 and 4). It is 

mathematically plausible to add another submatrix 𝑊𝑖𝑗
𝐷→𝑆 

at the top-right of the supra-adjacency matrix and assume 

that the disease may also spill over from Sarawak to other 

states in Malaysia. We opted for not implementing this 

partially because it was evidence from the Fig. 5(b) that the 

state-wise pandemic waves arrived earlier than those in 

district level of Sarawak. 

4.1. Public Health Implications, limitations and Future 

Directions 

The supra-adjacency matrix approach has significant 

practical applications for public health decision-making 

and pandemic preparedness. Capturing inter-layer spatial 

dependencies allows for more targeted interventions, such 

as optimizing vaccine distribution and planning mobility 

restrictions during pandemics. This methodology can 

strengthen early warning systems by identifying high-risk 

clusters often overlooked by traditional spatial models. 

Studies have emphasized addressing spatial uncertainties to 

improve epidemiological predictions [50] and the value of 

hybrid spatial weights in detecting high-risk areas [51]. 

Furthermore, its scalability aligns with global efforts to 

enhance disease surveillance, as highlighted in multiscale 

network modelling studies [50,52]. 

This study has several limitations. First, the study period 

was limited to one year (i.e. 2021). Both the Sarawak’s 

district level incidence data for the first year of the 

pandemic and for the omicron wave in the third year were 

not publicly available. However, since the COVID-19 

cases in Sarawak were relatively small in the year 2020, 

and the relaxation of flight frequencies into Sarawak started 

before the arrival of the omicron wave, the spatial 

autocorrelation we observed is consistent across different 

segmentation of temporal periods throughout the year 2021. 

Second, we have no way to adjust the spatial interaction 

weights between states in Malaysia and districts in Sarawak 

based on the actual interstate travel across different 

temporal periods in 2021. Such human mobility flow data 

are scarce for the developing state like Sarawak. Even so, 

this adjustment may be deemed necessary as the whole 

country including Sarawak imposed different intensity of 

travel restrictions as non-pharmaceutical interventions 

across different months of 2021. Spatial dependence 

greatly decreased when lockdown was implemented [32]. 

Future research should focus on incorporating real-world 

mobility data, refining temporal segmentation, integrating 

socio-economic factors, and ensuring scalability. Human 

mobility data can enhance spatial interaction matrices by 

reflecting actual movement patterns [53,54]. Addressing 

spatiotemporal uncertainties is also critical for capturing 

variations in disease dynamics across different regions and 

timeframes [50]. Additionally, incorporating socio-

economic data, such as population density and healthcare 

accessibility, could refine spatial weights and improve 

cluster detection [51]. Finally, scaling these methods to 

larger and more complex networks, such as global air 

transport systems, would allow broader applicability in 

monitoring cross-border disease transmission [50,52]. 

5. Conclusions 

We have provided evidence that the spatial dependencies 

of COVID-19 incidence rates at two different aggregation 

levels and concerning geographical disjoint regions can be 

conceptualized using supra-adjacency weights matrix. 

Such weights matrix incorporates spatial interaction into 

spatial contiguity for quantifying inter-level adjacency. 

Assessing such adjacency of the inter- and intra-level 

spread of COVID-19 could provide valuable insight into 

understanding the observed spatial autocorrelation patterns 

across multiple spatial scales. This is crucial for optimizing 

medical resources and public health interventions decision-

making. The methodology and its subsequent results 

analysis can serve as a reference for disease surveillance 

and response in preparation for next pandemic or more 

generally epidemic diseases outbreaks. 
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