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ABSTRACT
Modern medical imaging equipment can capture very high-resolution images with detailed features. These high-resolution im-
ages have been used in several domains. Diabetic retinopathy (DR) is a medical condition where increased blood sugar levels 
of diabetic patients affect the retinal vessels of the eye. The usage of high-resolution fundus images in DR classification is quite 
limited due to Graphics processing unit (GPU) memory constraints. The GPU memory problem becomes even worse with the 
increased complexity of the current state-of-the-art deep learning models. In this paper, we propose a memory-efficient divide-
and-conquer-based approach for training deep learning models that can identify both high-level and detailed low-level features 
from high-resolution images within given GPU memory constraints. The proposed approach initially uses the traditional transfer 
learning technique to train the deep learning model with reduced-sized images. This trained model is used to extract detailed 
low-level features from fixed-size patches of higher-resolution fundus images. These detailed features are then utilized for classi-
fication based on standard machine learning algorithms. We have evaluated our proposed approach using the DDR and APTOS 
datasets. The results of our approach are compared with different approaches, and our model achieves a maximum classification 
accuracy of 95.92% and 97.39% on the DDR and APTOS datasets, respectively. In general, the proposed approach can be used to 
get better accuracy by using detailed features from high-resolution images within GPU memory constraints.

1   |   Introduction

CNN (convolutional neural network) models are extensively 
used for image and video processing tasks, such as object de-
tection, image classification, and segmentation. In certain appli-
cation domains (such as medical imaging and remote sensing) 
CNN models can provide better accuracy with higher resolution 
input images  [1–3]. Diabetic retinopathy (DR) is an eye com-
plication that is caused by diabetes. The increased blood sugar 

levels of diabetic patients can affect the blood vessels inside the 
retina of the eye [4]. DR is a major cause of blindness in diabetes 
patients. It mostly remains undetected in the early stages until 
we reach the later stages of the disease. Fundoscopy is a widely 
used imaging technique that captures the back of the eye called 
the fundus [5]. In this imaging technique, the patient's eyes are 
dilated, and a fundus camera is used to capture a high-resolution 
color image of the fundus. The different abnormalities caused 
by DR in the eye include red lesions like microaneurysms (MA) 
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and intra-retinal hemorrhages (HE) [6]. Besides these, white le-
sions that appear in the eye due to DR include exudates (EX) 
and cotton wool spots. Detecting DR from fundus images, for 
instance, relies heavily on the precise identification of subtle 
anomalies. Fundus images of varying quality and resolution are 
used by ophthalmologists to capture the internal structure of 
the eye and help diagnose DR in its early stages. CNNs trained 
on such high-resolution images can discern nuanced vessel tex-
tures, variations in density, and other critical features crucial for 
accurate diagnosis. This can be seen in Figure 1 that the level of 
detail perceptible in the image increases with higher resolution.

CNNs operate by leveraging hierarchical feature extraction 
through convolutional layers. While lower resolutions may cap-
ture general object shapes, higher resolutions offer a wealth of 
local details, often crucial for accurate classification. It is known 
that CNN models tend to rely mostly on local features rather 
than global features for classification purposes [7, 8], which is 
an inverse of how human perception works. Local features pro-
vide several advantages over global features. Firstly, local fea-
tures capture more detailed and distinctive information about 
specific regions of an image. Global features, on the other hand, 
treat the entire image as a single entity and do not differentiate 
between different regions of the image. This can result in a loss 
of important information about the image that could be criti-
cal for accurate classification. Secondly, local features are more 
robust to variations in the image, such as changes in lighting, 
rotation, and scale. This is because local features are computed 
based on small patches of the image and are therefore less af-
fected by changes in the overall appearance of the image. Global 
features, on the other hand, may not be as robust to such varia-
tions, as they consider the entire image as a whole. Lastly, local 
features can be combined in a spatially aware manner to capture 
the overall structure and layout of the image. Overall, local fea-
tures are a powerful tool for image classification because they 
can capture fine-grained, distinctive information about specific 

regions of an image while also being more robust to variations 
and allowing for spatially aware feature combinations.

However, the increase in input image dimensions for CNN-
based models substantially increases the number of trainable 
parameters and thus requires a significant amount of memory 
to store and process data. This results in a higher computational 
cost (increased time complexity) and requires larger memory 
(increased space complexity). There have been several attempts 
at mitigating the time complexity aspect of model training using 
data and model parallelism [9, 10].

A critical constraint in working with deep learning models using 
a large number of parameters with higher resolution images is 
the available graphics processing units (GPU) memory limita-
tions. A popular approach for reducing space complexity is to 
reduce model complexity with a reduced number of parameters 
such as MobileNet, SqueezeNet, and EfficientNet. However, 
these memory-efficient models can still result in larger memory 
requirements for processing higher resolution images.

The major contribution of this paper is that it proposes a 
novel Memory Efficient Divide and Conquer based approach 
for training deep learning models (MEDCNet) with high-
resolution input images. The main objective is to extract high-
resolution image features from the fundus images of the eye 
that can help in providing better classification for DR images. 
The work proposes a divide and conquer approach by divid-
ing the fundus image into various patches and extracts high-
resolution features which help improve the performance of 
DR classification. The approach uses transfer learning (from 
a model trained on reduced sized images) to identify both 
high-level and detailed low-level features from input high-
resolution fundus images. The approach results in improving 
overall test accuracy within given GPU memory constraints. 
In what follows, Section  2 discusses the related work in the 

FIGURE 1    |    Examples of level of details in fundus image at different resolutions.
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field of DR detection from high-resolution images and large 
images in general for image classification tasks. Further, the 
proposed methodology is presented in detail in Section 3. The 
details of the dataset used in the research work are provided in 
Section 4. Results and their related discussions are elaborated 
in Section 5. The paper concludes in Section 6 with directions 
toward future work.

2   |   Related Work

The issues associated with processing and analyzing images of 
high resolution, which have been identified earlier, have raised 
the interest of researchers in finding effective solutions to ad-
dress them. There have been solutions that focus on image size 
variation, feature extraction methods, deep learning models, 
and various parameter optimization schemes.

In order to comprehend the knowledge in this domain, we have 
adopted a two-pronged approach, namely, research on high-
resolution images (a generic approach) and research on Diabetic 
Retinopathy images (a specific approach). We first proceed with 
the study of research work performed in the domain of Deep 
Learning approaches utilized in the context of high-resolution 
images.

2.1   |   DL Approaches for High-Resolution Images 
Classification

This study starts with a recent survey paper [11] which performs 
a comprehensive summary of where the high-resolution images 
exist and the approaches used to address their management and 
classification. The application areas include medical diagno-
sis, remote sensing, security and surveillance, agriculture, and 
material science. Some of the prominent approaches for work-
ing with high-resolution approaches include, uniform down-
sampling, high-resolution vision transformers, and lightweight 
scanner networks, which have been shown to be effective in 
reducing processing complexity and also improving perfor-
mance in terms of image identification and classification. The 
paper has found that image resolutions in these applications can 
range from 360 × 360 to 200 × 200 K. Several prominently used 
datasets are also mentioned, which include, PANDA (for person 
detection), CAMELYON (for pathology), CAD-CAP (for endos-
copy), INbreast (for breast cancer detection) and FAIR1M (for 
object detection). The related work on the recent research in the 
area of high resolution images in summarized in Table 1.

In order to define the scope of work, we choose the medical diag-
nosis field as a subset to focus on within the context of high res-
olution images. The authors in [1], have used the HyperKvasir 
dataset which had Endoscopy images and trained the CNN 
models like DenseNet-161 and ResNet-152 for identifying pa-
tients suffering from gastrointestinal tract infections. The study 
focused on DL model performance variation by the change in 
image resolutions from 32 × 32 to 512 × 512. They achieved a 
maximum MCC score of 0.9 with images having the highest 
resolution. In a similar work on chest radiographs data from 
NIH, CNNs (namely, ResNet-34 and DenseNet-121) were uti-
lized on image sizes from a resolution of 32 × 32 to 600 × 600. 

Again, the experiments clearly suggested that the classifier per-
formance improves with the increase in the image resolutions, 
with a maximum value of AUC as 86.7%. In a similar work 
by [17], the authors were varying the image resolutions from 
32 × 32 to 600 × 600 for chest radiographs of the NIH dataset. 
This study utilized the pre-trained CNN models (ResNet34 and 
DenseNet121) and achieved a performance of 86.7% for the AUC 
metric.

In another interesting study [12], the authors have worked on 
the effect of DL performance by keeping the input image sizes 
fixed (with a resolution of 96 × 96), but varying the optimizer, 
batch size and learning rate of the DL algorithms. The experi-
ments related to the VGG16 and ImageNet have shown that the 
higher batch size does not necessarily achieve higher accuracy. 
However they achieved a significantly higher accuracy with 
96.77% as the AUC value. To deal with images of high resolution, 
the authors in [13], have used the cut into patches (CIP) approach 
on the whole slide images (WSI) relating to the pathological tests 
conducted for detecting eye diseases. The original WSI images 
in the ZJU-2 dataset were in the order of few gigapixels and 
formed as an input to the pre-trained VGG16 CNN model. It 
was observed through experiments that the CIP approach gave 
a lower classification accuracy of 94.9% with a lower computa-
tional complexity. However, with the WSI approach the accu-
racy increased to 98.2% and so did the computational complexity 
in terms of memory and CPU cycles.

An end-to-end part learning (EPL) approach was utilized on the 
BCC skin cancer dataset where the original images had a resolu-
tion in the order of a few gigapixels [14]. However, in this work, 
the ResNet34 CNN model was used, and the EPL approach ob-
served tiles in an image and made classifications based on the 
discriminative features from these smaller tiles, as opposed to 
the features extracted from the whole images. This approach was 
successful in providing an enhanced AUC of 98.6%. In a similar 
work on image tiling, the authors utilized an RNN model on the 
multi-center WSI dataset for cervical cancer [15]. With image 
resolutions of 1 gigapixel, they achieved a sensitivity values of 
95.1% with one WSI image taking about 1.5 min to process.

Finally, the authors have used the FCN with VGG16 on multi-
gigapixel images from the Camelyon dataset for breast cancer 
detection [16]. From the computational complexity point of view, 
this approach took about 1 min to process a WSI image. With the 
image resolutions of 200 × 200 K an AUC score of 96.69% was 
obtained.

In summary, one of the popular approaches to deal with the 
computational complexity of high-resolution images is to use 
the CIP approach, which reduces the complexity; however, the 
performance in terms of classification accuracy also lowers. We 
now proceed to focus our study of the related work in the area of 
diabetic retinopathy detection using DL approaches.

2.2   |   DL Approaches for Diabetic Retinopathy 
Detection

Now, we proceed with the study of research performed in the 
domain of Deep Learning approaches utilized in the context of 
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diabetic retinopathy identification and classification. The re-
lated work on the recent research in the area of diabetic retinop-
athy images is summarized in Table 2.

A review paper by the authors in [23] has provided a compre-
hensive summary of the research domain where deep learn-
ing approaches have been specifically applied to the detection 
and classification of diabetic retinopathy (DR). They provide 
details of some of the popularly used datasets in this area, 
namely, Kaggle EyePACS, DDR, and Kaggle APTOS. Also, 
they present the usage of various DL models such as generic 
DL approaches, transfer learning, and ensemble learning ap-
proaches. One of the important techniques is about the model 
training with patches, which supports the researchers in deal-
ing with computational complexities associated with high-
resolution images.

The majority of the papers focus on pre-trained DL models. One 
such work [18], applied 16 pre-trained CNN models on three 
datasets (Kaggle DRD, IDRiD, and DDR) to perform multi-class 
classification of DR images. They achieved a maximum accu-
racy of 79.1% with the DenseNet121 model on image resolutions 
of 4288 × 2848 from the IDRiD dataset. The authors in [19], 
have used VGG16 and ImageNet models on 7 different datasets 
(DDR, IDRiD, Kaggle, Messidor, Messidor2, DIARETDB0, and 
DIARETDB1) by leveraging the patch-based method to achieve a 
ROC value of 91.2%. The original image sizes were 512 × 512 and 
the patch size was empirically chosen as p = 65 pixels. In a similar 
work by [20], eight different pre-trained models (namely, VGG16, 
ResNet18, GoogleNet, DenseNet-121, Inception, SSD, YOLO and 
RCNN) were used to work on the DDR dataset with image res-
olutions of 512 × 512. The maximum classification accuracy of 
76.59% was reported for the ResNet18 model for a six-class grad-
ing experiments. However, the AP and IoU results were on the 
lower side. They also performed lesion detection by using SSD, 
YOLO and RCNN models which also did not perform well.

However, there are some approaches which do not resort to pre-
trained CNN models, but rather use the standard ready-made 
CNN models or build their models from scratch. One such work by 
[17], uses the CNN512 and YOLOv3 deep learning models on the 
DDR and APTOS datasets and work on fixed sized images of res-
olution of 512 × 512. With this approach which also involves data 
augmentation, they achieve a classification accuracy of 89% for 
identifying five classes of DR cases. Some novel approaches have 
harnessed the optimization characteristics of bio-inspired optimi-
zation algorithms. One such paper by [21], uses Auto-regressive-
Henry Gas Sailfish Optimization (Ar-HGSO) on the augmented 
DDR and IDRiD datasets, but re-sizing the images to a resolution 
of 256 × 256 for training their models. They achieve a five class 
classification accuracy of 91.4% for the IDRiD dataset. Yet an-
other recent approach uses the Visual Transformer and Residual 
attention models for classifying five class of DR by achieving an 
AUC metric value of 90% [22]. They have used the original image 
resolution of 512 × 512 from the DDR and IDRiD datasets, but also 
perform a comparison with five other pre-trained CNN models.

Based on this literature survey of the deep learning based DR 
identification and classification, we come to the conclusion that 
images of high resolution need to be divided into segments or 
patches and then the DL model needs to be trained. This reduces 

the memory, processing resources, and time complexity of the 
models with a minimal loss of performance. However, we also 
propose a variation to this methodology by training the model 
with the image features that are generated by the DL model, but 
we perform the classification with the traditional ML classifiers 
to reduce the overall system complexity while minimizing the 
performance loss. The following section provides the details of 
the proposed methodology.

3   |   Methodology

In this section, our proposed framework to deal with high-
resolution fundus images that minimizes GPU memory usage 
is presented. Figure  2 shows the overall workflow of the pro-
posed framework. The images in the DDR and APTOS data-
sets are passed through the pre-processing stage first where 
the retinal area of the eye is extracted from the fundus images. 
Contrast limited adaptive histogram equalization (CLAHE) 
is applied to the extracted images for enhancement. Next, the 
high-resolution features are extracted from the fundus images 
using our proposed framework, namely, the divide and conquer 
approach. These features are passed to different ML classifiers, 
that is, SVM, RF, and MLP. The results of the classification are 
evaluated using various performance metrics and compared 
with recent studies.

As stated earlier, higher resolution images that are given as input 
to the CNN models can improve the quality of features that are 
extracted from the input data. The inter-class similarities between 
different classes of DR can be better differentiated by the CNN 
model if the features are extracted from a high-resolution input 
image. However, increasing the size of the input image to a CNN 
causes increased training time and high GPU memory utiliza-
tion. Most GPUs are unable to handle inputs with high pixel den-
sity due to memory limitations. Our framework proposes a divide 
and conquer-based approach for handling high-resolution images 
while keeping the GPU memory utilization within bounds. The 
main idea of the proposed algorithm is presented in Figure 3. The 
approach consists of three stages: (1) Model training on resized 
input images, (2) features extraction using transfer learning (from 
the trained model in previous stage) on patches of high-resolution 
fundus images, and (3) classification based on the detailed ex-
tracted features using standard machine learning algorithms. 
These steps are explained in detail in the following subsections.

3.1   |   Model Training on Resized Input Images

The high-resolution input images are first resized to a smaller 
dimension. For example an image of dimension (w, h) would be 
resized to 

(
w∕kw, h∕kh

)
 by a ratio of k = kw × kh where kw > 1 

and kh > 1 are the resize ratios of width and height respectively 
and k defines the overall resize ratio. The resized images are 
then used to train an optimal CNN-based deep learning model 
using transfer learning. It should be noted that for using pre-
trained models, the resizing should take into consideration the 
appropriate input size requirements.

In transfer learning, knowledge gained from one domain (source 
task) is used to improve learning in a different but related 
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domain (target task). The transfer process involves taking the 
pre-trained model and adapting its feature extraction layers to 
the specific characteristics of the target task. This adaptation is 
typically done through fine-tuning, where the model is trained 
on the target task using a smaller dataset. There are different 
methods available for fine-tuning existing CNN models, includ-
ing updating the architecture, retraining the model, or freezing 
partial layers of the model to utilize some of the pre-trained 
weights. Fine-tuning allows the model to adjust its learned fea-
tures to better align with the nuances of the target task, lead-
ing to improved performance even when limited labeled data is 
available for the target task.

In this paper, we evaluated several pre-trained models for trans-
fer learning, including GoogleNet, AlexNet, MobileNet, and 
Inceptionv3. Based on the initial comparative performance eval-
uation of these pre-trained models in our problem domain, we 
observed that GoogleNet provided better accuracy. Therefore, 
we chose to use GoogleNet for training our CNN models. 
GoogleNet [24] is a CNN-based architecture that has 22 layers 
and efficiently utilizes computational resources with repeated 

inception modules. The inception module employs multiple par-
allel convolutional filters of different sizes within the same layer. 
This allows the network to capture features at various spatial 
scales and helps prevent the vanishing gradient problem asso-
ciated with very deep networks. The inception module for the 
GoogleNet model is shown in Figure 4. The 1 × 1 convolutional 
layers reduce the dimensions of the input and extract the local 
cross-channel features. The 3 × 3 and 5 × 5 convolutional layers 
help in capturing the spatial features of the input. The pooling 
layer is included in the inception module to reduce the dimen-
sions of the input.

It is to be noted that training the above-mentioned models from 
scratch requires computation and data resources. On the other 
hand, because of the difference in the domain of the target task, 
transferring all learned weights as they are may not perform 
well in the new setting. Thus, it is generally better to freeze the 
initial layers and replace the latter layers with random initial-
ization. This partially altered model is retrained on the current 
dataset to learn the new data classes. The number of layers 
that are frozen or fine-tuned depends on the available dataset 

FIGURE 2    |    Block diagram showing the overall proposed workflow.

FIGURE 3    |    Proposed approach for extracting features from high resolution images.
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and computational power. If sufficient data and computational 
power are available, then we can unfreeze more layers and fine-
tune them for the specific problem.

3.2   |   Feature Extraction Using Transfer Learning 
From Optimal Trained Model

The pre-trained model trained in the previous stage can be used 
to extract features by using transfer learning. This feature ex-
traction approach is a specific application of transfer learning 
that is focused on extracting relevant and generic features using 
the pre-trained models.

In this stage, the original high-resolution input images of dimen-
sion (w, h) are cut into k patches of dimensions 

(
w∕kw, h∕kh

)
. 

The deep learning model trained in the previous stage is used 
to extract n features from each of the patch resulting in over-
all k × n features. These collective detailed merged features are 
then used for training a classification model. The specific steps 
of cutting images into patches and feature extractions are for-
mally explained in an algorithmic format in Section 3.4.

3.3   |   Classification

The classification using the merged features is performed using 
standard machine learning algorithms such as random forest 
(RF), support vector machines (SVM) and multi-layer percep-
tron (MLP). RF is an ensemble learning algorithm that combines 
the predictive power of multiple decision trees to achieve robust 
and accurate results. Given training data consisting of N data 
points, each with d features: 

(
x1, y1

)
, … ,

(
xN , yN

)
, where xi ∈ℜ

d 
and yi ∈ Y . For each of the M trees in the forest, it randomly 
samples m features (m < d) without replacement. Then for each 
internal node it randomly selects a subset of the m features. The 

best split among the selected features is then chosen based on an 
impurity measure (such as Gini index for classification). It then 
splits the data based on the chosen split point. The steps are re-
peated until a stopping criterion is met. There are several param-
eters that can be tuned for training RF based models such as (1) 
the number of individual decision trees within the forest (more 
trees improve robustness but with increased training time), (2) 
criteria to determine the quality of split (such as Gini impurity), 
and (3) maximum depth of the trees (deeper trees can capture 
more complex relationships but risk overfitting).

SVM based classification approach is based on finding a hyper-
plane (decision boundary) that maximizes the margin between the 
closest data points from different classes, known as support vectors. 
Suppose you have a dataset with input vectors X and correspond-
ing labels y, where X is of size m × n (m examples, n features), and 
y is a vector of size m. The goal is to find a hyperplane defined by 
a weight vector w and a bias term b such that the hyperplane effec-
tively separates the data into two classes and the margin between 
the two classes is maximized. The decision function for a linear 
SVM is given by: f (x) = sign(w ⋅ x + b) where, w is the weight vec-
tor, x is the input vector, and b is the bias term. The optimization 
problem to find w and b is typically formulated as follows: 1

2
‖w‖2 

subject to the constraints: yi
(
w ⋅ xi + b

)
> 1, ∀ i = 1, 2, … ,m. 

There are several SVM parameters that can be tuned for training 
such as (1) regularization parameter that can be used to determine 
a trade-off between maximizing the decision boundary margin 
and minimizing mis-classification errors, and (2) choice of several 
kernels which are used for mapping the input data points into a 
higher-dimensional space so that the separation between the 
classes becomes easier. The linear, RBF and polynomial kernels 
are the commonly used choices.

MLP represents a classical neural networks-based architecture. 
It is characterized by a layered structure that consists of an input 

FIGURE 4    |    Working of the inception module in the GoogleNet CNN model.
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layer, one or more hidden layers, and an output layer. Each layer 
fully connects to the subsequent layer. MLPs leverage nonlinear 
activation functions in hidden layers that enable them to model 
complex relationships between inputs and outputs that are not 
linearly separable. Common activation functions include ReLU, 
sigmoid, and tanh. MLP models are trained using the backprop-
agation algorithm, which propagates the error signal backwards 
through the network, adjusting the weights and biases of connec-
tions to minimize the loss function. There are several parameters 
that can be tuned for training MLP-based models. Some of the 
common parameters include (1) number of hidden layers, (2) ac-
tivation functions used by individual neurons to transform input 
(RELU is a common choice), (3) loss function to measure the dis-
crepancy between actual and predicted output, (4) optimizing al-
gorithm used to update weights based on error computed by the 
loss function, (5) learning rate to determine how quickly weights 
are updated, (6) different types of regularization and dropout lay-
ers to prevent overfitting, (7) number of epochs used for training, 
and (8) batch size to determine the number of training samples 
processed together.

3.4   |   Proposed Algorithm

The steps involved in implementing the proposed approach are 
formally presented in Algorithm1. The algorithm first reads and 
pre-processes the input images using thresholding and bounding 
box methods to extract retina structure from the input fundus im-
ages of varying sizes. In the next stage, the pre-processed images 
are resized by a scaling factor k that is defined in Equation (1).

where w and h are scaling ratios.

For example, if the scaling factor is nine, kw is set to three and 
kh is set to three. This means that pre-processed images will be 
reduced in width and height by a factor of three. The resized im-
ages are used to train a modified CNN model in stage 1 that ex-
tracts n features. The number of features to extract is calculated 
by dividing the number of neurons in the FC connected layer of 
the CNN divided by the scaling factor k and taking the floor of 
the resulting value, as given in Equation (2).

If the scaling factor is nine and there are 1000 neurons in the FC 
layer of the CNN, then the value of n will be n = floor(1000∕9), 
that is, 111. The CNN model in stage 1 is modified by adding 
a fully connected layer with n neurons before the classifica-
tion layer of the CNN. This fully connected layer helps extract 
n features from the image patches in stage 2. Next, the high-
resolution pre-processed images are divided into k patches ac-
cording to Equation (1).

where Ip,x,y is the patch extracted from the high-resolution pre-
processed image. The deep learning model trained in the previous 
step is then used to extract n features from each of the image patch. 
The resulting features are afterwards combined to create the fea-
ture vector Fp for each pre-processed image having n × k features. 
Equation (5) describes the features extracted from pre-processed 
images where f  represents the features extracted from each patch.

These collective features that contain high-resolution features 
from different patches of the image are used for classification by 
different ML classifiers. In this work, we have used RF, SVM, and 
MLP classifiers to check the performance of the proposed divide-
andand-conquer approach. The proposed approach thus allows 
the processing of high-resolution input images with minimal GPU 
memory. It should be noted that the approach is suitable for do-
mains where features are evenly distributed across input images.

4   |   Dataset Description

We have evaluated the proposed methodology using two dif-
ferent datasets: Diabetic Retinopathy dataset (DDR) and Asia 
Pacific Tele-Ophthalmology Society (APTOS) dataset.

(1)k = kw ∗kh

(2)n =

⌊
fc
k

⌋

(3)I ←
P
∪
p=1

Ip

(4)Ip ←

√
k
∪

x,y=1
Ip,x,y

(5)Fp ← Fp⌢ f

ALGORITHM 1    |    Algorithm for Extracting High-Resolution 
Features From Input Images.

  Require: Fundus images M with labels L and scaling 
factor k (number of image patches)

Algorithm:
  read M, read L
  P ← Pre-process (M)

  R ← Resize the processed images P based on CNN model
  T, V  ← Divide R into training T and validation V
  fc ← Number of neurons in the fully connected layer of 
original CNN
  n ← Number of features to extract for each patch that is, 

⌊
fc
k

⌋

  Net ← Modify CNN model with added fn layer to extract
  M ← Train modified model (Net) with (T ,V )
  kw, kh ← 

√
k (Dimension of patches based on scaling 

factor k)
  Pw, Ph ← Height h and width w of pre-processed images P
  for each image p in P do
    for x in range(kw) do
      for y in range(kh) do
        S ← pw

kw
∗
ph
kh        Ip,x,y ← Extract patch S based on (x, y) from image p

end for
end for
end for
  for each p in I do
    for x in range(kw) do
      for y in range(kh) do
        f  ← Transfer learning 

(
M, Ip,x,y

)
 (Extract n features)

        Fp ← Fp ⌢ f
end for
end for
end for
  ML_Model = Train (classifier, F, L)
  DR_class = Classify (ML_Model, Fp)
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The DDR dataset  [20] consists of 13 673 fundus images. These 
images are collected from 9598 patients from 147 hospitals in 
China covering 23 provinces. The images are divided into five 
(5) categories as per DR severity scale that is, none, mild, mod-
erate, severe, and proliferative DR as shown in Figure  5. The 
total number of images available for each category are shows in 
brackets. These fundus images are captured using 42 types of 
fundus cameras with a 45° FOV, using mainly Topcon D7000, 
Topcon TRC NW48, Nikon D5200, and Canon CR 2 cameras. 
The data suffers from imbalance where No DR (50%) and mod-
erate DR (35%) classes cover 85% of the gradable images. The rest 
of the classes, that is, mild DR, severe DR, and proliferative DR 
cover 5.03%, 1.88%, and 7.29% of the total images, respectively.

In this paper, we have used this dataset for binary classification 
(positive DR (PDR) and negative DR (NDR)). This resulted in a 
balanced dataset for both DDR and APTOS datasets. The distri-
bution of image samples per class (NDR and PDR) is shown in 
Table 3.

The resolution of the input images from the DDR dataset vary 
from1500 × 1100 pixels to3200 × 2400 pixels. The images are 
captured under varying conditions by different ophthalmol-
ogists and differ in size and quality. Different pre-processing 
methods have been proposed in recent studies for contrast and 
color enhancement [25, 26]. In the proposed pre-processing 
stage, bounding box is used to extract the eye patch area from 
the input data and CLAHE algorithm is applied to enhance the 
input fundus images. The images are then resized to a resolu-
tion of 672 × 672 which is three times the resolution of input im-
ages expected by GoogleNet, AlexNet, ResNet, and other CNN 
architectures.

The APTOS dataset  [27] (Kaggle dataset) consists of a total of 
3662 retina images collected from multiple clinics under a va-
riety of imaging conditions using fundus photography from 
Aravind Eye Hospital in India. Fundus images provided in this 
dataset are categorized into the same five (5) classes as men-
tioned earlier for DDR dataset. This dataset is also imbalanced. 
To use it for binary classification (PDR or NDR), the stages 1–4 
of the severity scales are combined into PDR class whereas stage 
0 categorized as NDR class. This makes the dataset have 1805 
images in the NDR class and 1857 images in the PDR class. Like 
the DDR dataset, the resolution of fundus images in the APTOS 
dataset varies from 474 × 358 pixels to 3388 × 258 pixels.

5   |   Results and Discussion

The hardware used in this work consists of an AMD Ryzen 
2700× processor with 32 Gigabytes of memory. The Graphics 

FIGURE 5    |    Different severity scales of diabetic retinopathy in the DDR dataset.

TABLE 3    |    Data distribution per class in DDR dataset.

Label (class) DDR APTOS

NDR No DR (6266) 6266 No DR (1805) 1805

PDR Mild DR (630) 6256 Mild DR (370) 1857

Moderate 
DR (4477)

Moderate 
DR (999)

Severe DR (236) Severe DR (193)

Proliferative 
DR (913)

Proliferative 
DR (295)
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Processing Unit (GPU) installed in the system was an NVIDIA 
GeForce RTX 2080 with 8 GB graphics memory. MATLAB was 
used for running various image processing and ML algorithms. 
Different classifiers were used in MATLAB for binary and 
multi-class classification of input images.

In both datasets, classes 1–4, that is, Mild (1), Moderate (2), Severe 
(3), and Proliferative DR (4) are merged into a single class called 
“PDR.” This creates a balanced dataset that was used for binary 
classification of the fundus images. The training data contains 
80% of the dataset images and for testing purposes 20% of the 
dataset is used. In this work, we resize input fundus images after 
initial pre-processing to 672 × 672 × 3. The images are then resized 
by a scaling factor k = 9 where k = kw × kh and kw = kh = 3. This 
makes the input images reduced by a factor of nine. Experimental 
results are evaluated based on accuracy, precision, recall, F-1 mea-
sure and confusion matrix as explained in [28].

To select the CNN model that is used to test our divide and con-
quer approach, we first tested the performance of various CNN 
models by using the resized fundus images from the DDR data-
set. For the CNN models, the learning rate is set to 0.0001 and 
Stochastic Gradient Descent with momentum is used as the loss 
function [29]. The training parameter values used for the exper-
iments are shown in Table 4.

The results for binary classification of the DDR dataset are 
shown in Table 5. The DDR dataset is tested on different CNN 
models, that is, GoogleNet, AlexNet, MobileNet, and Inception 

v3. GoogleNet provides a maximum classification accuracy of 
83.65%. Therefore, GoogleNet is selected as the CNN model of 
choice for initial training in this problem domain.

Table 6 shows the results of using Support Vector Machines for 
the classification of DDR image features. The features of DDR 
images are extracted with four different methods based on the 
GoogleNet model with 7.1 million parameters. In the first method, 
the GoogleNet CNN layers are re-trained using the training im-
ages of the DDR dataset. Once the model is trained, we extract 
features from the GoogleNet model using transfer learning by 
freezing the network layers and extracting weights of the modi-
fied classification layer of the network. The resized images are 
given as input to the CNN model. No patches are created for this 
method and scaling factor k is set to 1. These features are fed to 
the SVM classifier which gives an accuracy of 84.73%. The sec-
ond results column in Table 6 shows the results that are observed 
when we use our divide and conquer approach. The scaling factor 
is set to 9, that is, the input of size 672 × 672 × 3 is divided into nine 
patches. The high-resolution features significantly improve the 
performance of the model by providing a classification accuracy of 
95.92%. Other performance metrics of sensitivity, specificity, pre-
cision, and F1-score show a performance uplift to 96.02%, 96.02%, 
95.92% and 96.02%, respectively. The base GoogleNet model used 

TABLE 4    |    CNN model training parameters.

Parameter Value

Batch size 32

Epochs 32

Loss function sgdm

Learning rate 0.0001

n (features for each patch) 111

k (number of patches) 9

kw = kh 3

Parameters for training 7.1 M

TABLE 5    |    Evaluation of different pre-trained CNN models for binary classification of the DDR dataset.

Binary classification of DDR dataset

Parameters

CNN models

GoogleNet AlexNet MobileNet Inception v3

Accuracy 83.65% 82.97% 82.93% 83.21%

Recall 85.56% 82.97% 82.93% 83.71%

Specificity 81.86% 80.00% 81.66% 80.79%

Precision 81.59% 80.00% 82.35% 83.73%

F1-score 83.53% 82.93% 82.80% 83.20%

TABLE 6    |    Experimental results of the SVM classifier for binary 
classification (testing done using DDR dataset).

Model: Support vector machines

Parameters

Dataset used for training 
GoogleNet model

DDR APTOS

Image features K = 1 K = 9 K = 1 K = 9

Accuracy 84.73% 95.92% 80.98% 94.60%

Recall 84.87% 96.02% 81.22% 94.88%

Specificity 84.63% 96.02% 80.82% 94.74%

Precision 84.68% 95.92% 80.87% 94.60%

F1-score 84.63% 96.02% 80.82% 94.74%

K = 1 (no patch), 
K = 9 (3 × 3 patch)
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to extract high resolution features is trained on DDR dataset and 
can show bias toward that dataset. The third column shows the 
results of using a GoogleNet CNN model that is retrained using the 

APTOS dataset. Transfer learning is used on this model to extract 
features from the DDR dataset which are used for classification 
using SVM classifier with simple resizing of the image without 
any patch. There is a decrease in performance compared to using 
DDR trained GoogleNet model with accuracy reducing to 80.98%. 
The last column in Table 6 represents the results of DDR image 
classification using our new approach on features extracted from a 
GoogleNet model that is trained on APTOS dataset. The accuracy 
of 94.6% compared with 84.73% and 80.98% indicates that our di-
vide and conquer approach is not biased toward the DDR dataset.

Tables 7 and 8 show the results of using the same methods of 
feature extractions on two different classifiers, that is, Random 
Forests and MLP. The divide and conquer approach is able to 
extract more meaningful features from the fundus images of 
the eye, which results in high performance gains. The tables 
show again that when the APTOS dataset is used to train the 
GoogleNet model, the performance of ML classifiers through 
the divide and conquer approach decreases by a small amount. 
The SVM model outperforms all the other ML models with the 
highest values in all performance metrics.

The confusion matrix of all the models is shown in Table  9. 
Another important observation from the confusion matrix 
shows that the RF classifier, although it does not provide the 
best overall performance, does have the best per-class accuracy 
for the PDR class when the divide and conquer approach is used.

The major disadvantage of the divide and conquer approach is 
the extra training time used for the CNN models with an added 
feature layer to extract 111 features from each patch of the input 
fundus image and use them for training an appropriate classi-
fier. For example, it took 874 min and 16 s to train the GoogleNet 
CNN model without an additional feature layer. However, it took 
903 min and 54 s to train the GoogleNet model with additional 
features layer. Both the models were trained with 20 epochs and 
batch size was set to 32.

Table 10 shows the best results comparison of our proposed di-
vide and conquer approach with other recent works. To further 
reduce any bias of the DDR dataset during the validation phase, 
we tested the proposed divide and conquer approach by using 
the APTOS dataset to train the best performing CNN model. 
The GoogleNet CNN model was retrained using the APTOS 
dataset, but the feature extraction and validation were done 
on the DDR dataset. The results show that the performance 

TABLE 7    |    Experimental results of RF classifier for binary 
classification (testing done using DDR dataset).

Model: Random forests

Parameters

Dataset used for training 
GoogleNet model

DDR APTOS

Image features K = 1 K = 9 K = 1 K = 9

Accuracy 84.53% 94.44% 80.02% 93.33%

Recall 84.59% 94.83% 80.34% 93.89%

Specificity 84.46% 94.61% 79.84% 93.52%

Precision 84.49% 94.44% 79.88% 93.32%

F1-score 84.46% 94.61% 79.84% 93.52%

K = 1 (no patch), 
K = 9 (3 × 3 patch)

TABLE 8    |    Experimental results of MLP classifier for binary 
classification (testing done using DDR dataset).

Model: Multilayer perceptron

Parameters

Dataset used for training 
GoogleNet model

DDR APTOS

Image 
features K = 1 K = 9 K = 1 K = 9

Accuracy 83.65% 95.12% 79.18% 94.00%

Recall 83.69% 95.12% 79.38% 94.43%

Specificity 83.71% 95.16% 79.30% 94.11%

Precision 83.65% 95.12% 79.17% 94.00%

F1-score 83.71% 95.16% 79.30% 94.11%

K = 1 (No 
patch), K = 9 
(3 × 3 patch)

TABLE 9    |    Confusion matrix for SVM, RF, and MLP models on the DDR dataset with and without the proposed framework.

DDR DDR (3 × 3) APTOS APTOS (3 × 3)

NDR PDR NDR PDR NDR PDR NDR PDR

SVM 1135 155 1200 90 1106 184 1164 126 NDR

227 985 12 1200 292 920 9 1203 PDR

RF 1121 169 1153 137 1103 187 1126 164 NDR

218 994 2 1210 313 899 3 1209 PDR

MLP 1056 234 1214 76 972 318 1134 142 NDR

175 1037 46 1166 203 1009 8 1217 PDR
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reduces by a small percentage but still outperforms all the re-
cent works.

The third result in Table 10 is evaluated to compare the results 
of our proposed methodology with recent works that use the 
APTOS dataset for validation. In this experiment, the patches 
and the CNN are both trained and tested on the APTOS dataset. 
The experimental results using the APTOS dataset also indicate 
that the proposed divide-andand-conquer framework provides 
better performance over the recent classification approaches 
for DR.

6   |   Conclusions

Diagnosing DR from high-resolution fundus images of the 
eye can greatly improve the performance of DR classification. 
However, GPU memory limits the excessive increase in the 
resolution of fundus images. In this paper, we have provided a 
divide-and-conquer framework for high-resolution fundus im-
ages that divides the image into various patches. A CNN model 
trained on resized fundus images is used to extract features 
from each patch of the fundus image. The extracted features 
from each patch are concatenated and passed on to ML classi-
fiers. This approach resulted in classifying the DR images from 
the DDR dataset with maximum accuracy, recall, specificity, 
precision, and F1-score of 95.92%, 96.02%, 96.02%, 95.92%, and 
96.02%, respectively using the SVM classifier on the extracted 
features from fundus image patches. The proposed approach al-
lows the processing of high-resolution input images with limited 
GPU memory constraints. The approach works most effectively 
in problem domains where features are spread almost uniformly 
throughout the input images. Our proposed algorithms improve 
performance for DR classification of fundus images. However, 
the feature extraction methodologies and classifications are still 
limited by the amount of training data available for the fundus 
images of the eye. In the divide and conquer approach, the main 
limitation lies in the extra time taken to extract features from 
the image patches compared to regular full-size image features 

extraction. This extra time taken to extract features can ulti-
mately affect the performance of the system.

It was observed in our work that extracting high-resolution local 
features from fundus images provides performance improvements 
in the DR classification. The global features of the image also play 
an important role in the classification of fundus images. In future, 
the global features of the fundus images can also be combined 
along with the high-resolution local features acquired using the 
divide and conquer approach to build DR detection systems that 
may provide an even better classification of the fundus images.
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TABLE 10    |    Comparison of binary classification results of the proposed framework with recent works.

Method Dataset

Metrics

Accuracy Precision Recall F-Measure

Best results of divide and conquer approach (training on DDR) DDR 95.92% 95.92% 96.02% 96.02%

Best results of divide and conquer approach (training on 
APTOS)

DDR 94.60% 94.60% 94.88% 94.74%

Best results of divide and conquer approach (training on 
APTOS)

APTOS 97.39% 97.40% 97.40% 97.40%

Long et al. [30] APTOS 92.5% — — —

Mohanty et al. [31] APTOS 97.30% — — —

Elwin et al. [21] DDR 90.25% — 91.42% —

Vives-Boix and Ruiz-Fernández [32] APTOS 95.56% 96.07% 94.46% 94.24%

Zhang et al. [33] APTOS 91.17% 90.42% 91.71% 90.88%

Farag et al. [34] APTOS 97.00% — 97.00% 94.55%
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