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This study explores an approach to improving the performance of logistic regression model
(LR) integrated with Analytic Hierarchy Process (AHP) for weight initialization model
with regularization and adaptation of gradient descent (GD). Traditional LR model relies
on random weight initialization leading to suboptimal performances. By employing AHP,
a hybrid model that deployed priority vector as initial weights is obtained, reflecting the
relative importance of input features. Previous works reported subpar performances of
AHP-LR hybrid model due to the lack of optimizing for the initialized weights. In this
study, the weights are proposed to be optimized with L1 and L2 regularization approach,
penalizing deviations from the AHP-initialized weights through modified log-likelihood
function with modified GD optimization. This comparative analysis involves four models:
LR with L2 regularization, AHP weights as LR weights, and AHP-weights optimized with
L1 and L2 regularization. A prediction experiment is conducted using synthetic dataset
to assess the models’ performance in terms of accuracy, recall, precision, F1-score, and
ROC-AUC. The results indicate that optimizing weights with L1 or L2 regularization
significantly enhances model performance, compared to direct application of AHP weights
without optimization yields near-random guesses. Additionally, incorporating true expert-
derived weights, evaluating their impact on model performance and experimenting with
authentic dataset and different weight derivation methods would offer valuable insights.
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1. Introduction

In the advancement of statistical modeling and data analysis, integrating machine learning (ML) with
multi-criteria decision-making (MCDM) techniques provides potential for research on enhancing the
hybrid model. This study explores this hybridization by utilizing the analytical hierarchy process
(AHP) for logistic regression (LR) weight adjustment. This integration aims to address the limita-
tions of conventional weight assignment methods [1] to enhance the ML model’s predictive power and
applicability. This methodological advancement improves accuracy and facilitates more precise data
interpretation in various domains where LR is pivotal [2–5]. As example, an improved LR models
could lead to better investigations of factors contributing to disease symptoms [6] and predict loss
given default in finance [7]. Fields such as esports would also benefit significantly from the application
of enhanced LR models [8], particularly with AHP’s strength in domain-specific decision-making [9].
Broadly, this study contributes to ongoing efforts to improve statistical methodologies through inter-
disciplinary approaches.
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LR stands out as a fundamental ML model widely applied across diverse fields [10], ranging from
medical research [11,12] to life [13] and social sciences [14]. The LR model is renowned for its ability to
model binary outcomes and has become crucial in interpreting complex data structures. Despite its vast
applications, traditional LR faces inherent challenges, particularly in the weighting and prioritization
of predictor variables [15–17]. AHP is a structured technique for organizing and analysing complex
decisions [18]. AHP, a tool in operations research, provides a robust framework for dealing with complex
situations where multiple criteria must be weighed [19–22]. AHP presents a novel approach to refining
ML algorithms [23].

Previous works [24–26] have highlighted the need for a flexible, non-rigid model due to the lim-
itations of data-driven AHP initial weights, which lack the interpretations that human experts can
provide. Despite the advancements, a significant research gap remains in effectively integrating AHP-
initialized weights with LR. This gap can be addressed by proposing an optimization on the AHP
derived weights with regularization and gradient descent adaptation. The log-likelihood function and
the gradient descent (GD) training phase must be modified by adding a penalty term in the form of a
regularization parameter. The significance of this study lies in its potential to bridge this gap, offering
a more accurate and interpretable LR model. The research objectives are threefold: (i) to formulate
an L1 and L2 regularization approach to the hybrid model, (ii) to propose a modified gradient descent
algorithm for the weights optimization, and (iii) to compare the effectiveness of the proposed method.

2. Theoretical background

2.1. Logistic regression

The interpretability of LR allows for a transparent understanding of how each feature influences predic-
tions, a crucial aspect for the AHP integration [27]. LR models the probability of an event taking place
by having the log-odds for the event be a linear combination of one or more independent variables. LR
is a linear combination of input features that needs to be transformed by logistic function [28]. The
simplest LR has one input feature xi, with its weight wi and one dependent outcome yi, where i = 1,
as shown in (1). The b is y-intercept, defined as the bias term,

y1 = w1x1 + b. (1)

Equation (1) shows the fundamental linear regression model which requires logistic function charac-
teristics to make prediction for complex, authentic problems [29]. Hence, the sigmoid function, with
arbitrary parameter z, shown in (2), is applied to transform (1) to better fit the dataset by transforming
the real values of yi, mapping them to the interval [30–32],

σ(zi) =
1

1 + e−zi
. (2)

The transformed function is the example of LR model for one input feature, shown in (3),

y1 = σ(w1x1 + b). (3)

Authentic problems commonly comprise of multiple input features, xn, as in (4) [33–37]. Multiple
input features have equivalent numbers of feature weights, wn,

Y = wnxn + wn−1xn−1 + . . .+ w1x1 + b. (4)

Equation (4) can be rewritten in a simple matrix form, as shown in (5),

Y = W TX + b, where W TX =











wnxn
wn−1xn−1

...
w1











. (5)

By applying sigmoid function into (5), the LR model in (6) can be used to make prediction for any
number of datasets based on the probability, p(xi),

p(xi) = σ(zi) = σ
(

W Txi + b
)

=
1

1 + e−(WT xi+b)
. (6)
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From (6), the parameter to be optimized is the matrix W . Weight optimization for the LR model
is done by finding the values for weights that minimizes the error based on training data using cost
function. The most common cost function is usually the log-loss function [38], shown in (7), where m

is the number training samples, and yi is the true label of the ith sample. This function is chosen to
ensure the study enable the observation of the proposed approach’s effects towards the performance of
the model, rather than the sophistry of the function used,

J(W ) = −
1

m

m
∑

i=1

[

yi log
(

p(xi)
)

+ (1− yi) log
(

1− p(xi)
)]

. (7)

2.2. Gradient descent

GD is a common optimization algorithm used to find the minimum of a function by iteratively adjusting
the weights of the model [39]. The algorithm works by computing the gradient of the cost function
with respect to its weights and bias term, which gives the direction of steepest ascent. The weights
commonly initialized as random values or zeroes [40] are then updated to move towards a minimum of
the cost function [41].

Algorithm 1 Gradient descent

1: Initialize the weights, W .
2: Set learning rate α.
3: repeat

4: Compute the gradient of cost function with respect to weights and bias, as shown in (8) and (9) respec-
tively

∂J

∂wi

= −
1

m

m
∑

i=1

[

yi − p(xi)
]

· xi, (8)

∂J

∂b
= −

1

m

m
∑

i=1

[

yi − p(xi)
]

. (9)

5: Update parameters: W and b, as shown in (10), (11), and (12)

wi,new = wi − α ·
∂J

∂wi

, (10)

bnew = b− α ·
∂J

∂b
, (11)

wi = wi,new, b = bnew, (12)

6: until convergence criterion is met.

2.3. Analytical hierarchy process

The problem of interest is defined as criteria that will be used to evaluate the decision in a hierarchical
structure called a hierarchy tree diagram as in Figure 1. The top of the tree is the goal of decision-
making, followed by criteria and sub-criteria, then the alternatives that must be considered through
pairwise comparison.

Fig. 1. The hierarchy structure of the decision-making problem, the top is the goal.
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Pairwise comparisons are made using the scale as shown in Table 1. Then, we calculate the weights
for each element in the pairwise comparison matrix that represent their relative importance.

Table 1. The fundamental scale of AHP [42].

Values assigned Meaning of relative importance

1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Absolute importance

2, 4, 6, 8 For compromise between above-specified value

A is a reciprocal, square matrix with each element is represented as ai,j which indicates how
important criterion in any column i compared to criterion in any row j, as shown in (13),

A =



















1 a1,2 . . . . . . a1,j

1
a1,2

1
...

...
. . .

...
...

. . . ai−1,j−1
1

a1,j
. . . . . . 1

ai−1,j−1

1



















. (13)

We would be able to compute priority vector w, the normalized Eigen vector of A. The priority vector
shows relative weights among the compared criteria and alternatives. Then, the measure of consistency
called the consistency index, CI is given in (14),

CI =
λA − n

n− 1
. (14)

To use the CI, it is compared to the random consistency index, RI by using the formula shown in (15).
This formula is called consistency ratio,

CR =
CI

RI
. (15)

The values of RI are as shown in Table 2 based on the work by Prof. Saaty. If given that, the consistency
of comparison made is acceptable. Otherwise, there is a need to revise the expert’s judgment on the
pairwise comparison.

Table 2. RI found to measure CI [42].

n 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

2.4. Hybrid model

The AHP-LR hybrid model consists of employing AHP to assign weights to the input features. The
LR model then performed prediction task with these AHP-derived weights [43]. Based on the findings,
optimization is not performed on the obtained weights [44], as represented in (16),

W = w. (16)

It is also highlighted that observations were recorded and weighted using AHP without the necessity
of performing pairwise comparisons with human experts’ judgments [45]. Despite studies might not
explicitly mentioned, typically some limitations that may be faced in the hybrid model include de-
pendence on the accuracy of input data [46], the rigid nature of the hybrid models [47], which might
not account for the generalization and flexibility of the model, and the potential for over-fitting or
under-fitting.
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3. Method

3.1. Model formulation

3.1.1. Regularization implementation

Two types of regularization, L1 and L2 can be implemented as in (17) and (18) respectively by in-
troducing a penalty term, λ1 and λ2 that controls the penalization of the weights’ magnitude the
further they deviate from the AHP derived weights, with wj representing the weights for the jth input
feature [48],

L1 regularization term = λl1

n
∑

j=1

|wj |, (17)

L2 regularization term = λl2

n
∑

j=1

w2
j . (18)

3.1.2. Modified objective function

The objective function is the regularized cost function, denoted by the log-loss minus the penalty term.
As optimization algorithms usually minimize functions, so the cost function is often considered negative
of log-loss added with the regularization term. Here, we denote the cost function for L1 regularization
as J1, and L2 regularization as J2, as shown in (19) and (20), respectively,

J1(W ) = −
1

m

m
∑

i=1

[

yilog
(

p(xi)
)

+ (1− yi)log
(

1− p(xi)
)

]

+ λl1

n
∑

j=1

|wj |, (19)

J2(W ) = −
1

m

m
∑

i=1

[

yilog
(

p(xi)
)

+ (1− yi)log
(

1− p(xi)
)

]

+ λl2

n
∑

j=1

w2
j (20)

3.1.3. Modified gradient function

Due to the modification in objective function, the gradient function in the GD training phase needs
to be adjusted. Then, the gradient of the cost function with respect to the weights is given by (21)
and (22) for L1 and L2 regularization respectively. This change affects the update phase in the GD
iterative step as well,

∂J1

∂wj

= −
1

m

m
∑

i=1

[

yi − p(xi)
]

· xi + λl1 · g(wj), (21)

where

g(wj) =











1, wj > 0,

−1, wj < 0,

0, wj = 0,

∂J2

∂wj

= −
1

m

m
∑

i=1

[

yi − p(xi)
]

· xi +
λl2

2
wj. (22)

3.2. Model assessment

3.2.1. Models implementation

This study involved assessment of four distinct models to assess the impact of AHP-derived weights
and regularization techniques on LR performance. The models are defined as follows:

— Model I: LR model with L2 regularization applied directly to the predictor variables, serving as a
baseline model to compare the effects of AHP-derived weights and regularization.

— Model II: LR model where AHP-derived weights were used directly as the regression coefficients
without any further optimization or regularization, to assess the efficacy of AHP weights in their
raw form.
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— Model III: LR model in which the AHP-derived weights were optimized using L1 regularization,
aiming to enhance model performance by imposing sparsity on the coefficients.

— Model IV: LR model where the AHP-derived weights were optimized with L2 regularization, like
Model III, but with the focus on minimizing over-fitting by penalizing large coefficients.

3.2.2. Confusion matrix

The confusion matrix is a table that is often used to describe the performance of a classification model
on a set of test data for which the true values are known [49]. It is a way to visualize the accuracy
of a classifier by comparing the predicted values with the true values. In binary classification, the
confusion matrix is a 2 × 2 table that contains four entries: true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). These entries represent the number of instances in each
of the following categories:

— TP: instances that are positive and were correctly classified as positive by the model.
— FP: instances that are negative but were incorrectly classified as positive by the model.
— TN: instances that are negative and were correctly classified as negative by the model.
— FN: instances that are positive but were incorrectly classified as negative by the model.

The confusion matrix will be used to compute various performance metrics, such as accuracy, precision,
recall, and F1 score, which provide different perspectives on the performance of the classifier.

3.2.3. Accuracy

Accuracy in machine learning is the percentage of correctly classified instances out of the total instances
evaluated. The accuracy of the model can be calculated using the formula in (23),

Accuracy =
TP +TN

TP+ TN+ FP + FN
. (23)

3.2.4. Area under the receiver operating characteristics curve

Table 3. Interpretation of AUC values [50].

AUC value Interpretation

0.90 − 1.00 Excellent
0.80 − 0.90 Good
0.70 − 0.80 Fair
0.60 − 0.70 Poor
0.50 − 0.60 Fail

The AUC-ROC curve is a widely used metric for evaluat-
ing the performance of a binary classification model that
provides both the visual and quantitative measurements
to represent the performance of model. The ROC curve
is a graphical representation of a classification model’s di-
agnostic ability that plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold
settings. TPR, also known as sensitivity or recall, mea-
sures the proportion of actual positives that are correctly identified by the model. FPR measures
the proportion of actual negatives that are incorrectly identified as positives. The AUC measures the
2-dimensional area under the ROC curve to provide a cumulative measure of the model’s performance
across all possible classification thresholds. The interpretation of AUC values is given in Table 3.

4. Results and discussion

4.1. Dataset

The dataset used for the experimental setup in this study is called Santander Customer Transac-

tion Prediction. The dataset is available for online use via Kaggle repository (link to the data
https://www.kaggle.com/competitions/santander-customer-transaction-prediction/overview). The
dataset in the train CSV file consists of 200 000 observations with 200 features. In this study, we used
only 100 000 observations that are splitted into a common ratio of 70% train and 30% test dataset [51].

4.2. Analytical hierarchy process derived weights

As the dataset consists of records for customers’ transaction as target (dependent outcome) based
on arbitrary, unidentified features (independent variables), they are not linked to a specific domain.
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Table 4. Several AHP
simulated weights values.

Features Simulated weights

1 0.006441
2 0.006769
3 0.007386

. . . . . .
200 0.004516

Therefore, it is infeasible to generate true expert AHP-derived
weights. This is a limitation for real-world dataset, but it is suit-
able to obtain synthetic AHP weights that can be served as a proof
of concept. Thus, we simulated expert input approach to create a
more structured and data-informed AHP weighting system which
enhance the credibility of the weights even without true domain
expertise. First, the key features were identified by calculating sta-
tistical measures which are correlation and variance for each feature
relative to the target variable. This simulates how an expert might

prioritize features based on their impact. Next, these measures were used to generate pairwise compar-
ison scores, to mimic the typical AHP expert judgment process, where features with higher correlation
to the target are given higher comparison scores. A pairwise comparison matrix was constructed using
ratios of correlations and variances, and the AHP weights and CR were calculated. Table 4 shows
AHP weights values for several features with CR < 0.10.

4.3. Models’ performances

Table 5. Train and test AUC scores for the models.

Metrics Model I Model II Model III Model IV

Train AUC 0.8617 0.4848 0.8632 0.8632
Test AUC 0.8596 0.4974 0.8613 0.8613

Four models are deployed with the
dataset and the AUC scores are mea-
sured. The scores are given in Table 5.
High scores are good indicator of the
models’ performances, but the differ-

ence between AUC score from training and testing dataset indicates that the model may be under-
fitting or over-fitting [52–54]. Model I train and test AUC values are close, indicating the model
generalizes well and does not exhibit apparent over-fitting as L2 regularization is effective in control-
ling dataset complexity [55]. Model III and IV display better scores, suggesting good balance between
complexity and regularization strength. Using AHP weight without optimization, however, yield scores
close to 0.5, indicating near random guessing and predictions.

Table 6. Performance metrics across all model.

Metrics Model I Model II Model III Model IV

Accuracy 0.914500 0.498733 0.915700 0.915733
Precision 0.900815 0.818973 0.902343 0.902398
Recall 0.914500 0.498733 0.915700 0.915733

F1-score 0.902757 0.594310 0.897595 0.897650

Table 6 displays the assessment of
the models’ accuracy, precision, recall,
and F1-score. Figure 2 shows the com-
bined ROC curves from all models de-
ployed. Model I shows strong overall
performance, achieving a high preci-
sion of 0.9008, recall of 0.9145, and F1-

score of 0.9028. This model maintains high level values across all metrics, suggesting robust ability to
identify positive instances and minimizing false positives.

Model II has noticeably lower performance metrics and falls significantly short as compared to
other models. These results suggest that without further optimization or regularization, the AHP-
initialized weights do not align sufficiently with the dataset’s underlying patterns, leading to near-
random performance levels.

Both Model III and IV show improvements over Model II, showing that optimization plays a
vital role in adapting AHP weights effectively. Models III and IV achieve higher precision compared
to Model I and II. Model IV closely matches the excellent results of Model III, with slightly lower
precision but a marginally higher recall and accuracy. Figure 3 shows the confusion matrix of the test
dataset from Model III and IV. Both models display strong, balanced performance, demonstrating the
effectiveness of regularization techniques in optimizing AHP-derived weights. AHP-initialized weights
in LR model alone are not sufficient to be deployed in predictive modeling, and regularization may
significantly enhance the hybrid model efficacy. Model I serves as a strong baseline, but the optimized
AHP models demonstrate the potential of incorporating expert-derived weights, provided they are
adequately adjusted using regularization techniques which help in preventing over-fitting and achieve
better generalization on test data.
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Fig. 2. The ROC curves of all four models.
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Fig. 3. The confusion matrix for model IV from train and test dataset.

5. Conclusions

This study assessed the performance of the AHP-LR model with regularization approach. The for-
mulation of an L1 and L2 regularization approach to the hybrid model was conducted successfully.
A modified gradient descent algorithm was proposed for the purposed of optimizing AHP-initialized
weights and a comparative analysis for the effectiveness of the proposed method was made tactfully.
The results indicate that optimizing AHP weights with L1 or L2 regularization significantly enhances
model performance and mitigates over-fitting issue, whereas direct application of AHP weights without
optimization is ineffective, yielding near-random predictions.

Despite the promising findings, this study has several limitations. The analysis was conducted
on large, synthetic dataset, independent of specific domain may not fully capture the complexities of
authentic problems. Additionally, the model used was of LR model, potentially limiting their ability
to capture complex relationships within the data. The AHP weights were derived using statistical
measures of the dataset rows to simulate how experts perform judgment on features’ importance,
which may not represent true expert knowledge, possibly affecting the efficacy of these weights.
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Future work should focus on addressing these limitations. Conducting similar studies on larger
and more complex datasets would validate the findings and explore the scalability of the proposed
methods. Further exploration of hybrid approaches such as Elastic Net, which combines L1 and L2
regularization could be valuable. This would refine AHP’s alignment with dataset-specific feature
importance, enhancing generalizability without over-fitting. Implementing more advanced ML models,
such as neural networks or ensemble methods, could provide a comparison with LR performance.
Incorporating true expert-derived AHP weights and evaluating their impact on model performance,
experimenting with different weight derivation methods, would offer valuable insights.
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У цiй статi дослiджується пiдхiд до покращення продуктивностi моделi логiстичної
регресiї (LR), iнтегрованої з аналiтичним iєрархiчним процесом (AHP) для моделi
iнiцiалiзацiї ваги з регуляризацiєю та адаптацiєю градiєнтного спуску (GD). Тра-
дицiйна модель LR покладається на випадкову iнiцiалiзацiю ваги, що призводить
до неоптимальних характеристик. Використовуючи AHP, отримано гiбридну модель,
яка використовує прiоритетний вектор як початковi ваги, що вiдображає вiдносну
важливiсть вхiдних характеристик. Попереднi роботи повiдомляли про низькi харак-
теристики гiбридної моделi AHP-LR через вiдсутнiсть оптимiзацiї для iнiцiалiзованих
ваг. У цьому дослiдженнi пропонується оптимiзувати ваговi коефiцiєнти за допомогою
пiдходу регуляризацiї L1 та L2, штрафуючи вiдхилення вiд iнiцiалiзованих вагових
коефiцiєнтiв AHP за допомогою модифiкованої функцiї логарифмiчної правдоподiб-
ностi з модифiкованою оптимiзацiєю GD. Цей порiвняльний аналiз включає чотири
моделi: LR з регуляризацiєю L2, ваги AHP як ваги LR та ваги AHP, оптимiзованi з
регуляризацiєю L1 та L2. Прогнозний експеримент проводиться з використанням син-
тетичного набору даних для оцiнки продуктивностi моделей щодо точностi, повноти,
прецизiйностi, оцiнки F1 та ROC-AUC. Результати показують, що оптимiзацiя ваго-
вих коефiцiєнтiв з регуляризацiєю L1 або L2 значно покращує продуктивнiсть моделi
порiвняно з прямим застосуванням вагових коефiцiєнтiв AHP без оптимiзацiї, що дає
майже випадковi припущення. Крiм того, включення справжнiх експертних вагових
коефiцiєнтiв, оцiнка їхнього впливу на продуктивнiсть моделi та експериментування
з автентичним набором даних i рiзними методами визначення вагових коефiцiєнтiв
дадуть цiнну iнформацiю.

Ключовi слова: логiстична регресiя; аналiтичний iєрархiчний процес; гiбридна мо-

дель; регулярiзацiя; модифiкований градiєнтний спуск.
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