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Landslides are a common form of natural disaster in the tropics due to heavy rainfall in 

the wet season. Due to the hazards that come with landslides, determining the 

susceptibility of an area is of utmost importance. Currently, this is done through an ML-

based approach. However, some areas may lack the required data. Thus, this study 

focused on comparing the impact of a transferred ML model from a comprehensive data 

region to a localized model. This was done by developing an ANN model trained on data 

from Western Sarawak and comparing it to the localized model in the west coast of Sabah 

and Selangor. The transferred ANN model results were acceptable, with recall scores of 

0.89 and 0.86 for the west coast of Sabah and Selangor, respectively, while the localized 

models both achieved a recall score of 1. AUC scores were also comparable, at 0.988 and 

0.995 for the west coast of Sabah and Selangor, respectively, while the localized models 

both achieved an AUC of 1. For the LSMs, in both target areas, the transferred ANN 

model predictions were heavily skewed in comparison to the localised model. It is 

recommended that future studies test the transferability in other tropical regions beyond 

Southeast Asia. 
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1. INTRODUCTION

In a tropical country such as Malaysia, landslide cases are 

commonplace with an average of 28 cases reported annually 

[1]. Landslides in Malaysia occur during the wet season, as 

abundant rainfall is the primary triggering factor that rapidly 

reduces the structural rigidity of slope-forming material to the 

point of failure [2]. The failed slopes would then move 

downward and pose a significant threat to anything in their 

path [3, 4]. Thus, to mitigate the hazards associated with the 

moving mass, it is of utmost importance to determine the 

landslide susceptibility of the affected areas [5, 6]. 

Conventionally, the landslide risks of a slope are verified 

through methods such as finite element method or locally 

developed Slope Assessment Systems such as the Slope 

Management and Risk Tracking System developed by the 

Public Works Department in Malaysia [7, 8]. However, the 

aforementioned methods are not practical for determining 

landslide risks in large areas of interest due to their 

dependency on soil physical properties that require laboratory 

testing for verification [9]. 

In recent years, quantitative approaches through Machine 

Learning (ML) models were deemed to be a viable alternative 

to the conventional methods of landslide risks assessment due 

to the models being capable of producing results that are 

comparable to the conventional methods whilst having lesser 

restrictions on the data requirements [10]. One of the primary 

sources of data for landslide prediction ML models in 

contemporary studies are Remote Sensing (RS) data providers 

[11]. RS provides an easily accessible data platform for ML 

models development purposes with many providers 

supporting researches by supplying data that are free to use 

[12]. Nevertheless, in certain areas, there is a possibility that 

the requirements could not be met, where the RS data 

providers do not have the required data. This condition is 

widely present in the target variable required by the ML 

models, which is the historical landslide points, due to high 

terrain deformation rates for purposes such as road 

construction [13]. This will lead to a false positive 

classification, as the terrain was changed intentionally without 

any landslide cases being present.  

Historical landslide point scarcity can cause major problems 

for ML model performance, such as unjustified biases due to 

a small data pool with similar values [14]. One of the main 
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features of a supervised ML based approach in landslide 

prediction is its transferability, which can be used to predict 

landslides in areas outside of the original sample area, given 

that the same features are present [15]. Many of the transferred 

ML models, particularly a neural network-based approach, 

have shown favourable results when it comes to predicting 

landslides in the target regions [16]. Furthermore, a recent 

study has shown that a transferred ML model could accurately 

predict the target area’s landslide susceptibility with an Area 

Under the Curve score of 0.942 [17]. However, the study area 

was limited to the Himalayan, where there is a possibility 

when applying the same methods in the tropics would not yield 

the same results, due to the difference in climatical and 

geological properties [18, 19].  

Thus, this study aims to compare the performance of a 

transferred ML model and a local ML model for landslide 

prediction in the tropical regions of Malaysia. The transfer ML 

model originated from Western Sarawak, with the targets 

being the West coast region of Sabah (Target 1), and areas in 

the borders of Selangor (Target 2). The ML model of choice 

was an Artificial Neural Network (ANN), which has been 

determined to be highly transferable in previous studies. The 

transfer region was used to develop the Landslide 

Susceptibility Map (LSM) of each target region, whereas the 

target ANN models were only used to develop their own 

LSMs. The success of this study will determine the 

applicability of the transferred ML model for landslide 

predictions in areas with scarce landslide points throughout the 

tropical regions of Southeast Asia. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Study area 
 

Sabah and Sarawak exist on the same island of Borneo [20, 

21], whilst Selangor is situated in Peninsular Malaysia. Target 

1 is located approximately 824.97 km away from Western 

Sarawak, and Target 2 is located 1009.89 km away from the 

region. Although seemingly far apart from each other, each 

one of the study areas exhibits the same dominant type of 

landslide, which is shallow rapid landslides. This is due to the 

shared primary landslide triggering factor which is heavy 

rainfall [22]. The three regions share the same wet season, 

which is the Northeast monsoon season that generally occur 

from November to February annually [23]. According to the 

rainfall intensity data provided by the Climate Hazards Center 

InfraRed Precipitation with Station Data (CHIRPS) during the 

Northeast monsoon season of 2022-2023 in mm per five days 

(pentad), the transfer area receives the most rainfall, with a 

minimum of 65.753 mm/pentad, a mean of 85.167 mm/pentad, 

and a maximum of 121.266 mm/pentad followed by Target 1 

and Target 2, as seen in Table 1 [24]. 

 

Table 1. Rainfall data statistic in each study area in 

mm/pentad 

 

Statistics 
Region 

Transfer Target 1 Target 2 

Minimum 65.753 27.881 33.536 

Mean 85.167 52.864 43.769 

Maximum 121.266 91.889 53.566 

 

Geologically, the conditions in each study area varied vastly 

from one to the other according to the Harmonised World Soil 

Database version 2.0 [25]. The only constant geological 

properties that was present throughout the study areas was 

Technosols with Geocode 7001 (Table 2). Between the 

Transfer region and Target 1, the other similarities were 4461, 

4463, and 4498 (Table 2, Table 3). This is likely since both 

areas are located within the same island of Borneo, where 

some geological properties can be similar [26]. Furthermore, 

there were no similarities between the Transfer region and 

Target 1, to Target 2, excluding 7001. Unlike Target 1, Target 

2 is in Peninsular Malaysia, which explains the difference 

between the geological properties of the region to the study 

areas in Borneo. 

Economically, the gross domestic product (GDP) of Target 

2 is 145,659 USD, which greatly outweighs the entire state of 

Transfer region, and Target 1 with a GDP of 31,636 USD, and 

18,489 USD respectively [20, 27]. Furthermore, in terms of 

population density, the density of Transfer region and Target 

1 combined could not surpass the population density of two 

cities in Target 2 that exceeds 10,000 people per square 

kilometre (km2), in contrast to Transfer region and Target 1 

with a population density of 5,393 people per km2 and 1,703 

people per km2 respectively [28]. As anthropogenic variables 

have been determined to influence landslides, it was important 

to include it in this study [29]. 

 

Table 2. Geological property type in each study area 

 
Geological Properties Code (Geocode) of Study Areas 

Transfer Target 1 Target 2 

4461 

4463 

4476 

4498 

4550 

4562 

7001 

4461 

4463 

4498 

4536 

7001 

4284 

4324 

4464 

4527 

4552 

7001 

 

Table 3. Geocode dominant composition 

 
Geocode Dominant Composition (%) 

4284 70: Haplic Acrisols 

4324 80: Euctric Gleysols 

4461 
40: Haplic Acrisols, 20: Dystric Cambisols, 20: 

Humic Acrisols 

4463 50: Haplic Acrisols, 20: Luvsiols, 20: Ferric Acrisols 

4464 
40: Haplic Acrisols, 20: Haplic Nitisols, 20: Ferric 

Acrisols 

4476 80: Ferralic Cambisols 

4498 
40: Dystric Gleysols, 20: Umbric Gleysols, 20: 

Gleyic Cambisols 

4527 
60: Thionic Fluvisols, 30: Umbric Gleysols, 10: 

Dystric Gleysols 

4536 
30: Haplic Luvisols, 20: Chromic Luvisols, 20: 

Haplic Ferralsols 

4550 
80: Histosols. 10: Umbric Gleysols, 10: Dystric 

Fluvisols 

4552 
80: Histosols, 10: Umbric Gleysols, 10: Thionic 

Fluvisols 

4562 60: Albic Arenasols, 30: Haplic Podzols 

7001 Technosols 

 

Elevation and slope angle are two topographical variables 

that frequently coincide with landslides, and have been 

deployed in multiple landslide susceptibility studies through 

ML models [30, 31]. With the data provided by the National 

Space Agency (NASA), Shuttle Radar Topography Mission 

(SRTM), the elevation and slope angle of the study areas were 
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evaluated [32]. In terms of elevation, Target 1 was determined 

to have a maximum elevation of 3973m, a mean of 530.988m, 

and a minimum of -12m. Target 2 has a maximum elevation 

of 1262m, a mean of 112.277m, and minimum of -35m. The 

transfer region has a maximum elevation of 1262m, a mean of 

86.010m, and a minimum of -72m. Thus, the Transfer region 

is more similar in terms of elevation to Target 2, instead of 

Target 1. The minimum slope angle in each study area were 

constant with 0°. In Target 1, the maximum slope angle was 

85.132°, with a mean of 17.282°. In Target 2, the maximum 

slope angle was 74.688°, with a mean of 7.429°. In the 

Transfer region, the maximum slope angle was 75.650°, with 

a mean of 8.089°. In terms of slope angle, the Transfer region 

has more similarities to Target 2, in contrast to Target 1. Thus, 

in can be concluded that topographically, the Transfer region 

is shares more in similarity to Target 2 in comparison to Target 

1. The location of the study areas is depicted in Figure 1. 

 

 
 

Figure 1. Location of study area 

 

2.2 Methodology 

 

This study was conducted in four primary phases (Figure 2).  

 

 
 

Figure 2. Study flowchart 

The first phase was conducted to collect the developmental 

data required by the ANN models. The second phase was to 

check for multicollinearity amongst the variables in the 

primary dataset. The third phase was the ANN model 

developmental and evaluation phase where hyperparameters 

optimisation (HPO) and metrics evaluation was conducted. 

The final phase was to plot the LSMs.  

 

2.2.1 Data collections and primary data preparation 

To develop the ANN models, both landslides inventory and 

landslides factors were required. The data was detrimental for 

the ANN model as it is a supervised approach to predict 

landslide susceptibility.  

Landslide inventory consists of landslides and non-

landslides points. These variables are important at it helps the 

ANN model to make a distinction between the high risk and 

low risk areas in conjunction with the landslide factors [33]. 

For the target areas, the landslide points data were provided by 

NASA through the Global Landslide Catalogue for landslide 

triggered by rainfall [34]. As for the Transfer region, the 

landslide points data were provided by the local authorities. 

The non-landslide points on the other hand were obtained by 

randomly sampling points with slope angle less than or equal 

to 5° [7]. For the Transfer region, there were 53 landslides 

points, and 977 non-landslides points. For Target 1, there were 

34 landslide points, and 199 non-landslide points. For Target 

2, there were 41 landslide points, and 154 non-landslide 

points. 

Landslide factors on the other hand are variables that causes 

landslides to occur which can be divided into triggering factors 

and conditioning factors. It was crucial to ensure that all of the 

variables selected are present in all study areas to enable the 

ANN model transfer, thus geological variables were not 

included [35]. The triggering variable in this study was 

rainfall, where the data was provided by CHIRPS for the 

average rainfall in mm pentad during the wet season. Rainfall 

is a significant triggering variable of landslides especially in 

the tropics where it is abundant during the wet season. It is 

responsible for the increase in pore water pressure that can 

greatly destabilise a slope forming material stability [36]. 

For the conditioning factors, it was represented through 

aspect, curvature, distance from roads (DFR), elevation, 

Normalised Difference Vegetation Index (NDVI), and slope 

angle. 

The aspect data for the study areas were provided by NASA 

SRTM’s processed from the digital elevation model (DEM) in 

Google’s Earth Engine (GEE) [32]. Aspect refers to 

orientation of a slope face ranging from 0° North circling 

clockwise back to its origin. Different aspect has different 

levels of landslide susceptibility depending on the area of 

interest. This is due to the localised climate conditions of each 

aspect, that causes the weathering rate for the slope forming 

materials to be different from one to the other [37]. The 

difference in weathering conditions will ultimately lead to 

differing landslide susceptibility rate. 

The curvature data was obtained by conducting a terrain 

analysis on the DEM through the System for Automated 

Geoscientific Terrain Analyses extension in Quantum 

Geographical Information System (QGIS) [38]. Curvature 

ranges from concave to flat to convex as it goes from the 

negative values to 0 to positive values [39]. As curvature goes 

from the positive to negative, the susceptibility towards 

landslide increases due to the tendency of ponding on concave 

curvatures, which allows rainfall to better penetrate the surface 
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soil [30]. 

DFR in this study was a measure of anthropogenic activity 

as not only does it correlate with the disturbance of the original 

slope to make way for the construction, but human settlement 

has tendency to be nearby a road for easier access [40]. The 

expansion of human settlements increases the area of 

impervious surface, which leads to an increase in runoff that 

could trigger landslide [41]. Thus, being near a road generally 

increases the likelihood of its surroundings to be more 

susceptible to landslides. The DFR data was obtained by 

querying road data using the Quick Open Stream Map service 

in QGIS, before converting it into a proximity map using 

QGIS’s proximity buffer function [42].  

The elevation data was supplied by NASA SRTM through 

GEE. As elevation increases the likelihood of landslides also 

increases due to the influence it has on the other landslide 

conditioning factors [43]. Furthermore, shallow landslides 

have been observed to occur more in areas with variations in 

the elevation [44].  

NDVI is a measure of vegetation density, where areas with 

high NDVI tends to have lower susceptibility towards 

landslides due the support of roots which reinforce the slope 

forming materials [45]. Furthermore, areas with a low NDVI 

values are known to be more susceptible to landslides as not 

only does it lacks the root support, it also increases the rate of 

rainfall infiltration due to the lack of surface cover, which 

leads to saturated soils that are more likely to experience slope 

failure [46]. The NDVI data of this study was supplied by the 

United States Geological Survey Land Satellite [47].  

Slope angle is an important variable to consider in a 

landslide susceptibility study. As slope angle increases, the 

stability of the slope forming material decreases making it 

more prone to landslide in comparison to areas with lower 

slope angle [48]. Furthermore, slope angle influences landslide 

motion characteristics with an increase in slope angle leading 

to a greater runout [49]. The slope angle data in this study was 

obtained from NASA SRTM through GEE. 

After the landslide inventories, and landslide factors have 

been collected, the primary data was prepared. It was done by 

sampling the values of each landslide factors at each landslide 

and non-landslide points using the raster sampling tool in 

QGIS [50, 51]. 

 
2.2.2 Multicollinearity assessment and data preparation 

Multicollinearity is not a favourable condition when it 

comes to developing an ML model. Input variables with 

multicollinearity amongst each other exceeding 0.8 is highly 

correlated [52]. When two input variables are highly 

correlated, it introduces redundancy issues to the ANN model, 

as it considers two input variables as a single variable, thus 

increasing the variable influence on the output unjustifiably 

[53]. In this study, the multicollinearity was accessed on the 

primary data through Microsoft’s Excel data analysis plugin 

for correlation, where if a correlation amongst two input 

variables exceeds 0.8, one of it were to be removed from the 

dataset [54]. After no multicollinearity issue has been 

determined, the primary data undergoes data preprocessing. In 

this study, the landslide factors were processed through min-

max scaling (Eq. (1)). Min-max scaling ensures the landslide 

factors to be scaled from 0 to 1, to avoid issues where a single 

variable would overpower the other variables that have smaller 

values, such as the values of elevation in comparison to slope 

angle [55, 56]. 

 

𝑥̂ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (1) 

 

where, 𝑥̂ is the scaled x value, xmin is the minimum value of x, 

xmax is the maximum value of x, and x is the current value of x. 

 

2.2.3 ANN model development and evaluation 

The ANN models were developed in R through the 

“NeuralNet” package, that allows hyperparameter 

optimisation (HPO) such as architecture, maximum steps, and 

learning algorithm [57]. The training data was used to develop 

the ANN model whereas the testing was used to evaluate its 

predictive performance based on never-before-seen data. The 

evaluation metrics for the ANN models were Area Under the 

Receiver Operating Curve (AUC) and recall. AUC provides 

information on how well the ANN model distinguishes 

landslide cases and non-landslide cases based on the landslide 

factors [58]. It is obtained by evaluating the area under the 

curve for true positive rate (TPR) versus the false positive rate 

(FPR). Recall on the other hand is TPR, in a ML development 

where the 1s (landslide) data pool is at an imbalance to the 0s 

(non-landslide) as it is smaller, it is more important for the ML 

model to be able to predict more of 1s accordingly (Eq. (2)) 

[59]. Both AUC and Recall minimum score were set at 0.8, 

where if the scores were lower, HPO would be conducted. The 

importance of each landslide factors on landslide occurrence 

in the ANN models were determined through Garson’s 

algorithm from the “NeuralNetTools” package in R. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

where, TP is true positive, and FN is false negative. 

 

2.2.4 LSM plotting 

To plot the LSM for each study area, the landslide factors 

data was converted into a numerical data frame using the 

“terra” package in R [60]. Then, the numerical data frame 

underwent the same min-max scaling process as the training 

data and the testing data. The ANN model was then deployed 

to plot the LSM where each target areas landslide 

susceptibility was predicted by its local ANN model and the 

Transfer region ANN model. The LSMs were important as it 

visualised the sensitivity of the ANN models to the variable 

importance [5]. 

 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Multicollinearity assessment 

 

The multicollinearity score for each study area primary data 

can be seen in Figure 3. In the primary data for the Transfer 

region, the most highly correlated landslide factors were slope 

angle and elevation with a correlation score of 0.70 (Figure 

3(a)). From the correlation of landslide factors to landslide 

occurrence (fail), slope angle and elevation correlated highly 

with landslide occurrence with a correlation score of 0.88, and 

0.58 respectively. 

In Target 1’s primary data, the same pattern was observed 

for the most highly correlated landslide factors, which were 

slope angle and elevation with a correlation score for 0.72 

(Figure 3(b)). The same pattern persists for the correlation 

between landslide factors to landslide occurrences with a 
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correlation score between slope angle and landslide 

occurrence of 0.96. 

As for Target 2’s primary data, the most highly correlated 

landslide factors were rainfall and elevation (Figure 3(c)). This 

shows that in Target 2 region, as elevation increases, the 

rainfall intensity increases. Contradicting with the common 

conception of as DFR decreases, the likelihood of landslide 

increases, the correlation between DFR and landslide 

occurrences were in the negatives [30]. This could be 

explained by observing the correlation between DFR and slope 

angle, which was determined to have a score of -0.20, 

indicating that most of the roads in Target 2 are in areas with 

gentle slopes. 

 

 

 

 
 

Figure 3. Multicollinearity score of (a) Transfer region, (b) 

Target 1, and (c) Target 2  

 

3.2 HPO and evaluation 

 

It was determined that the ANN models would only 

converge with the stepmax set at 1E+8. The final 

hyperparameters for all ANN models were 4 neurons in a 

single hidden layer, a learning rate of 0.001, a backpropagation 

learning algorithm, and a stepmax of 1E+8. In its own region, 

the Transfer region ANN model has achieved a recall score of 

1.0 based on its own testing data. The results of the ANN 

model transfer and local ANN model prediction in terms of 

recall can be seen in Table 4. In Target 1, the local ANN model 

outperformed the transferred ANN model by 0.11 based on the 

recall score, where the local ANN model achieved a recall 

score 1.00 whereas the Transfer ANN model achieved a recall 

score of 0.89. In Target 2, the local ANN model outperformed 

the transferred ANN model by a recall score difference of 

0.14, where the local ANN model achieved a recall score of 

1.00, whereas the transferred ANN model achieved a recall 

score of 0.86. 

As for the AUC score, both localised ANN model 

performed better locally in comparison to the transferred ANN 

models with Target 1 scoring an AUC of 1 while the Transfer 

model scored 0.988, and Target 2 ANN model scoring an AUC 

of 1 while the Transfer ANN model scored 0.995 (Table 4). 

However, in this study recall scores were more important as 

compared to the AUC score due to the lower number of 

samples for landslide points [61]. Thus, it can be concluded 

that the Transfer ANN model performed better in Target 1 than 

in Target 2. This can be explained by the multicollinearity 

matrix, which shows that the transfer region more closely 

resembled the primary data of Target 1 than that of Target 2 in 

terms of correlation. 

 
Table 4. ANN models recall and AUC score 

 
 Region 

 Target 1 Target 2 

ANN Local Transfer Local Transfer 

Recall 1.00 0.89 1.00 0.86 

AUC 1.00 0.988 1.00 0.995 

 

3.3 Garson’s variable importance and LSMs 

 

The results of the Garson’s algorithm on the importance of 

each landslide factors for respective ANN models can be seen 

in Table 5. The variable importance determines the influence 

that each landslide factor has on the landslide occurrence. In 

all three ANN models, the slope angle was the most influential 

landside factor. 

 

Table 5. Garson's variable importance 

 

Factors 
ANN Model 

Transfer Target 1 Target 2 

Aspect 0.053 0.162 0.114 

Curvature 0.092 0.171 0.048 

DFR 0.060 0.143 0.166 

Elevation 0.113 0.058 0.125 

NDVI 0.070 0.053 0.110 

Rain 0.105 0.151 0.103 

Slope 0.506 0.260 0.331 

 

Based on the table, anthropogenic factor represented 

through NDVI and DFR is prevalent in Target 2 as compared 

to the other study areas. Indicating that, human activities 

played a significant role in landslide occurrence in Target 2. 

This was not observed in Transfer and Target 1. Although 

Target 1 multicollinearity matrix showed that slope angle has 

the highest correlation with landslide occurrence in the region, 

based on the Garson’s variable importance analysis it was 

relatively low with a score of 0.260. 

The resulting LSM from respective ANN models in each 

target area can be seen in Figure 4. It was observed that the 

distribution of landslide susceptibility risk was more linear 

when the localised ANN model was used compared to the 

transferred ANN model. Analysis the statistics for the LSMs 

of Target 1, it was revealed that the mean and the median 

susceptibility predicted by the local ANN model and the 

transferred ANN model were 0.312 and 0.133, and 0.285 and 

0.006 respectively. It shows application of both ANN models, 

the results were positively skewed, however, when using the 

Transfer ANN model on Target 1, the skew was heavier. The 

(a) aspect curvature DFR elevation ndvi rain slope fail

aspect 1.00

curvature -0.03 1.00

dfr -0.04 0.01 1.00

elevation -0.06 0.14 0.16 1.00

ndvi 0.04 -0.02 0.24 0.26 1.00

rain -0.01 0.00 -0.16 0.06 -0.26 1.00

slope 0.00 0.01 0.04 0.70 0.17 0.13 1.00

fail -0.03 0.05 0.02 0.58 0.15 0.15 0.88 1.00

(b) aspect curvature DFR elevation ndvi rain slope fail

aspect 1.00

curvature -0.03 1.00

dfr 0.00 0.04 1.00

elevation 0.01 0.06 0.63 1.00

ndvi -0.01 -0.05 -0.05 -0.17 1.00

rain -0.08 0.06 -0.02 -0.16 0.22 1.00

slope 0.17 -0.03 0.44 0.72 -0.01 -0.27 1.00

fail 0.18 -0.03 0.33 0.66 -0.01 -0.29 0.96 1.00
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heavier skew correlated with the weightage of the Transfer 

ANN model, where the slope angle was the most prevalent 

factor. In comparison, Target 1 had a lower weight for slope 

angle (0.260) than the Transfer ANN model (0.506). 

 

 
 

Figure 4. LSM of (a) Target 1 predicted by local ANN model, (b) Target 1 predicted by Transfer ANN model, (c) Target 2 

predicted by local ANN model, and (d) LSM of Target 2 predicted by Transfer ANN model  

 

 

4. CONCLUSIONS 

 

This study aimed to conduct a comparative analysis of local 

and transferred ANN models in landslide susceptibility 

prediction in a tropical region. There were similarities and 

differences between the transfer region and Target 1 and 

Target 2. In all three regions, the slope angle was determined 

to have the most influence on landslide occurrence. The 

geological condition was the primary difference for all of the 

study areas. 

For Target 2 statistics, the local ANN model achieved a 

mean of 0.068 and a median of 0.007 for landslide 

susceptibility. When deploying the Transfer ANN model on 

Target 2, the mean was 0.136 whereas the median was 0.0001. 

Both ANN models showed that landslide predictions were 

skewed to the right; however, a stronger skew was observed 

again in the Transfer ANN model predictions. This can be 

attributed to differences in variable importance between the 

target ANN models and the Transfer ANN model. 

In Target 1, the Transfer ANN model achieved a recall of 

0.89 and an AUC score of 0.988, in comparison to the local 

ANN model, which achieved a recall and AUC score of 1, 

respectively. In Target 2, the Transfer ANN model has 

achieved a recall of 0.86 and an AUC score of 0.995, in 

comparison to the local ANN model with a recall and AUC 

score of 1 respectively. The difference was explained through 

differences in variable importance for each region, as 

determined by Garson’s algorithm. For the LSMs, the Transfer 

ANN model predictions in each target areas were heavier 

skewed to the right in comparison to the local ANN models 
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predictions. This study showed that the transfer was 

successful, as indicated by high performance metrics on the 

test data. The transferred ANN model indicated that in the 

tropical region, a region with scarce landslide related data can 

be predicted by a transferred ML model developed with a more 

comprehensive dataset. However, its applicability is limited to 

a preliminary assessment of landslide susceptibility, as the 

generalization of variable importance differs. To further 

improve performance, it is suggested that more data be 

obtained from local agencies or to combine datasets, as 

observed in studies on the Himalayas. It is recommended that 

future research explore the transferability of ML models to 

different tropical regions outside of Southeast Asia. 
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